
The Checker Framework Manual:
Custom pluggable types for Java

https://checkerframework.org

Version 3.49.5 (30 Jun 2025)

For the impatient: Section 1.3 (page 16) describes how to install and use pluggable type-checkers.

https://checkerframework.org

Contents

1 Introduction 15
1.1 How to read this manual . 16
1.2 How it works: Pluggable types . 16
1.3 Installation . 16
1.4 Example use: detecting a null pointer bug . 17

2 Using a checker 18
2.1 Where to write type annotations . 18
2.2 Running a checker . 19

2.2.1 Using annotated libraries . 19
2.2.2 Summary of command-line options . 20
2.2.3 Checker auto-discovery . 23
2.2.4 Shorthand for built-in checkers . 23

2.3 What the checker guarantees . 24
2.4 Tips about writing annotations . 24

2.4.1 Write annotations before you run a checker . 25
2.4.2 How to get started annotating legacy code . 25
2.4.3 Annotations indicate non-exceptional behavior . 26
2.4.4 Subclasses must respect superclass annotations . 28
2.4.5 What to do if a checker issues a warning about your code . 29
2.4.6 Calls to unannotated code (legacy libraries) . 30

3 Nullness Checker 31
3.1 What the Nullness Checker guarantees . 31

3.1.1 Nullness Checker optional warnings . 32
3.2 Nullness annotations . 32

3.2.1 Nullness qualifiers . 32
3.2.2 Nullness method annotations . 33
3.2.3 Initialization qualifiers . 34
3.2.4 Map key qualifiers . 34

3.3 Writing nullness annotations . 34
3.3.1 Implicit qualifiers . 34
3.3.2 Default annotation . 35
3.3.3 Conditional nullness . 35
3.3.4 Nullness and array initialization . 35
3.3.5 Nullness and conversions from collections to arrays . 36
3.3.6 Run-time checks for nullness . 36
3.3.7 Inference of @NonNull and @Nullable annotations . 36

3.4 Suppressing nullness warnings . 37
3.4.1 Suppressing warnings with assertions and method calls . 37

2

3.4.2 Null arguments to collection classes . 38
3.4.3 Conservative nullness annotations on the JDK . 38

3.5 Examples . 38
3.5.1 Tiny examples . 38
3.5.2 Example annotated source code . 39
3.5.3 Publications . 39

3.6 Tips for getting started . 39
3.7 Other tools for nullness checking . 40

3.7.1 Which tool is right for you? . 40
3.7.2 Incompatibility note about FindBugs and SpotBugs @Nullable 40
3.7.3 Relationship to Optional<T> . 43

3.8 Initialization Checker . 44
3.8.1 Initialization qualifiers . 45
3.8.2 How an object becomes initialized . 46
3.8.3 @UnderInitialization examples . 46
3.8.4 Partial initialization . 48
3.8.5 Method calls from the constructor . 49
3.8.6 Initialization of circular data structures . 50
3.8.7 How to handle warnings . 52
3.8.8 Suppressing warnings . 53
3.8.9 More details about initialization checking . 53

4 Map Key Checker 55
4.1 Invoking the Map Key Checker . 55
4.2 Map key annotations . 55
4.3 Default annotations . 56

4.3.1 Default for lower bounds . 56
4.3.2 Diagnosing the need for explicit @KeyFor on lower bounds 57

4.4 Examples . 57
4.5 Local inference of @KeyFor annotations . 58

5 Optional Checker for possibly-present data 60
5.1 How to run the Optional Checker . 60
5.2 Optional annotations . 60

5.2.1 Optional method annotations . 61
5.3 What the Optional Checker guarantees . 61
5.4 Suppressing optional warnings . 62

5.4.1 Suppressing warnings with assertions and method calls . 62

6 Interning Checker 63
6.1 Interning annotations . 64

6.1.1 Interning qualifiers . 64
6.1.2 Interning method and class annotations . 64

6.2 Annotating your code with @Interned . 64
6.3 Interned classes . 65

6.3.1 The intern() methods . 65
6.3.2 Default qualifiers and qualifiers for literals . 66
6.3.3 InternedDistinct: values not equals() to any other value . 66

6.4 What the Interning Checker checks . 66
6.4.1 Imprecision (false positive warnings) of the Interning Checker 67

6.5 Examples . 67
6.6 Other interning annotations . 68

3

7 Called Methods Checker for the builder pattern and more 69
7.1 How to run the Called Methods Checker . 69
7.2 For Lombok users . 70
7.3 Specifying your code . 70
7.4 Default handling for Lombok and AutoValue . 73
7.5 Using the Called Methods Checker for properties unrelated to builders 73
7.6 More information . 73

8 Resource Leak Checker for must-call obligations 74
8.1 How to run the Resource Leak Checker . 74
8.2 Resource Leak Checker annotations . 75
8.3 Example of how safe resource usage is verified . 75
8.4 Aliased references and ownership transfer . 76

8.4.1 Owning parameters and exceptions . 77
8.4.2 Owning fields . 77

8.5 Resource aliasing . 78
8.5.1 A complete wrapper type example . 79

8.6 Creating obligations (how to re-assign a non-final owning field) . 79
8.6.1 Requirements at a call site of a @CreatesMustCallFor method 80
8.6.2 Requirements at a declaration of a @CreatesMustCallFor method 80

8.7 Ignored exception types . 81
8.8 Errors about field initialization . 81
8.9 Errors about unknown must call obligations . 82
8.10 Collections of resources . 82
8.11 Resource Leak Checker annotation inference algorithm . 82

9 Fake Enum Checker for fake enumerations 83
9.1 Fake enum annotations . 83
9.2 What the Fenum Checker checks . 84
9.3 Running the Fenum Checker . 84
9.4 Suppressing warnings . 85
9.5 Example . 85
9.6 The fake enumeration pattern . 86
9.7 References . 86

10 Lock Checker 87
10.1 What the Lock Checker guarantees . 87
10.2 Lock annotations . 87

10.2.1 Type qualifiers . 87
10.2.2 Declaration annotations . 89

10.3 Type-checking rules . 89
10.3.1 Polymorphic qualifiers . 89
10.3.2 Dereferences . 90
10.3.3 Primitive types, boxed primitive types, and Strings . 90
10.3.4 Overriding . 90
10.3.5 Side effects . 90

10.4 Examples . 91
10.4.1 Examples of @GuardedBy . 91
10.4.2 @GuardedBy({“a”, “b”}) is not a subtype of @GuardedBy({“a”}) 92
10.4.3 Examples of @Holding . 92
10.4.4 Examples of @EnsuresLockHeld and @EnsuresLockHeldIf 93
10.4.5 Example of @LockingFree, @ReleasesNoLocks, and @MayReleaseLocks 93

4

10.4.6 Polymorphism and method formal parameters with unknown guards 94
10.5 More locking details . 95

10.5.1 Two types of locking: monitor locks and explicit locks . 95
10.5.2 Held locks and held expressions; aliasing . 95
10.5.3 Run-time checks for locking . 96
10.5.4 Discussion of default qualifier . 96
10.5.5 Discussion of @Holding . 96

10.6 Other lock annotations . 97
10.6.1 Relationship to annotations in Java Concurrency in Practice 97

10.7 Possible extensions . 97

11 Index Checker for sequence bounds (arrays and strings) 98
11.1 Index Checker structure and annotations . 99
11.2 Lower bounds . 99
11.3 Upper bounds . 100
11.4 Sequence minimum lengths . 102
11.5 Sequences of the same length . 103
11.6 Binary search indices . 104
11.7 Substring indices . 104

11.7.1 The need for the @SubstringIndexFor annotation . 105
11.8 Inequalities . 106
11.9 Annotating fixed-size data structures . 106

12 Tainting Checker 108
12.1 Tainting annotations . 108
12.2 Tips on writing @Untainted annotations . 108
12.3 @Tainted and @Untainted can be used for many purposes . 109
12.4 A caution about polymorphism and side effects . 109

13 SQL Quotes Checker 111
13.1 SQL Quotes annotations . 111
13.2 What the SQL Quotes Checker checker . 111
13.3 Library annotations . 112

14 Regex Checker for regular expression syntax 113
14.1 Regex annotations . 113
14.2 Annotating your code with @Regex . 113

14.2.1 Implicit qualifiers . 113
14.2.2 Capturing groups . 114
14.2.3 Concatenation of partial regular expressions . 114
14.2.4 Testing whether a string is a regular expression . 115
14.2.5 Suppressing warnings . 115

15 Format String Checker 116
15.1 Formatting terminology . 116
15.2 Format String Checker annotations . 116

15.2.1 Conversion Categories . 117
15.2.2 Subtyping rules for @Format . 118

15.3 What the Format String Checker checks . 119
15.3.1 Possible false alarms . 120
15.3.2 Possible missed alarms . 120

15.4 Implicit qualifiers . 121

5

15.5 @FormatMethod . 121
15.6 Testing whether a format string is valid . 121

16 Internationalization Format String Checker (I18n Format String Checker) 123
16.1 Internationalization Format String Checker annotations . 123
16.2 Conversion categories . 124
16.3 Subtyping rules for @I18nFormat . 124
16.4 What the Internationalization Format String Checker checks . 125
16.5 Resource files . 126
16.6 Running the Internationalization Format Checker . 127
16.7 Testing whether a string has an i18n format type . 127
16.8 Examples of using the Internationalization Format Checker . 127

17 Property File Checker 129
17.1 General Property File Checker . 129
17.2 Internationalization Checker (I18n Checker) . 130

17.2.1 Internationalization annotations . 130
17.2.2 Running the Internationalization Checker . 130

17.3 Compiler Message Key Checker . 130

18 Signature String Checker for string representations of types 132
18.1 Signature annotations . 132

18.1.1 How to choose which annotation to use . 134
18.2 What the Signature Checker checks . 134

19 GUI Effect Checker 135
19.1 GUI effect annotations . 136
19.2 What the GUI Effect Checker checks . 136
19.3 Running the GUI Effect Checker . 136
19.4 Annotation defaults . 136
19.5 Polymorphic effects . 137

19.5.1 Defining an effect-polymorphic type . 137
19.5.2 Using an effect-polymorphic type . 137
19.5.3 Subclassing a specific instantiation of an effect-polymorphic type 138
19.5.4 Subtyping with polymorphic effects . 138

19.6 References . 139

20 Units Checker 140
20.1 Units annotations . 140
20.2 Extending the Units Checker . 141
20.3 What the Units Checker checks . 142
20.4 Running the Units Checker . 142
20.5 Suppressing warnings . 143
20.6 References . 143

21 Signedness Checker 144
21.1 Annotations . 144

21.1.1 Default qualifiers . 145
21.2 Prohibited operations . 145

21.2.1 Rationale . 145
21.2.2 Permitted shifts . 146

21.3 Utility routines for manipulating unsigned values . 146

6

21.4 Local type refinement . 146
21.5 Instantiating polymorphism . 147
21.6 Other signedness annotations . 147

22 Purity Checker 148
22.1 Purity annotations . 148
22.2 Purity annotations are trusted . 148
22.3 Overriding methods must respect specifications in superclasses . 148
22.4 Suppressing warnings . 149

23 Constant Value Checker 150
23.1 Annotations . 150

23.1.1 Type Annotations . 150
23.2 Other constant value annotations . 151

23.2.1 Compile-time execution of expressions . 152
23.2.2 @StaticallyExecutable methods and the classpath . 152

23.3 Warnings . 153
23.4 Unsoundly ignoring overflow . 153
23.5 Strings can be null in concatenations . 154

24 Returns Receiver Checker 155
24.1 Annotations . 155
24.2 AutoValue and Lombok Support . 155

25 Reflection resolution 157
25.1 Reflection resolution example . 157
25.2 MethodVal and ClassVal Checkers . 158

25.2.1 ClassVal Checker . 158
25.2.2 MethodVal Checker . 159
25.2.3 MethodVal and ClassVal inference . 160

26 Initialized Fields Checker 162
26.1 Running the Initialized Fields Checker . 162
26.2 Motivation: uninitialized fields . 162
26.3 Example . 163
26.4 Annotations . 163
26.5 Comparison to the Initialization Checker . 164

27 Aliasing Checker 165
27.1 Aliasing annotations . 165
27.2 Leaking contexts . 166
27.3 Restrictions on where @Unique may be written . 167
27.4 Aliasing type refinement . 167

28 Must Call Checker 169
28.1 Must Call annotations . 169
28.2 Writing @MustCall/@InheritableMustCall on a class . 170
28.3 Relationship to lightweight ownership . 170
28.4 Assumptions about reflection . 171
28.5 Type parameter bounds often need to be annotated . 171

7

29 Subtyping Checker 172
29.1 Using the Subtyping Checker . 172

29.1.1 Compiling your qualifiers and your project . 173
29.1.2 Suppressing warnings from the Subtyping Checker . 173

29.2 Subtyping Checker example . 173
29.3 Type aliases and typedefs . 175

30 Third-party checkers 177
30.1 Determinism checker . 177
30.2 Constant Value Inference (Interval Inference) . 177
30.3 Crypto Checker . 177
30.4 AWS crypto policy compliance checker . 178
30.5 AWS KMS compliance checker . 178
30.6 PUnits units of measurement . 178
30.7 JaTyC typestate checker . 178
30.8 NullAway . 178
30.9 Nullness Rawness Checker . 178
30.10UI Thread Checker for ReactiveX . 179
30.11Practical Immutability For Classes And Objects (PICO) . 179
30.12Read Checker and Cast Checker for ensuring that EOF is recognized 179
30.13Ontology type system . 179
30.14Glacier: Class immutability . 179
30.15SQL checker that supports multiple dialects . 179
30.16Immutability checkers: IGJ, OIGJ, and Javari . 180
30.17JCrypt: computation over encrypted data . 180
30.18DroidInfer: information flow . 180
30.19Error Prone linter . 180
30.20SPARTA information flow type-checker for Android . 180
30.21SFlow type system for information flow . 180
30.22CheckLT taint checker . 181
30.23EnerJ checker . 181
30.24ReIm immutability . 181
30.25SFlow x ReIm for information flow and reference immutability . 181
30.26Generic Universe Types checker . 181
30.27Safety-Critical Java checker . 181
30.28Thread locality checker . 181
30.29Units and dimensions checker . 181
30.30Typestate checkers . 182

30.30.1 Comparison to flow-sensitive type refinement . 182

31 Generics and polymorphism 183
31.1 Generics (parametric polymorphism or type polymorphism) . 183

31.1.1 Raw types . 183
31.1.2 Restricting instantiation of a generic class . 183
31.1.3 Type annotations on a use of a generic type variable . 185
31.1.4 Annotations on wildcards . 185
31.1.5 Examples of qualifiers on a type parameter . 186
31.1.6 Covariant type parameters . 187
31.1.7 Method type argument inference and type qualifiers . 187
31.1.8 The Bottom type . 188

31.2 Qualifier polymorphism for methods . 188
31.2.1 Using polymorphic qualifiers in a method signature . 188

8

31.2.2 Relationship to subtyping and generics . 189
31.2.3 Using multiple polymorphic qualifiers in a method signature 189
31.2.4 Using a single polymorphic qualifier in a method signature 189

31.3 Class qualifier parameters . 191
31.3.1 Resolving polymorphism when the receiver type has a polymorphic qualifier 191
31.3.2 Using class qualifier parameters in the type of a field . 191
31.3.3 Local variable defaults for types with qualifier parameters 192
31.3.4 Qualifier parameters by default . 192
31.3.5 Types with qualifier parameters as type arguments . 192

32 Advanced type system features 194
32.1 Invariant array types . 194
32.2 Context-sensitive type inference for array constructors . 194
32.3 Upper bound of qualifiers on uses of a given type (annotations on a class declaration) 195
32.4 The effective qualifier on a type (defaults and inference) . 196
32.5 Default qualifier for unannotated types . 196

32.5.1 Default for use of a type . 197
32.5.2 Controlling defaults in source code . 197
32.5.3 Defaulting rules and CLIMB-to-top . 198
32.5.4 Inherited defaults . 199
32.5.5 Inherited wildcard annotations . 200
32.5.6 Default qualifiers for .class files (library defaults) . 200

32.6 Annotations on constructors . 201
32.6.1 Annotations on constructor declarations . 201
32.6.2 Annotations on constructor invocations . 201

32.7 Type refinement (flow-sensitive type qualifier inference) . 202
32.7.1 Type refinement examples . 202
32.7.2 Type refinement behavior . 202
32.7.3 Which types are refined . 203
32.7.4 Run-time tests and type refinement . 203
32.7.5 Side effects, determinism, purity, and type refinement . 204
32.7.6 Assertions . 206
32.7.7 Var Keyword . 206

32.8 Writing Java expressions as annotation arguments . 207
32.8.1 Limitations . 208

32.9 Field invariants . 208
32.10Unused fields . 209

32.10.1 @Unused annotation . 209

33 Suppressing warnings 211
33.1 @SuppressWarnings annotation . 212

33.1.1 @SuppressWarnings syntax . 212
33.1.2 Where @SuppressWarnings can be written . 212
33.1.3 Good practices when suppressing warnings . 213

33.2 @AssumeAssertion string in an assert message . 214
33.2.1 Suppressing warnings and defensive programming . 215

33.3 -AsuppressWarnings command-line option . 216
33.4 -AskipUses and -AonlyUses command-line options . 216
33.5 -AskipDefs and -AonlyDefs command-line options . 216
33.6 -AskipFiles and -AonlyFiles command-line options . 217
33.7 -Alint command-line option . 217
33.8 Change the specification of a method . 218

9

33.9 Don’t run the processor . 218
33.10Checker-specific mechanisms . 218

34 Type inference 219
34.1 Type inference tools . 219
34.2 Whole-program inference . 220
34.3 Running whole-program inference on a single project . 220

34.3.1 Whole-program inference results . 221
34.3.2 Requirements for whole-program inference scripts . 222

34.4 Running whole-program inference on many projects . 222
34.5 Whole-program inference that inserts annotations into source code 223
34.6 Inference results depend on uses in your program or test suite . 224

34.6.1 Whole-program inference ignores some code . 224
34.6.2 Manually checking whole-program inference results . 225

34.7 How whole-program inference works . 225
34.8 Type inference compared to other whole-program analyses . 225

35 Annotating libraries 227
35.1 Tips for annotating a library . 228

35.1.1 Don’t change the code . 228
35.1.2 Library annotations should reflect the specification, not the implementation 228
35.1.3 Report bugs upstream . 228
35.1.4 Fully annotate the library, or indicate which parts you did not 228
35.1.5 Verify your annotations . 229

35.2 Creating an annotated library . 229
35.3 Creating an annotated JDK . 230
35.4 Compiling partially-annotated libraries . 230

35.4.1 The -AuseConservativeDefaultsForUncheckedCode=source,bytecode command-line
argument . 230

35.5 Using stub classes . 231
35.5.1 Using a stub file . 231
35.5.2 Multiple specifications for a method . 231
35.5.3 Stub methods in subclasses of the declaring class . 232
35.5.4 Stub file format . 233
35.5.5 Creating a stub file . 233
35.5.6 Distributing stub files . 234
35.5.7 Troubleshooting stub libraries . 235

35.6 Ajava files . 236
35.6.1 Using an Ajava file . 236
35.6.2 Corresponding source files and ajava files . 236

35.7 Troubleshooting/debugging annotated libraries . 237

36 How to create a new checker 238
36.1 How checkers build on the Checker Framework . 239
36.2 The parts of a checker . 239
36.3 Compiling and using a custom checker . 240
36.4 Tips for creating a checker . 240
36.5 Annotations: Type qualifiers and hierarchy . 242

36.5.1 Defining the type qualifiers . 242
36.5.2 Declaratively defining the qualifier hierarchy . 243
36.5.3 Procedurally defining the qualifier hierarchy . 244
36.5.4 Defining the default annotation . 245

10

36.5.5 Relevant Java types . 245
36.5.6 Do not re-use type qualifiers . 245
36.5.7 Completeness of the qualifier hierarchy . 246
36.5.8 Annotations whose argument is a Java expression (dependent type annotations) 246
36.5.9 Repeatable annotations . 247

36.6 The checker class: Compiler interface . 247
36.6.1 Indicating supported annotations . 248
36.6.2 Bundling multiple checkers . 248
36.6.3 Providing command-line options . 249

36.7 Visitor: Type rules . 250
36.7.1 AST traversal . 251
36.7.2 Avoid hardcoding . 251

36.8 Type factory: Type introduction rules . 251
36.8.1 Procedurally specifying type introduction rules . 251
36.8.2 Recursion in TreeAnnotators . 252

36.9 Dataflow: enhancing flow-sensitive type refinement . 252
36.9.1 Determine expressions to refine the types of . 253
36.9.2 Create required class . 253
36.9.3 Override methods that handle Nodes of interest . 254
36.9.4 Implement the refinement . 254
36.9.5 Further customizing flow-sensitive inference . 256

36.10Annotated JDK and other annotated libraries . 256
36.11Testing framework . 257
36.12Debugging options . 257

36.12.1 Amount of detail in messages . 257
36.12.2 Format of output . 257
36.12.3 Stub and JDK libraries . 258
36.12.4 Progress tracing . 258
36.12.5 Saving the command-line arguments to a file . 258
36.12.6 Visualizing the dataflow graph . 258
36.12.7 Miscellaneous debugging options . 260
36.12.8 Examples . 260
36.12.9 Using an external debugger . 260

36.13Documenting the checker . 260
36.14javac implementation survival guide . 261

36.14.1 Checker access to compiler information . 261
36.14.2 How a checker fits in the compiler as an annotation processor 263

36.15Integrating a checker with the Checker Framework . 263

37 Building an accumulation checker 264
37.1 Publications . 265

38 Integration with external tools 266
38.1 Android . 266
38.2 Android Studio and the Android Gradle Plugin . 267

38.2.1 JDK 8 . 267
38.2.2 JDK 11+ . 268

38.3 Ant task . 268
38.3.1 Explanation . 269

38.4 Bazel . 269
38.5 Buck . 270

38.5.1 Troubleshooting . 270

11

38.6 Command line, via Checker Framework javac wrapper . 271
38.7 Command line, via JDK javac . 271

38.7.1 JDK 8 . 272
38.7.2 JDK 11+ . 272

38.8 Eclipse . 274
38.8.1 Using an Ant task . 274
38.8.2 Troubleshooting Eclipse . 274

38.9 Gradle . 274
38.10IntelliJ IDEA . 274

38.10.1 Running a checker on every IntelliJ compilation . 275
38.10.2 Running a checker on every IntelliJ change or save . 275

38.11javac diagnostics wrapper . 275
38.12Lombok . 275

38.12.1 Annotations on generated code . 276
38.12.2 Type-checking code with Lombok annotations . 276
38.12.3 Maven Projects using Lombok . 276

38.13Maven . 276
38.13.1 Maven, with a locally-built version of the Checker Framework 279

38.14NetBeans . 279
38.14.1 Adding a checker via the Project Properties window . 279
38.14.2 Adding a checker via an ant target . 280

38.15sbt . 281
38.15.1 JDK 8 . 281
38.15.2 JDK 11 and later, for non-modularized code . 281
38.15.3 For modularized code . 282

38.16tIDE . 282
38.17Type inference tools . 282

39 Frequently Asked Questions (FAQs) 283
39.1 Motivation for pluggable type-checking . 285

39.1.1 I don’t make type errors, so would pluggable type-checking help me? 285
39.1.2 Should I use pluggable types (type qualifiers), or should I use Java subtypes? 285

39.2 Getting started . 286
39.2.1 How do I get started annotating an existing program? . 286
39.2.2 Which checker should I start with? . 286
39.2.3 How can I join the checker-framework-dev mailing list? . 287

39.3 Usability of pluggable type-checking . 287
39.3.1 Are type annotations easy to read and write? . 287
39.3.2 Will my code become cluttered with type annotations? . 287
39.3.3 Will using the Checker Framework slow down my program? Will it slow down the compiler? 287
39.3.4 How do I shorten the command line when invoking a checker? 288
39.3.5 Method pre-condition contracts, including formal parameter annotations, make no sense for

public methods . 288
39.4 How to handle warnings and errors . 288

39.4.1 What should I do if a checker issues a warning about my code? 288
39.4.2 Why does a checker issue a warning even though the code checks a property? 288
39.4.3 What does a certain Checker Framework warning message mean? 288
39.4.4 What do square brackets mean in a Checker Framework warning message? 289
39.4.5 Can a pluggable type-checker guarantee that my code is correct? 289
39.4.6 What guarantee does the Checker Framework give for concurrent code? 289
39.4.7 How do I make compilation succeed even if a checker issues errors? 290
39.4.8 Why does the checker always say there are 100 errors or warnings? 290

12

39.4.9 Why does the Checker Framework report an error regarding a type I have not written in my
program? . 290

39.4.10 Why does the Checker Framework accept code on one line but reject it on the next? 290
39.4.11 How can I do run-time monitoring of properties that were not statically checked? 290

39.5 False positive warnings . 290
39.5.1 What is a “false positive” warning? . 291
39.5.2 How can I improve the Checker Framework to eliminate a false positive warning? 291
39.5.3 Why doesn’t the Checker Framework infer types for fields and method return types? 291
39.5.4 Why doesn’t the Checker Framework track relationships between variables? 292
39.5.5 Why isn’t the Checker Framework path-sensitive? . 294

39.6 Syntax of type annotations . 294
39.6.1 What is a “receiver”? . 294
39.6.2 What is the meaning of an annotation after a type, such as @NonNull Object @Nullable? . 295
39.6.3 What is the meaning of array annotations such as @NonNull Object @Nullable []? 295
39.6.4 What is the meaning of varargs annotations such as @English String @NonEmpty ...? . . 295
39.6.5 What is the meaning of a type qualifier at a class declaration? 296
39.6.6 How are type qualifiers written on upper and lower bounds? 296
39.6.7 Why shouldn’t a qualifier apply to both types and declarations? 296
39.6.8 How do I annotate a fully-qualified type name? . 297
39.6.9 What is the difference between type annotations and declaration annotations? 297
39.6.10 How should type annotations be formatted in source code? Where should I write type annotations?297
39.6.11 How does the Checker Framework handle obsolete declaration annotations? 299
39.6.12 How do I convert from other tools’ declaration annotations to type annotations? 299

39.7 Semantics of type annotations . 299
39.7.1 How can I handle typestate, or phases of my program with different data properties? 299
39.7.2 Why are explicit and implicit bounds defaulted differently? 300
39.7.3 How should I annotate code that uses generics? . 300
39.7.4 Why are type annotations declared with @Retention(RetentionPolicy.RUNTIME)? 301

39.8 Creating a new checker . 301
39.8.1 How do I create a new checker? . 301
39.8.2 What properties can and cannot be handled by type-checking? 302
39.8.3 Why is there no declarative syntax for writing type rules? . 302

39.9 Tool questions . 302
39.9.1 How does pluggable type-checking work? . 302
39.9.2 What classpath is needed to use an annotated library? . 302
39.9.3 Why do .class files contain more annotations than the source code? 303
39.9.4 Is there a type-checker for managing checked and unchecked exceptions? 303
39.9.5 The Checker Framework runs too slowly . 303
39.9.6 What does the Checker Framework version number mean? 304

39.10Relationship to other tools . 304
39.10.1 Why not just use a bug detector (like SpotBugs or Error Prone)? 304
39.10.2 How does the Checker Framework compare with Eclipse’s null analysis? 305
39.10.3 How does the Checker Framework compare with NullAway? 305
39.10.4 How does the Checker Framework compare with JSpecify? 305
39.10.5 How does the Checker Framework compare with the EISOP Checker Framework? 306
39.10.6 How does the Checker Framework compare with the JDK’s Optional type? 306
39.10.7 How does pluggable type-checking compare with JML? . 306
39.10.8 Is the Checker Framework an official part of Java? . 307
39.10.9 What is the relationship between the Checker Framework and JSR 305? 307
39.10.10What is the relationship between the Checker Framework and JSR 308? 307

13

40 Troubleshooting, getting help, and contributing 308
40.1 Common problems and solutions . 308

40.1.1 Unable to compile the Checker Framework . 308
40.1.2 Unable to run the checker, or checker crashes . 308
40.1.3 Unexpected warnings not related to type-checking . 310
40.1.4 Unexpected type-checking results . 310
40.1.5 Unexpected compilation output when running javac without a pluggable type-checker 312

40.2 How to report problems (bug reporting) . 313
40.2.1 Problems with annotated libraries . 314

40.3 Building from source . 314
40.3.1 Install prerequisites . 314
40.3.2 Obtain the source . 315
40.3.3 Build the Checker Framework . 315
40.3.4 Build the Checker Framework Manual (this document) . 316
40.3.5 Code style, IDE configuration, pull requests, etc. 316
40.3.6 Enable continuous integration builds . 316
40.3.7 Related repositories . 317

40.4 Contributing . 317
40.4.1 Contributing fixes (creating a pull request) . 317

40.5 Credits and changelog . 317
40.6 License . 318
40.7 Publications . 318

14

Chapter 1

Introduction

The Checker Framework enhances Java’s type system to make it more powerful and useful. This lets software developers
detect and prevent errors in their Java programs.

A “checker” is a compile-time tool that warns you about certain errors or gives you a guarantee that those errors do
not occur. The Checker Framework comes with checkers for specific types of errors:

1. Nullness Checker for null pointer errors (see Chapter 3, page 31)
2. Initialization Checker to ensure all @NonNull fields are set in the constructor (see Chapter 3.8, page 44)
3. Map Key Checker to track which values are keys in a map (see Chapter 4, page 55)
4. Optional Checker for errors in using the Optional type (see Chapter 5, page 60)
5. Interning Checker for errors in equality testing and interning (see Chapter 6, page 63)
6. Called Methods Checker for the builder pattern (see Chapter 7, page 69)
7. Resource Leak Checker for ensuring that resources are disposed of properly (see Chapter 8, page 74)
8. Fake Enum Checker to allow type-safe fake enum patterns and type aliases or typedefs (see Chapter 9, page 83)
9. Tainting Checker for trust and security errors (see Chapter 12, page 108)

10. SQL Quotes Checker to mitigate SQL injection attacks (see Chapter 13, page 111)
11. Lock Checker for concurrency and lock errors (see Chapter 10, page 87)
12. Index Checker for array accesses (see Chapter 11, page 98)
13. Regex Checker to prevent use of syntactically invalid regular expressions (see Chapter 14, page 113)
14. Format String Checker to ensure that format strings have the right number and type of % directives (see Chapter 15,

page 116)
15. Internationalization Format String Checker to ensure that i18n format strings have the right number and type of

{} directives (see Chapter 16, page 123)
16. Property File Checker to ensure that valid keys are used for property files and resource bundles (see Chapter 17,

page 129)
17. Internationalization Checker to ensure that code is properly internationalized (see Chapter 17.2, page 130)
18. Signature String Checker to ensure that the string representation of a type is properly used, for example in

Class.forName (see Chapter 18, page 132)
19. GUI Effect Checker to ensure that non-GUI threads do not access the UI, which would crash the application (see

Chapter 19, page 135)
20. Units Checker to ensure operations are performed on correct units of measurement (see Chapter 20, page 140)
21. Signedness Checker to ensure unsigned and signed values are not mixed (see Chapter 21, page 144)
22. Purity Checker to identify whether methods have side effects (see Chapter 22, page 148)
23. Constant Value Checker to determine whether an expression’s value can be known at compile time (see Chapter 23,

page 150)
24. Reflection Checker to determine whether an expression’s value (of type Method or Class) can be known at

compile time (see Chapter 25, page 157)
25. Initialized Fields Checker to ensure all fields are set in the constructor (see Chapter 3.8, page 44)

15

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html

26. Aliasing Checker to identify whether expressions have aliases (see Chapter 27, page 165)
27. Must Call Checker to over-approximate the methods that should be called on an object before it is de-allocated

(see Chapter 28, page 169)
28. Subtyping Checker for customized checking without writing any code (see Chapter 29, page 172)
29. Third-party checkers that are distributed separately from the Checker Framework (see Chapter 30, page 177)

These checkers are easy to use and are invoked as arguments to javac.
The Checker Framework also enables you to write new checkers of your own; see Chapters 29 and 36.

1.1 How to read this manual
If you wish to get started using some particular type system from the list above, then the most effective way to read this
manual is:

• Read all of the introductory material (Chapters 1–2).
• Read just one of the descriptions of a particular type system and its checker (Chapters 3–30).
• Skim the advanced material that will enable you to make more effective use of a type system (Chapters 31–40),

so that you will know what is available and can find it later. Skip Chapter 36 on creating a new checker.

1.2 How it works: Pluggable types
Java’s built-in type-checker finds and prevents many errors — but it doesn’t find and prevent enough errors. The
Checker Framework lets you define new type systems and run them as a plug-in to the javac compiler. Your code stays
completely backward-compatible: your code compiles with any Java compiler, it runs on any JVM, and your coworkers
don’t have to use the enhanced type system if they don’t want to. You can check part of your program, or the whole
thing. Type inference tools exist to help you annotate your code; see Section 34.

Most programmers will use type systems created by other people, such as those listed at the start of the introduction
(Chapter 1, page 15). Some people, called “type system designers”, create new type systems (Chapter 36, page 238).
The Checker Framework is useful both to programmers who wish to write error-free code, and to type system designers
who wish to evaluate and deploy their type systems.

This document uses the terms “checker” and “type-checking compiler plugin” as synonyms.

1.3 Installation
This section describes how to install the Checker Framework.

• If you use a build system that automatically downloads dependencies, such as Gradle or Maven, no installation
is necessary; just see Chapter 38, page 266.

• If you wish to try the Checker Framework without installing it, use the Checker Framework Live Demo webpage.
• This section describes how to install the Checker Framework from its distribution. The Checker Framework

release contains everything that you need, both to run checkers and to write your own checkers.
• Alternately, you can build the latest development version from source (Section 40.3, page 314).

Requirement: You must have a JDK (version 8 or later) installed.
The installation process has two required steps and one optional step.

1. Download the Checker Framework distribution:
https://checkerframework.org/checker-framework-3.49.5.zip

2. Unzip it to create a checker-framework-3.49.5 directory.
3. Configure your IDE, build system, or command shell to include the Checker Framework on the classpath. Choose

the appropriate section of Chapter 38.

16

http://eisop.uwaterloo.ca/live/
https://checkerframework.org/checker-framework-3.49.5.zip

Now you are ready to start using the checkers.
We recommend that you work through the Checker Framework tutorial (https://checkerframework.org/

tutorial/), which demonstrates the Nullness, Regex, and Tainting Checkers.
Section 1.4 walks you through a simple example. More detailed instructions for using a checker appear in Chapter 2.
The Checker Framework is released on a monthly schedule. The minor version (the middle number in the version

number) is incremented if there are any incompatibilities with the previous version, including in user-visible behavior
or in methods that a checker implementation might call.

1.4 Example use: detecting a null pointer bug
This section gives a very simple example of running the Checker Framework. There is also a tutorial (https:
//checkerframework.org/tutorial/) that you can work along with.

Let’s consider this very simple Java class. The local variable ref’s type is annotated as @NonNull, indicating that
ref must be a reference to a non-null object. Save the file as GetStarted.java.

import org.checkerframework.checker.nullness.qual.*;

public class GetStarted {
void sample() {

@NonNull Object ref = new Object();
}

}

If you run the Nullness Checker (Chapter 3), the compilation completes without any errors.
Now, introduce an error. Modify ref’s assignment to:

@NonNull Object ref = null;

If you run the Nullness Checker again, it emits the following error:

GetStarted.java:5: incompatible types.
found : @Nullable <nulltype>
required: @NonNull Object

@NonNull Object ref = null;
^

1 error

This is a trivially simple example. Even an unsound bug-finding tool like SpotBugs or Error Prone could have
detected this bug. The Checker Framework’s analysis is more powerful than those tools and detects more code defects
than they do.

Type qualifiers such as @NonNull are permitted anywhere that you can write a type, including generics and casts;
see Section 2.1. Here are some examples:

@Interned String intern() { ... } // return value
int compareTo(@NonNull String other) { ... } // parameter
@NonNull List<@Interned String> messages; // non-null list of interned Strings

17

https://checkerframework.org/tutorial/
https://checkerframework.org/tutorial/
https://checkerframework.org/tutorial/
https://checkerframework.org/tutorial/
../api/org/checkerframework/checker/nullness/qual/NonNull.html

Chapter 2

Using a checker

A pluggable type-checker enables you to detect certain bugs in your code, or to prove that they are not present. The
verification happens at compile time.

Finding bugs, or verifying their absence, with a checker is a two-step process, whose steps are described in
Sections 2.1 and 2.2.

1. The programmer writes annotations, such as @NonNull and @Interned, that specify additional information about
Java types. (Or, the programmer uses an inference tool to automatically infer annotations that are consistent with
their code: see Section 34.) It is possible to annotate only part of your code: see Section 2.4.6.

2. The checker reports whether the program contains any erroneous code — that is, code that is inconsistent with
the annotations.

This chapter is structured as follows:

• Section 2.1: How to write annotations
• Section 2.2: How to run a checker
• Section 2.3: What the checker guarantees
• Section 2.4: Tips about writing annotations

Additional topics that apply to all checkers are covered later in the manual:

• Chapter 32: Advanced type system features
• Chapter 33: Suppressing warnings
• Chapter 35: Annotating libraries
• Chapter 36: How to create a new checker
• Chapter 38: Integration with external tools

There is a tutorial (https://checkerframework.org/tutorial/) that walks you through using the Checker
Framework on the command line.

2.1 Where to write type annotations
You may write a type annotation immediately before any use of a type, including in generics and casts. Because array
levels are types and receivers have types, you can also write type annotations on them. Here are a few examples of type
annotations:

@Interned String intern() { ... } // return value
int compareTo(@NonNull String other) { ... } // parameter
String toString(@Tainted MyClass this) { ... } // receiver ("this" parameter)
@NonNull List<@Interned String> messages; // generics: non-null list of interned Strings
@Interned String @NonNull [] messages; // arrays: non-null array of interned Strings
myDate = (@Initialized Date) beingConstructed; // cast

18

../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/interning/qual/Interned.html
https://checkerframework.org/tutorial/

You only need to write type annotations on method signatures, fields, and some type arguments. Most annotations
within method bodies are inferred for you; for more details, see Section 32.7.

The Java Language Specification also defines declaration annotations, such as @Deprecated and @Override, which
apply to a class, method, or field but do not apply to the method’s return type or the field’s type. They should be written
on their own line in the source code, before the method’s signature.

2.2 Running a checker
To run a checker, run the compiler javac as usual, but either pass the -processor plugin_class command-line
option, or use auto-discovery as described in Section 2.2.3. (If your project already uses auto-discovery for some
annotation processor, such as AutoValue, then you should use auto-discovery.) Two concretes example of using
-processor to run the Nullness Checker are

javac -processor nullness MyFile.java
javac -processor org.checkerframework.checker.nullness.NullnessChecker MyFile.java

where javac is as specified in Section 38.6.
You can also run a checker from within your favorite IDE or build system. See Chapter 38 for details about

build tools such as Ant (Section 38.3), Buck (Section 38.5), Bazel (Section 38.4), Gradle (Section 38.9), Maven
(Section 38.13), and sbt (Section 38.15); IDEs such as Eclipse (Section 38.8), IntelliJ IDEA (Section 38.10), NetBeans
(Section 38.14), and tIDE (Section 38.16); and about customizing other IDEs and build tools.

The checker is run on only the Java files that javac compiles. This includes all Java files specified on the command
line and those created by another annotation processor. It may also include other of your Java files, if they are more
recent than the corresponding .class file. Even when the checker does not analyze a class (say, the class was already
compiled, or source code is not available), it does check the uses of those classes in the source code being compiled.
Type-checking works modularly and intraprocedurally: when verifying a method, it examines only the signature
(including annotations) of other methods, not their implementations. When analyzing a variable use, it relies on the
type of the variable, not any dataflow outside the current method that produced the value.

After you compile your code while running a checker, the resulting .class and .jar files can be used for pluggable
type-checking of client code.

If you compile code without the -processor command-line option, no checking of the type annotations is
performed. Furthermore, only explicitly-written annotations are written to the .class file; defaulted annotations are
not, and this will interfere with type-checking of clients that use your code. Therefore, to create .class files that will
be distributed or compiled against, you should run the type-checkers for all the annotations that you have written.

2.2.1 Using annotated libraries
When your code uses a library that is not currently being compiled, the Checker Framework looks up the library’s
annotations in its class files or in a stub file.

Some projects are already distributed with type annotations by their maintainers, so you do not need to do anything
special. An example is all the libraries in https://github.com/plume-lib/. Over time, this should become more
common.

For some other libraries, the Checker Framework developers have provided an annotated version of the library,
either as a stub file or as compiled class files. (If some library is not available in either of these forms, you can contribute
by annotating it, which will help you and all other Checker Framework users; see Chapter 35, page 227.)

Some stub files are used automatically by a checker, without any action on your part. For others, you must pass the
-Astubs=... command-line argument. As a special case, if an .astub file appears in checker/src/main/resources/,
then pass the command-line option use -Astubs=checker.jar/stubfilename.astub. The “checker.jar”
should be literal — don’t provide a path. This special syntax only works for “checker.jar”.

The annotated libraries that are provided as class files appear in the org.checkerframework.annotatedlib group
in the Maven Central Repository. The annotated library has identical behavior to the upstream, unannotated version;

19

https://github.com/plume-lib/
https://search.maven.org/search?q=org.checkerframework.annotatedlib
https://search.maven.org/search?q=org.checkerframework.annotatedlib

the source code is identical other than added annotations. (Some of the annotated libraries are bcel, commons-csv,
commons-io, guava, and java-getopt.)

To use an annotated library:

• If your project stores .jar files locally, then download the .jar file from the Maven Central Repository.
• If your project manages dependencies using a tool such as Gradle or Maven, then update your buildfile to use the
org.checkerframework.annotatedlib group. For example, in build.gradle, change

api group: ’org.apache.bcel’, name: ’bcel’, version: ’6.3.1’
api group: ’commons-io’, name: ’commans-io’, version: ’2.8’

to

api group: ’org.checkerframework.annotatedlib’, name: ’bcel’, version: ’6.3.1’
api group: ’org.checkerframework.annotatedlib’, name: ’commons-io’, version: ’2.8.0.1’

Usually use the same version number. (Sometimes you will use a slightly larger number, if the Checker Framework
developers have improved the type annotations since the last release by the upstream maintainers.) If a newer ver-
sion of the upstream library is available but that version is not available in org.checkerframework.annotatedlib,
then open an issue requesting that the org.checkerframework.annotatedlib version be updated.

There is one special case. If an .astub file is shipped with the Checker Framework in checker/src/main/resources/,
then you can use -Astubs=checker.jar/stubfilename.astub. The “checker.jar” should be literal — don’t
provide a path. (This special syntax only works for “checker.jar”.)

2.2.2 Summary of command-line options
You can pass command-line arguments to a checker via javac’s standard -A option (“A” stands for “annotation”).
All of the distributed checkers support the following command-line options. Each checker may support additional
command-line options; see the checker’s documentation.

To pass an option to only a particular checker, prefix the option with the canonical or simple name of a checker,
followed by an underscore “_”. Such an option will apply only to a checker with that name or any subclass of that
checker. For example, you can use

-ANullnessChecker_lint=redundantNullComparison
-Aorg.checkerframework.checker.guieffect.GuiEffectChecker_lint=debugSpew

to pass different lint options to the Nullness and GUI Effect Checkers. A downside is that, in this example, the Nullness
Checker will issue a “The following options were not recognized by any processor” warning about the second option
and the GUI Effect Checker will issue a “The following options were not recognized by any processor” warning about
the first option.

Unsound checking: ignore some errors

• -AsuppressWarnings Suppress all errors and warnings matching the given key; see Section 33.3.
• -AskipUses, -AonlyUses Suppress all errors and warnings at all uses of a given class — or at all uses except

those of a given class. See Section 33.4.
• -AskipDefs, -AonlyDefs Suppress all errors and warnings within the definition of given classes — or every-

where except within the definition of given classes. See Section 33.5.
• -AskipFiles, -AonlyFiles Suppress all errors and warnings within given files or directories/folders — or

everywhere except within given files or directories/folders. See Section 33.6.
• -AassumeSideEffectFree, -AassumeDeterministic, -AassumePure, -AassumePureGetters Unsoundly

assume that every method is side-effect-free, deterministic, or both; or that every getter method is pure. See
Section 22.4 and Section 32.7.5.

• -AassumeAssertionsAreEnabled, -AassumeAssertionsAreDisabled Whether to assume that assertions
(Java assert statements) are enabled or disabled; see Section 32.7.6.

20

https://search.maven.org/search?q=org.checkerframework.annotatedlib

• -AignoreRangeOverflow Ignore the possibility of overflow for range annotations such as @IntRange; see
Section 23.4.

• -Awarns Treat checker errors as warnings. If you use this, you may wish to also supply -Xmaxwarns 10000,
because by default javac prints at most 100 warnings. If you use this, don’t supply -Werror, which is a javac
argument to halt compilation if a warning is issued.

• -AignoreInvalidAnnotationLocations Ignore annotations in bytecode that have invalid annotation locations.

More sound (strict) checking: enable errors that are disabled by default

• -AcheckPurityAnnotations Check the bodies of methods marked @SideEffectFree, @Deterministic, and
@Pure to ensure the method satisfies the annotation. By default, the Checker Framework unsoundly trusts the
method annotation. See Section 32.7.5.

• -AinvariantArrays Make array subtyping invariant; that is, two arrays are subtypes of one another only if
they have exactly the same element type. By default, the Checker Framework unsoundly permits covariant array
subtyping, just as Java does. See Section 32.1.

• -AcheckCastElementType In a cast, require that parameterized type arguments and array elements are the same.
By default, the Checker Framework unsoundly permits them to differ, just as Java does. See Section 31.1.6 and
Section 32.1.

• -AuseConservativeDefaultsForUncheckedCode Enables conservative defaults, and suppresses all type-
checking warnings, in unchecked code. Takes arguments “source,bytecode”. “-source,-bytecode” is the (unsound)
default setting.

– “bytecode” specifies whether the checker should apply conservative defaults to bytecode (that is, to already-
compiled libraries); see Section 32.5.6.

– Outside the scope of any relevant @AnnotatedFor annotation, “source” specifies whether conservative
default annotations are applied to source code and suppress all type-checking warnings; see Section 35.4.

• -AconcurrentSemantics Whether to assume concurrent semantics (field values may change at any time) or
sequential semantics; see Section 39.4.6.

• -AignoreRawTypeArguments=false Do not ignore subtype tests for type arguments that were inferred for a
raw type. See Section 31.1.1.

• -processor org.checkerframework.common.initializedfields.InitializedFieldsChecker,... En-
sure that all fields are initialized by the constructor. See Chapter 26, page 162.

Type-checking modes: enable/disable functionality

• -Alint Enable or disable optional checks; see Section 33.7.
• -AwarnRedundantAnnotations Warn about redundant annotations. A warning is issued if an explicitly written

annotation is the same as the default annotation for that location. This feature does not warn about all redundant
annotations, only some.

• -AsuggestPureMethods Suggest methods that could be marked @SideEffectFree, @Deterministic, or
@Pure; see Section 32.7.5.

• -AresolveReflection Determine the target of reflective calls, and perform more precise type-checking based
on that information; see Chapter 25. -AresolveReflection=debug causes debugging information to be output.

• -Ainfer=outputformat Output suggested annotations for method signatures and fields. These annotations
may reduce the number of type-checking errors on subsequent type-checking runs. This option is typically
used by whole-program inference (WPI; see Section 34.2) rather than by programmers. Using -Ainfer=jaifs
produces .jaif files. Using -Ainfer=stubs produces .astub files. Using -Ainfer=ajava produces .ajava
files. You must also supply -Awarns, or the inference output may be incomplete.

• -AinferOutputOriginal When outputting .ajava files when running with -Ainfer=ajava, also output a
copy of the original file with no inferred annotations, but with the formatting of a .ajava file, to permit use of
diff to view the inferred annotations. Must be combined with -Ainfer=ajava.

• -AshowSuppressWarningsStrings With each warning, show all possible strings to suppress that warning.
• -AwarnUnneededSuppressions Issue a warning if a @SuppressWarnings did not suppress a warning issued

by the checker. This only warns about @SuppressWarnings strings that contain a checker name (for syntax,

21

../api/org/checkerframework/dataflow/qual/SideEffectFree.html
../api/org/checkerframework/dataflow/qual/Deterministic.html
../api/org/checkerframework/dataflow/qual/Pure.html
../api/org/checkerframework/framework/qual/AnnotatedFor.html
../api/org/checkerframework/dataflow/qual/SideEffectFree.html
../api/org/checkerframework/dataflow/qual/Deterministic.html
../api/org/checkerframework/dataflow/qual/Pure.html

Section 33.1.1). The -ArequirePrefixInWarningSuppressions command-line argument ensures that all
@SuppressWarnings strings contain a checker name. An unneeded.suppression warning can be suppressed
only by @SuppressWarnings("unneeded.suppression") or @SuppressWarnings("checkername:unneeded.suppression"),
not by @SuppressWarnings("checkername").

• -AwarnUnneededSuppressionsExceptions=regex disables -AwarnUnneededSuppressions for @SuppressWarnings
strings that contain a match for the regular expression. Most users don’t need this.

• -ArequirePrefixInWarningSuppressions Require that the string in a warning suppression annotation begin
with a checker name. Otherwise, the suppress warning annotation does not suppress any warnings. For
example, if this command-line option is supplied, then @SuppressWarnings("assignment") has no effect, but
@SuppressWarnings("nullness:assignment") does.

• -AshowPrefixInWarningMessages When issuing an error or warning, prefix the warning suppression key by
the checker name. For instance, output “error: [nullness:assignment] ...” instead of “error: [assignment]”. This
makes it easy to tell, from the suppression key only, which checker issued the error or warning.

Partially-annotated libraries

• -Astubs List of stub files or directories; see Section 35.5.1.
• -AstubWarnIfNotFound, -AstubNoWarnIfNotFound, -AstubWarnIfNotFoundIgnoresClasses, -AstubWarnIfRedundantWithBytecode,
-AstubWarnNote Warn about problems with stub files; see Section 35.5.7.

• -AmergeStubsWithSource If both a stub file and a source file for a class are available, trust both and use the
greatest lower bound of their annotations. The default behavior (without this flag) is to ignore types from the stub
file if source is available. See Section 35.5.2.

• -AuseConservativeDefaultsForUncheckedCode=source Outside the scope of any relevant @AnnotatedFor
annotation, use conservative default annotations and suppress all type-checking warnings; see Section 35.4.

Debugging

• -AprintAllQualifiers, -AprintVerboseGenerics, -Anomsgtext, -AdumpOnErrors -AexceptionLineSeparator
Amount of detail in messages; see Section 36.12.1.

• -Adetailedmsgtext Format of diagnostic messages; see Section 36.12.2.
• -Aignorejdkastub, -ApermitMissingJdk, -AparseAllJdk, -AstubDebug Stub and JDK libraries; see Sec-

tion 36.12.3.
• -Afilenames, -Ashowchecks, -AshowWpiFailedInferences Progress tracing; see Section 36.12.4.
• -AoutputArgsToFile Output the compiler command-line arguments to a file. Useful when the command line is

generated and executed by a tool, such as a build system. This produces a standalone command line that can be
executed independently of the tool that generated it (such as a build system). That command line makes it easier
to reproduce, report, and debug issues. For example, the command line can be modified to enable attaching a
debugger. See Section 36.12.5.

• -Aflowdotdir, -Averbosecfg, -Acfgviz Draw a visualization of the CFG (control flow graph); see Sec-
tion 36.12.6.

• -AresourceStats, -AatfDoNotCache, -AatfCacheSize Miscellaneous debugging options; see Section 36.12.7.
• -AslowTypecheckingSeconds=N Print a warning for any program construct, such as a method or class, whose

type-checking takes more than N seconds (default 45). Often, generic type inference is the slowest part of
type-checking, and you can significantly speed up type-checking by explicitly writing a few generic type
arguments.

• -Aversion Print the Checker Framework version.
• -AprintGitProperties Print information about the git repository from which the Checker Framework was

compiled.

Some checkers support additional options, which are described in that checker’s manual section. For example, -Aquals
tells the Subtyping Checker (see Chapter 29) and the Fenum Checker (see Chapter 9) which annotations to check.

Here are some standard javac command-line options that you may find useful. Many of them contain “processor” or
“proc”, because in javac jargon, a checker is an “annotation processor”.

22

../api/org/checkerframework/framework/qual/AnnotatedFor.html

• -processor Names the checker to be run; see Sections 2.2 and 2.2.4. May be a comma-separated list of multiple
checkers. Note that javac stops processing an indeterminate time after detecting an error. When providing
multiple checkers, if one checker detects any error, subsequent checkers may not run.

• -processorpath Indicates where to search for the checker. This should also contain any classes used by
type-checkers, such as qualifiers used by the Subtyping Checker (see Section 29.2) and classes that define
statically-executable methods used by the Constant Value Checker (see Section 23.2.2).

• -proc:{none,only} Controls whether checking happens; -proc:none means to skip checking; -proc:only
means to do only checking, without any subsequent compilation; see Section 2.2.3.

• -implicit:class Suppresses warnings about implicitly compiled files (not named on the command line); see
Section 38.3

• -J Supply an argument to the JVM that is running javac; for example, -J-Xmx2500m to increase its maximum
heap size

• -doe To “dump on error”, that is, output a stack trace whenever a compiler warning/error is produced. Useful
when debugging the compiler or a checker.

2.2.3 Checker auto-discovery
“Auto-discovery” makes the javac compiler always run an annotation processor, such as a checker plugin, without
explicitly passing the -processor command-line option. This can make your command line shorter, and it ensures that
your code is checked even if you forget the command-line option.

If the javac command line specifies any -processor command-line option, then auto-discovery is disabled. This
means that if your project currently uses auto-discovery, you should use auto-discovery for the Checker Framework
too. (Alternately, if you prefer to use a -processor command-line argument, you will need to specify all annotation
processors, including ones that used to be auto-discovered.)

To enable auto-discovery, place a configuration file named META-INF/services/javax.annotation.processing.Processor
in your classpath. The file contains the names of the checkers to be used, listed one per line. For instance, to run the
Nullness Checker and the Interning Checker automatically, the configuration file should contain:
org.checkerframework.checker.nullness.NullnessChecker
org.checkerframework.checker.interning.InterningChecker

You can disable this auto-discovery mechanism by passing the -proc:none command-line option to javac, which
disables all annotation processing including all pluggable type-checking.

2.2.4 Shorthand for built-in checkers
Ordinarily, javac’s -processor flag requires fully-qualified class names. When using the Checker Framework javac
wrapper (Section 38.6), you may omit the package name and the Checker suffix. The following three commands are
equivalent:

javac -processor org.checkerframework.checker.nullness.NullnessChecker MyFile.java
javac -processor NullnessChecker MyFile.java
javac -processor nullness MyFile.java

This feature also works when multiple checkers are specified. Their names are separated by commas, with no
surrounding space. For example:

javac -processor NullnessChecker,RegexChecker MyFile.java
javac -processor nullness,regex MyFile.java

This feature does not apply to javac @argfiles.

23

https://docs.oracle.com/javase/7/docs/technotes/tools/windows/javac.html#commandlineargfile

2.3 What the checker guarantees
A checker guarantees two things: type annotations reflect facts about run-time values, and illegal operations are not
performed.

For example, the Nullness Checker (Chapter 3) guarantees lack of null pointer exceptions (Java NullPointerException).
More precisely, it guarantees that expressions whose type is annotated with @NonNull never evaluate to null, and it
forbids other expressions from being dereferenced.

As another example, the Interning Checker (Chapter 6) guarantees that correct equality tests are performed. More
precisely, it guarantees that every expression whose type is an @Interned type evaluates to an interned value, and it
forbids == on other expressions.

The guarantee holds only if you run the checker on every part of your program and the checker issues no warnings
anywhere in the code. You can also verify just part of your program.

There are some limitations to the guarantee.

• A compiler plugin can check only those parts of your program that you run it on. If you compile some parts of
your program without running the checker, then there is no guarantee that the entire program satisfies the property
being checked. Some examples of un-checked code are:

– Code compiled without the -processor switch. This includes external libraries supplied as a .class file
and native methods (because the implementation is not Java code, it cannot be checked).

– Code compiled with the -AskipUses, -AonlyUses, -AskipDefs, -AonlyDefs, -AskipFiles, or -AonlyFiles
command-line arguments (see Chapter 33).

– Dynamically generated code, such as generated by Spring or MyBatis. Its bytecode is directly generated
and run, not compiled by javac and not visible to the Checker Framework.

In each of these cases, any use of the code is checked — for example, a call to a native method must be compatible
with any annotations on the native method’s signature. However, the annotations on the un-checked code are
trusted; there is no verification that the implementation of the native method satisfies the annotations.

• You can suppress warnings, such as via the @SuppressWarnings annotation (Chapter 33, page 211). If you do
so incorrectly, the checker’s guarantee no longer holds.

• The Checker Framework is, by default, unsound in a few places where a conservative analysis would issue too
many false positive warnings. These are listed in Section 2.2.2. You can supply a command-line argument to
make the Checker Framework sound for each of these cases.

• Specific checkers may have other limitations; see their documentation for details.

In order to avoid a flood of unhelpful warnings, many of the checkers avoid issuing the same warning multiple
times. For example, consider this code:

@Nullable Object x = ...;
x.toString(); // warning
x.toString(); // no warning

The second call to toString cannot possibly throw a null pointer warning — x is non-null if control flows to the second
statement. In other cases, a checker avoids issuing later warnings with the same cause even when later code in a method
might also fail. This does not affect the soundness guarantee, but a user may need to examine more warnings after
fixing the first ones identified. (Often, a single fix corrects all the warnings.)

If you find that a checker fails to issue a warning that it should, then please report a bug (see Section 40.2).

2.4 Tips about writing annotations
Section 35.1 gives additional tips that are specific to annotating a third-party library.

24

../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/interning/qual/Interned.html

2.4.1 Write annotations before you run a checker
Before you run a checker, annotate the code, based on its documentation. Then, run the checker to uncover bugs in the
code or the documentation.

Don’t do the opposite, which is to run the checker and then add annotations according to the warnings issued. This
approach is less systematic, so you may overlook some annotations. It often leads to confusion and poor results. It leads
users to make changes not for any principled reason, but to “make the type-checker happy”, even when the changes are
in conflict with the documentation or the code. Also see “Annotations are a specification”, below.

2.4.2 How to get started annotating legacy code
Annotating an entire existing program may seem like a daunting task. But, if you approach it systematically and do a
little bit at a time, you will find that it is manageable.

Start small

Start small. Focus on one specific property that matters to you; in other words, run just one checker rather than multiple
ones. You may choose a different checker for different programs. Focus on the most mission-critical or error-prone part
of your code; don’t try to annotate your whole program at first.

It is easiest to add annotations if you know the code or the code contains documentation. While adding annotations,
you will spend most of your time understanding the code, and less time actually writing annotations or running the
checker.

Don’t annotate the whole program, but work module by module. Start annotating classes at the leaves of the call
tree — that is, start with classes/packages that have few dependencies on other code. Annotate supertypes before you
annotate classes that extend or implement them. The reason for this rule is that it is easiest to annotate a class if the code
it depends on has already been annotated. Sections 33.4 and 33.5 give ways to skip checking of some files, directories,
or packages. Section 2.4.6 gives advice about handling calls from annotated code into unannotated code.

When annotating, be systematic; we recommend annotating an entire class or module at a time (not just some of the
methods) so that you don’t lose track of your work or redo work. For example, working class-by-class avoids confusion
about whether an unannotated type use means you determined that the default is desirable, or it means you didn’t yet
examine that type use.

Don’t overuse pluggable type-checking. If the regular Java type system can verify a property using Java subclasses,
then that is a better choice than pluggable type-checking (see Section 39.1.2).

Annotations are a specification

When you write annotations, you are writing a specification, and you should think about them that way. Start out by
understanding the program so that you can write an accurate specification. Sections 2.4.3 and 2.4.4 give more tips about
writing specifications.

For each class, read its Javadoc. For instance, if you are adding annotations for the Nullness Checker (Section 3),
then you can search the documentation for “null” and then add @Nullable anywhere appropriate. Start by annotating
signatures and fields, but not method bodies. The only reason to even read the method bodies yet is to determine
signature annotations for undocumented methods — for example, if the method returns null, you know its return type
should be annotated @Nullable, and a parameter that is compared against null may need to be annotated @Nullable.

The specification should state all facts that are relevant to callees. When checking a method, the checker uses
only the specification, not the implementation, of other methods. (Equivalently, type-checking is “modular” or
“intraprocedural”.) When analyzing a variable use, the checker relies on the type of the variable, not any dataflow
outside the current method that produced the value.

After you have annotated all the signatures, run the checker. Then, fix bugs in code and add/modify annotations
as necessary. Don’t get discouraged if you see many type-checker warnings at first. Often, adding just a few missing
annotations will eliminate many warnings, and you’ll be surprised how fast the process goes overall (assuming that you
understand the code, of course).

25

It is usually not a good idea to experiment with adding and removing annotations in order to understand their
effect. It is better to reason about the desired design. However, to avoid having to manually examine all callees, a more
automated approach is to save the checker output before changing an annotation, then compare it to the checker output
after changing the annotation.

Chapter 35 tells you how to annotate libraries that your code uses. Section 2.4.5 and Chapter 33 tell you what to do
when you are unable to eliminate checker warnings by adding annotations.

Write good code

Avoid complex code, which is more error-prone. If you write your code to be simple and clear enough for the type-
checker to verify, then it will also be easier for programmers to understand. When you verify your code, a side benefit
is improving your code’s structure.

Your code should compile cleanly under the regular Java compiler. As a specific example, your code should not
use raw types like List; use parameterized types like List<String> instead (Section 31.1.1). If you suppress Java
compiler warnings, then the Checker Framework will issue more warnings, and its messages will be more confusing.
(Also, if you are not willing to write code that type-checks in Java, then you might not be willing to use an even more
powerful type system.)

Do not write unnecessary annotations.

• Do not annotate local variables unless necessary. The checker infers annotations for local variables (see
Section 32.7). Usually, you only need to annotate fields and method signatures. You should add annotations
inside method bodies only if the checker is unable to infer the correct annotation (usually on type arguments or
array element types, rather than on top-level types).

• Do not write annotations that are redundant with defaults. For example, when checking nullness (Chapter 3,
page 31), the default annotation is @NonNull, in most locations other than some type bounds (Section 32.5.3).
When you are starting out, it might seem helpful to write redundant annotations as a reminder, but that’s like
when beginning programmers write a comment about every simple piece of code:

// The below code increments variable i by adding 1 to it.
i++;

As you become comfortable with pluggable type-checking, you will find redundant annotations to be distracting
clutter, so avoid putting them in your code in the first place.

• Avoid writing @SuppressWarnings annotations unless there is no alternative. It is tempting to think that your
code is right and the checker’s warnings are false positives. Sometimes they are, but slow down and convince
yourself of that before you dismiss them. Section 2.4.5 discusses what to do when a checker issues a warning
about your code.

2.4.3 Annotations indicate non-exceptional behavior
You should use annotations to specify normal behavior. The annotations indicate all the values that you want to flow to
a reference — not every value that might possibly flow there if your program has a bug.

Methods that crash when passed certain values

Nullness example As an example, consider the Nullness Checker. Its goal is to guarantee that your program does not
crash due to a null value.

This method crashes if null is passed to it:

/** @throws NullPointerException if arg is null */
void m1(Object arg) {

arg.toString();
...

}

26

Therefore, the type of arg should be @NonNull Object — you can write this as just Object, because @NonNull is the
default. The Nullness Checker (Chapter 3, page 31) prevents null pointer exceptions by warning you whenever a client
passes a value that might cause m1 to crash.

Here is another method:

/** @throws NullPointerException if arg is null */
void m2(Object arg) {

Objects.requireNonNull(arg);
...

}

Method m2 behaves just like m1 in that it throws NullPointerException if a client passes null. Therefore, their
specifications should be identical (the formal parameter type is annotated with @NonNull), so the checker will issue the
same warning if a client might pass null.

The same argument applies to any method that is guaranteed to throw an exception if it receives null as an argument.
Examples include:

com.google.common.base.Preconditions.checkNotNull(Object)
java.lang.Double.valueOf(String)
java.lang.Objects.requireNonNull(Object)
java.lang.String.contains(CharSequence)
org.junit.Assert.assertNotNull(Object)
org.junit.jupiter.api.Assert.assertNotNull(Object)

Their formal parameter type is annotated as @NonNull, because otherwise the program might crash. Adding a call
to a method like requireNonNull never prevents a crash: your code still crashes, but with a slightly different stack
trace. In order to prevent all exceptions in your program caused by null pointers, you need to prevent those thrown by
methods including requireNonNull.

(One might argue that the formal parameter should be annotated as @Nullable because passing null has a well-
defined semantics (throw an exception) and such an execution may be possible if your program has a bug. However, it
is never the programmer’s intent for null to flow there. Preventing such bugs is the purpose of the Nullness Checker.)

A method like requireNonNull is useless for making your code correct, but it does have a benefit: its stack trace
may help developers to track down the bug. (For users, the stack trace is scary, confusing, and usually non-actionable.)
But if you are using the Checker Framework, you can prevent errors rather than needing extra help in debugging the
ones that occur at run time.

Optional example Another example is the Optional Checker (Chapter 5, page 60) and the orElseThrow() method.
The goal of the Optional Checker is to ensure that the program does not crash due to use of a non-present Optional
value. Therefore, the receiver of orElseThrow() is annotated as @Present, and the Optional Checker issues an error
if the client calls orElseThrow() on a @MaybePresent value. (For details, see Section 5.3.)

Permitting crashes in some called methods You can make a checker ignore crashes in library code, such as
assertNotNull(), that occur as a result of misuse by your code. This invalidates the checker’s guarantee that your
program will not crash. (Programmers and users typically care about all crashes, no matter which method is at the top
of the call stack when the exception is thrown.) The checker will still warn you about crashes in your own code.

• The -AskipUses command-line argument (Section 33.4) skips checking all method calls to one or more classes.
• A stub file (Section 35.5) can override the library’s annotations, for one or more methods.

As a special case, if you want the Nullness Checker to prevent most null pointer exceptions in your code, but to per-
mit null pointer exceptions at nullness assertion methods, you can pass -Astubs=permit-nullness-assertion-exception.astub.

• Don’t type-check clients of the method. For example, JUnit’s assertNotNull() is typically called only in test
code; its clients are the tests. If you type-check only your main program, then the annotation on assertNotNull()
is irrelevant.

27

../api/org/checkerframework/checker/nullness/qual/Nullable.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html#orElseThrow()
../api/org/checkerframework/checker/optional/qual/Present.html
../api/org/checkerframework/checker/optional/qual/MaybePresent.html

Methods that sometimes crash when passed certain values

If a method can possibly throw an exception because its parameter is null, then that parameter’s type should be
@NonNull, which guarantees that the type-checker will issue a warning for every client use that has the potential to
cause an exception. Don’t write @Nullable on the parameter just because there exist some executions that don’t
necessarily throw an exception.

2.4.4 Subclasses must respect superclass annotations
An annotation indicates a guarantee that a client can depend upon. A subclass is not permitted to weaken the contract;
for example, if a method accepts null as an argument, then every overriding definition must also accept null. A
subclass is permitted to strengthen the contract; for example, if a method does not accept null as an argument, then an
overriding definition is permitted to accept null.

As a bad example, consider an erroneous @Nullable annotation in
com/google/common/collect/Multiset.java:

101 public interface Multiset<E> extends Collection<E> {
...
122 /**
123 * Adds a number of occurrences of an element to this multiset.
...
129 * @param element the element to add occurrences of; may be {@code null} only
130 * if explicitly allowed by the implementation
...
137 * @throws NullPointerException if {@code element} is null and this
138 * implementation does not permit null elements. Note that if {@code
139 * occurrences} is zero, the implementation may opt to return normally.
140 */
141 int add(@Nullable E element, int occurrences);

There exist implementations of Multiset that permit null elements, and implementations of Multiset that do not
permit null elements. A client with a variable Multiset ms does not know which variety of Multiset ms refers to.
However, the @Nullable annotation promises that ms.add(null, 1) is permissible. (Recall from Section 2.4.3 that
annotations should indicate normal behavior.)

If parameter element on line 141 were to be annotated, the correct annotation would be @NonNull. Suppose a
client has a reference to same Multiset ms. The only way the client can be sure not to throw an exception is to pass only
non-null elements to ms.add(). A particular class that implements Multiset could declare add to take a @Nullable
parameter. That still satisfies the original contract. It strengthens the contract by promising even more: a client with
such a reference can pass any non-null value to add(), and may also pass null.

However, the best annotation for line 141 is no annotation at all. The reason is that each implementation of the
Multiset interface should specify its own nullness properties when it specifies the type parameter for Multiset. For
example, two clients could be written as

class MyNullPermittingMultiset implements Multiset<@Nullable Object> { ... }
class MyNullProhibitingMultiset implements Multiset<@NonNull Object> { ... }

or, more generally, as

class MyNullPermittingMultiset<E extends @Nullable Object> implements Multiset<E> { ... }
class MyNullProhibitingMultiset<E extends @NonNull Object> implements Multiset<E> { ... }

Then, the specification is more informative, and the Checker Framework is able to do more precise checking, than if
line 141 has an annotation.

It is a pleasant feature of the Checker Framework that in many cases, no annotations at all are needed on type
parameters such as E in MultiSet.

28

https://github.com/google/guava/blob/master/guava/src/com/google/common/collect/Multiset.java#L129

2.4.5 What to do if a checker issues a warning about your code
When you run a type-checker on your code, it is likely to issue warnings or errors. Don’t panic! If you have trouble
understanding a Checker Framework warning message, you can search for its text in this manual. There are three
general causes for the warnings:

You found a bug There is a bug in your code, such as a possible null dereference. Fix your code to prevent that crash.
Wrong annotations The annotations are too strong (they are incorrect) or too weak (they are imprecise). Improve

the annotations, usually by writing more annotations in order to better express the specification. Only write
annotations that accurately describe the intended behavior of the software — don’t write inaccurate annotations
just for the purpose of eliminating type-checker warnings.
Usually you need to improve the annotations in your source code. Sometimes you need to improve annotations in
a library that your program uses (see Chapter 35, page 227).

Type-checker weakness There is a weakness in the type-checker. Your code is safe — it never suffers the error at run
time — but the checker cannot prove this fact. (Recall that The checker works modularly: when type-checking
a method m, it relies on the types and signatures of variables and methods used by m, but not the initialization
expressions or the method bodies.)
If possible, rewrite your code to be simpler for the checker to analyze; this is likely to make it easier for people to
understand, too. If that is not possible, suppress the warning (see Chapter 33, page 211); be sure to include a code
comment explaining how you know the code is correct even though the type-checker cannot deduce that fact.
Do not add an if test that can never fail, just to suppress a warning. Adding a gratuitous if clutters the code
and confuses readers. A reader should assume that every if condition can evaluate to true or false. There is one
exception to this rule: an if test may have a condition that you think will never evaluate to true, if its body just
throws a descriptive error message.

For each warning issued by the checker, you need to determine which of the above categories it falls into. Here is an
effective methodology to do so. It relies mostly on manual code examination, but you may also find it useful to write
test cases for your code or do other kinds of analysis, to verify your reasoning. (Also see Section 40.1.4 and Chapter 40,
Troubleshooting. In particular, Section 40.1.4 explains this same methodology in different words.)

Step 1: Explain correctness: write a proof Write an explanation of why your code is correct and it never suffers
the error at run time. In other words, this is an informal proof that the type-checker’s warning is incorrect. Write it in
natural language, such as English.

Don’t skip any steps in your proof. (For example, don’t write an unsubstantiated claim such as “x is non-null here”;
instead, give a justification.) Don’t let your reasoning rely on facts that you do not write down explicitly. For example,
remember that calling a method might change the values of object fields; your proof might need to state that certain
methods have no side effects.

If you cannot write a proof, then there is a bug in your code (you should fix the bug) or your code is too complex for
you to understand (you should improve its documentation and/or design).

Step 2: Translate the proof into annotations. Here are some examples of the translation.

• If your proof includes “variable x is never null at run time”, then annotate x’s type with @NonNull.
• If your proof includes “method foo always returns a legal regular expression”, then annotate foo’s return type

with @Regex.
• If your proof includes “if method join’s first argument is non-null, then join returns a non-null result”, then

annotate join’s first parameter and return type with @PolyNull.
• If your proof includes “method processOptions has already been called and it set field tz1”, then annotate
processOptions’s declaration with @EnsuresNonNull("tz1").

• If your proof includes “method isEmpty returned false, so its argument must have been non-null”, then annotate
isEmpty’s declaration with @EnsuresNonNullIf(expression="#1",result=false).

• If your proof includes “method m has no side effects”, then annotate m’s declaration with @SideEffectFree.

29

../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/regex/qual/Regex.html
../api/org/checkerframework/checker/nullness/qual/PolyNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html
../api/org/checkerframework/dataflow/qual/SideEffectFree.html

• If your proof includes “each call to method m returns the same value”, then annotate m’s declaration with
@Deterministic.

All of these are examples of correcting weaknesses in the annotations you wrote. The Checker Framework provides
many other powerful annotations; you may be surprised how many proofs you can express in annotations. If you need
to annotate a method that is defined in a library that your code uses, see Chapter 35, page 227.

Don’t omit any parts of your proof. When the Checker Framework analyzes a method, it examines only the
signature/specification (not the implementation) of other methods.

If there are complex facts in your proof that cannot be expressed as annotations, then that is a weakness in the
type-checker. For example, the Nullness Checker cannot express “in list lst, elements stored at even indices are always
non-null, but elements stored at odd elements might be null.” In this case, you have two choices. First, you can
suppress the warning (Chapter 33, page 211); be sure to write a comment explaining your reasoning for suppressing the
warning. You may wish to submit a feature request (Section 40.2) asking for annotations that handle your use case.
Second, you can rewrite the code to make the proof simpler; in the above example, it might be better to use a list of
pairs rather than a heterogeneous list.

Step 3: Re-run the checker At this point, all the steps in your proof have been formalized as annotations. Re-run the
checker and repeat the process for any new or remaining warnings.

If every step of your proof can be expressed in annotations, but the checker cannot make one of the deductions (it
cannot follow one of the steps), then that is a weakness in the type-checker. First, double-check your reasoning. Then,
suppress the warning, along with a comment explaining your reasoning (Chapter 33, page 211). The comment is an
excerpt from your informal proof, and the proof guides you to the best place to suppress the warning. Please submit a
bug report so that the checker can be improved in the future (Section 40.2).

2.4.6 Calls to unannotated code (legacy libraries)
Sometimes, you wish to type-check only part of your program. You might focus on the most mission-critical or
error-prone part of your code. When you start to use a checker, you may not wish to annotate your entire program right
away. You may not have enough knowledge to annotate poorly-documented libraries that your program uses. Or, the
code you are annotating may call into unannotated libraries.

If annotated code uses unannotated code, then the checker may issue warnings. For example, the Nullness Checker
(Chapter 3) will warn whenever an unannotated method result is used in a non-null context:

@NonNull myvar = unannotated_method(); // WARNING: unannotated_method may return null

If the call can return null, you should fix the bug in your program by removing the @NonNull annotation in your
own program.

If the call never returns null, you have two choices: annotate the library or suppress warnings.

1. To annotate the library:

• If the unannotated code is in your program, you can write annotations but not type-check them yet. Two
ways to prevent the type-checking are via a @SuppressWarnings annotation (Section 33.1) or by not
running the checker on that file, for example via the -AskipDefs command-line option (Section 33.5).

• To annotate a library whose source code you do not have or cannot change, see Chapter 35.

2. To suppress all warnings related to uses of unannotated_method, use the -AskipUses command-line option
(Section 33.4). Beware: a carelessly-written regular expression may suppress more warnings than you intend.

30

../api/org/checkerframework/dataflow/qual/Deterministic.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html

Chapter 3

Nullness Checker

If the Nullness Checker issues no warnings for a given program, then running that program will never throw a null
pointer exception. In other words, the Nullness Checker prevents all NullPointerExceptions. See Section 3.1 for
more details about the guarantee and what is checked.

The most important annotations supported by the Nullness Checker are @NonNull and @Nullable. @NonNull is
rarely written, because it is the default. All of the annotations are explained in Section 3.2.

To run the Nullness Checker, supply the -processor org.checkerframework.checker.nullness.NullnessChecker
command-line option to javac. For examples, see Section 3.5.

The NullnessChecker is actually an ensemble of three pluggable type-checkers that work together: the Nullness
Checker proper (which is the main focus of this chapter), the Initialization Checker (Section 3.8), and the Map Key
Checker (Chapter 4, page 55). Their type hierarchies are completely independent, but they work together to provide
precise nullness checking.

3.1 What the Nullness Checker guarantees
If the Nullness Checker type-checks your program without errors, then your program will not crash with a NullPointerException
that is caused by misuse of null in checked code. Section 2.3 notes some limitations to guarantees made by the Checker
Framework.

The checker issues a warning in these cases:

1. When an expression of non-@NonNull type is dereferenced, because it might cause a null pointer exception.
Dereferences occur not only when a field is accessed, but when an array is indexed, an exception is thrown, a lock
is taken in a synchronized block, and more. For a complete description of all checks performed by the Nullness
Checker, see the Javadoc for NullnessVisitor.

2. When an expression of @NonNull type might become null, because it is a misuse of the type: the null value could
flow to a dereference that the checker does not warn about.
As a special case of an of @NonNull type becoming null, the checker also warns whenever a field of @NonNull
type is not initialized in a constructor.

This example illustrates the programming errors that the checker detects:

@Nullable Object obj; // might be null
@NonNull Object nnobj; // never null
...
obj.toString() // checker warning: dereference might cause null pointer exception
nnobj = obj; // checker warning: nnobj may become null
if (nnobj == null) // checker warning: redundant test

31

../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/Nullable.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/NullnessVisitor.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html

Parameter passing and return values are checked analogously to assignments.
The Nullness Checker also checks the correctness, and correct use, of initialization (see Section 3.8) and of map key

annotations (see Chapter 4, page 55).
The checker performs additional checks if certain -Alint command-line options are provided. (See Section 33.7

for more details about the -Alint command-line option.)

3.1.1 Nullness Checker optional warnings
1. Options that control soundness:

• If you supply the -Alint=soundArrayCreationNullness command-line option, then the checker warns
if it encounters an array creation with a non-null component type. See Section 3.3.4 for a discussion.

• If you supply the -Astubs=collection-object-parameters-may-be-null.astub command-line op-
tion, then in JDK collection classes, the checker unsoundly permits null as an argument for any key or value
formal parameter whose type is Object (instead of the element type). See Section 3.4.2.

• If you supply the -Alint=trustArrayLenZero command-line option, then the checker will trust @ArrayLen(
0) annotations. See Section 3.3.5 for a discussion.

• If you supply the -AassumeKeyFor command-line option, then the checker will unsoundly assume that the
argument to Map.get is a key for the receiver map. It will not do any checking of @KeyFor and related
qualifiers.

• If you supply the -AinvocationPreservesArgumentNullness command-line option, the Nullness Checker
unsoundly assumes that arguments passed to non-null parameters in an invocation remain non-null after the
invocation. This assumption is unsound in general, but holds for most code. For other ways to suppress
warnings related to method side effects, see Section 32.7.5.

2. Options that warn about poor code style:

• If you supply the -Alint=redundantNullComparison command-line option, then the checker warns
when a null check is performed against a value that is guaranteed to be non-null, as in ("m" == null).
Such a check is unnecessary and might indicate a programmer error or misunderstanding. The lint option is
disabled by default because sometimes such checks are part of ordinary defensive programming.

3. Options that enable checking modes:

• If you supply the -Alint=permitClearProperty command-line option, then the checker permits calls
to System.setProperties() and calls to System.clearProperty that might clear one of the built-in
properties.
By default, the checker forbids calls to those methods, and also special-cases type-checking of calls to
System.getProperty() and System.setProperties(). A call to one of these methods can return null
in general, but by default the Nullness Checker treats it as returning non-null if the argument is one of the
literal strings listed in the documentation of System.getProperties(). To make this behavior sound, the
Nullness Checker forbids calls that might clear any built-in property, as described above.

3.2 Nullness annotations
The Nullness Checker uses three separate type hierarchies: one for nullness, one for initialization (Section 3.8), and one
for map keys (Chapter 4, page 55) The Nullness Checker has four varieties of annotations: nullness type qualifiers,
nullness method annotations, initialization type qualifiers, and map key type qualifiers.

3.2.1 Nullness qualifiers
The nullness hierarchy contains these qualifiers:

32

../api/org/checkerframework/common/value/qual/ArrayLen.html
../api/org/checkerframework/checker/nullness/qual/KeyFor.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/System.html#getProperties()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/System.html#clearProperty(java.lang.String)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/System.html#getProperty(java.lang.String,java.lang.String)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/System.html#setProperties(java.util.Properties)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/System.html#getProperties()

@NonNull Object @Nullable Date

@Nullable Object

@NonNull Date

Figure 3.1: Partial type hierarchy for the Nullness type system. Java’s Object is expressed as @Nullable Object.
Programmers can omit most type qualifiers, because the default annotation (Section 3.3.2) is usually correct. The
Nullness Checker verifies three type hierarchies: this one for nullness, one for initialization (Section 3.8), and one for
map keys (Chapter 4, page 55).

@Nullable indicates a type that includes the null value. For example, the Java type Boolean is nullable: a variable of
type Boolean always has one of the values TRUE, FALSE, or null. (Since @NonNull is the default type annotation,
you would actually write this type as @Nullable Boolean.)

@NonNull indicates a type that does not include the null value. The type boolean is non-null; a variable of type
boolean always has one of the values true or false. The type @NonNull Boolean is also non-null: a variable
of type @NonNull Boolean always has one of the values TRUE or FALSE — never null. Dereferencing an
expression of non-null type can never cause a null pointer exception.
The @NonNull annotation is rarely written in a program, because it is the default (see Section 3.3.2).

@PolyNull indicates qualifier polymorphism. For a description of qualifier polymorphism, see Section 31.2.
@MonotonicNonNull indicates a reference that may be null, but if it ever becomes non-null, then it never

becomes null again. This is appropriate for lazily-initialized fields, for field initialization that occurs in a
lifecycle method other than the constructor (e.g., an override of android.app.Activity.onCreate), and other
uses. @MonotonicNonNull is typically written on field types, but not elsewhere.
The benefit of @MonotonicNonNull over @Nullable is that after a check of a @MonotonicNonNull field, all
subsequent accesses within that method can be assumed to be @NonNull, even after arbitrary external method
calls that have access to the given field. By contrast, for a @Nullable field, the Nullness Checker assumes that
most method calls might set it to null. (Exceptions are calls to methods that are @SideEffectFree or that have
an @EnsuresNonNull or @EnsuresNonNullIf annotation.)
A @MonotonicNonNull field may be initialized to null, but the field may not be assigned to null anywhere else in
the program. If you supply the noInitForMonotonicNonNull lint flag (for example, supply -Alint=noInitForMonotonicNonNull
on the command line), then @MonotonicNonNull fields are not allowed to have initializers at their declarations.
Use of @MonotonicNonNull on a static field is a code smell: it may indicate poor design. You should consider
whether it is possible to make the field a member field that is set in the constructor.
In the type system, @MonotonicNonNull is a supertype of @NonNull and a subtype of @Nullable.

Figure 3.1 shows part of the type hierarchy for the Nullness type system. (The annotations exist only at compile
time; at run time, Java has no multiple inheritance.)

3.2.2 Nullness method annotations
The Nullness Checker supports several annotations that specify method behavior. These are declaration annotations, not
type annotations: they apply to the method itself rather than to some particular type.

@RequiresNonNull indicates a method precondition: The annotated method expects the specified variables to be
non-null when the method is invoked. Don’t use this for formal parameters (just annotate their type as @NonNull).
@RequiresNonNull is appropriate for a field that is @Nullable in general, but some method requires the field to
be non-null.

33

../api/org/checkerframework/checker/nullness/qual/Nullable.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/PolyNull.html
../api/org/checkerframework/checker/nullness/qual/MonotonicNonNull.html
../api/org/checkerframework/dataflow/qual/SideEffectFree.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html
../api/org/checkerframework/checker/nullness/qual/RequiresNonNull.html

@EnsuresNonNull indicates a method postcondition. With EnsuresNonNull, the successful return (i.e., a non-
exceptional return) of the annotated method results in the given expressions being non-null. See the Javadoc for
examples of its use.

@EnsuresNonNullIf indicates a method postcondition. With @EnsuresNonNull, the given expressions are
non-null after the method returns; this is useful for a method that initializes a field, for example. With
@EnsuresNonNullIf, if the annotated method returns the given boolean value (true or false), then the given
expressions are non-null. See Section 3.3.3 and the Javadoc for examples of their use.

3.2.3 Initialization qualifiers
The Nullness Checker invokes an Initialization Checker, whose annotations indicate whether an object is fully initialized
— that is, whether all of its fields have been assigned.

@Initialized
@UnknownInitialization
@UnderInitialization

Use of these annotations can help you to type-check more code. Figure 3.5 shows its type hierarchy. For details, see
Section 3.8.

3.2.4 Map key qualifiers
@KeyFor

indicates that a value is a key for a given map — that is, indicates whether map.containsKey(value) would evaluate
to true.

This annotation is checked by a Map Key Checker (Chapter 4, page 55) that the Nullness Checker invokes. The
@KeyFor annotation enables the Nullness Checker to treat calls to Map.get precisely rather than assuming it may
always return null. In particular, a call mymap.get(mykey) returns a non-null value if two conditions are satisfied:

1. mymap’s values are all non-null; that is, mymap was declared as Map<KeyType, @NonNull ValueType>.
Note that @NonNull is the default type, so it need not be written explicitly.

2. mykey is a key in mymap; that is, mymap.containsKey(mykey) returns true. You express this fact to the
Nullness Checker by declaring mykey as @KeyFor("mymap") KeyType mykey. For a local variable, you
generally do not need to write the @KeyFor("mymap") type qualifier, because it can be inferred.

If either of these two conditions is violated, then mymap.get(mykey) has the possibility of returning null.
The command-line argument -AassumeKeyFor makes the Nullness Checker not run the Map Key Checker. The

Nullness Checker will unsoundly assume that the argument to Map.get is a key for the receiver map. That is, the
second condition above is always considered to be true.

3.3 Writing nullness annotations

3.3.1 Implicit qualifiers
The Nullness Checker adds implicit qualifiers, reducing the number of annotations that must appear in your code (see
Section 32.4). For example, enum types are implicitly non-null, so you never need to write @NonNull MyEnumType.

If you want details about implicitly-added nullness qualifiers, see the implementation of NullnessAnnotatedTypeFactory.

34

../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html
../api/org/checkerframework/checker/initialization/qual/Initialized.html
../api/org/checkerframework/checker/initialization/qual/UnknownInitialization.html
../api/org/checkerframework/checker/initialization/qual/UnderInitialization.html
../api/org/checkerframework/checker/nullness/qual/KeyFor.html
../api/org/checkerframework/checker/nullness/qual/KeyFor.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html#get(java.lang.Object)
../api/org/checkerframework/checker/nullness/NullnessAnnotatedTypeFactory.html

3.3.2 Default annotation
Unannotated references are treated as if they had a default annotation. All types default to @NonNull, except that
@Nullable is used for casts, locals, instanceof, and implicit bounds (see Section 32.5.3). A user can choose a different
defaulting rule by writing a @DefaultQualifier annotation on a package, class, or method. In the example below,
fields are defaulted to @Nullable instead of @NonNull.

@DefaultQualifier(value = Nullable.class, locations = TypeUseLocation.FIELD)
class MyClass {

Object nullableField = null;
@NonNull Object nonNullField = new Object();

}

3.3.3 Conditional nullness
The Nullness Checker supports a form of conditional nullness types, via the @EnsuresNonNullIf method annotations.
The annotation on a method declares that some expressions are non-null, if the method returns true (false, respectively).

Consider java.lang.Class. Method Class.getComponentType() may return null, but it is specified to return a
non-null value if Class.isArray() is true. You could declare this relationship in the following way (this particular
example is already done for you in the annotated JDK that comes with the Checker Framework):

class Class<T> {
@EnsuresNonNullIf(expression="getComponentType()", result=true)
public native boolean isArray();

public native @Nullable Class<?> getComponentType();
}

A client that checks that a Class reference is indeed that of an array, can then de-reference the result of
Class.getComponentType safely without any nullness check. The Checker Framework source code itself uses
such a pattern:

if (clazz.isArray()) {
// no possible null dereference on the following line
TypeMirror componentType = typeFromClass(clazz.getComponentType());
...

}

Another example is Queue.peek and Queue.poll, which return non-null if isEmpty returns false.
The argument to @EnsuresNonNullIf is a Java expression, including method calls (as shown above), method

formal parameters, fields, etc.; for details, see Section 32.8. More examples of the use of these annotations appear in the
Javadoc for @EnsuresNonNullIf.

Java programs sometimes contain more complex nullness invariants. When these invariants are more complex than
handled by the Nullness Checker, you will need to suppress a warning (see Section 3.4).

3.3.4 Nullness and array initialization
Suppose that you declare an array to contain non-null elements:

Object [] oa = new Object[10];

(recall that Object means the same thing as @NonNull Object). By default, the Nullness Checker unsoundly permits
this code.

35

../api/org/checkerframework/framework/qual/DefaultQualifier.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Class.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Class.html#getComponentType()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Class.html#isArray()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Queue.html#peek()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Queue.html#poll()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Collection.html#isEmpty()
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html

To make the Nullness Checker conservatively reject code that may leave a non-null value in an array, use the
command-line option -Alint=soundArrayCreationNullness. The option is currently disabled because it makes the
checker issue many false positive errors.

With the option enabled, you can write your code to create a nullable or lazy-nonnull array, initialize each component,
and then assign the result to a non-null array:

@MonotonicNonNull Object [] temp = new @MonotonicNonNull Object[10];
for (int i = 0; i < temp.length; ++i) {

temp[i] = new Object();
}
@SuppressWarnings("nullness") // temp array is now fully initialized
@NonNull Object [] oa = temp;

Note that the checker is currently not powerful enough to ensure that each array component was initialized.
Therefore, the last assignment needs to be trusted: that is, a programmer must verify that it is safe, then write a
@SuppressWarnings annotation.

3.3.5 Nullness and conversions from collections to arrays
The nullness semantics of Collection.toArray(T[]) cannot be captured by just the nullness type system, though
the Nullness Checker contains special-case code to type-check calls to toArray. Therefore, you will probably have to
write @SuppressWarnings("nullness") on any overriding definitions of toArray.

The nullness type of the returned array depends on the size of the passed parameter. In particular, the returned array
component is of type @NonNull if the following conditions hold:

• The receiver collection’s type argument (that is, the element type) is @NonNull, and
• The passed array size is less than or equal to the collection size. The Nullness Checker uses these heuristics to

handle the most common cases:

– the argument has length 0:

* an empty array initializer, e.g. c.toArray(new String[] {}), or
* array creation tree of size 0, e.g. c.toArray(new String[0]).

– array creation tree with a collection size() method invocation as argument c.toArray(new String[c.size()]).

Additionally, when you supply the -Alint=trustArrayLenZero command-line option, a call to Collection.toArray
will be estimated to return an array with a non-null component type if the argument is a field access where the field
declaration has a @ArrayLen(0) annotation. This trusts the @ArrayLen(0) annotation, but does not verify it. Run the
Constant Value Checker (see Chapter 23, page 150) to verify that annotation.

Note: The nullness of the returned array doesn’t depend on the passed array nullness. This is a fact about
Collection.toArray(T[]), not a limitation of this heuristic.

3.3.6 Run-time checks for nullness
When you perform a run-time check for nullness, such as if (x != null) ..., then the Nullness Checker refines the
type of x to @NonNull. The refinement lasts until the end of the scope of the test or until x may be side-effected. For
more details, see Section 32.7.

3.3.7 Inference of @NonNull and @Nullable annotations
It can be tedious to write annotations in your code. Tools exist that can automatically infer annotations and insert them
in your source code. (This is different than type qualifier refinement for local variables (Section 32.7), which infers a
more specific type for local variables and uses them during type-checking but does not insert them in your source code.
Type qualifier refinement is always enabled, no matter how annotations on signatures got inserted in your source code.)

36

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Collection.html#toArray(T[])
../api/org/checkerframework/common/value/qual/ArrayLen.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Collection.html#toArray(T[])

Your choice of tool depends on what default annotation (see Section 3.3.2) your code uses. You only need one of
these tools.

• Inference of @Nullable: If your code uses the standard CLIMB-to-top default (Section 32.5.3) or the NonNull
default, then use the AnnotateNullable tool of the Daikon invariant detector.

• Inference of @NonNull: If your code uses the Nullable default (this is unusual), use one of these tools:

– Non-null checker and inferencer of the JastAdd Extensible Compiler.

3.4 Suppressing nullness warnings
When the Nullness Checker reports a warning, it’s best to change the code or its annotations, to eliminate the warning.
Alternately, you can suppress the warning, which does not change the code but prevents the Nullness Checker from
reporting this particular warning to you.

The Checker Framework supplies several ways to suppress warnings, most notably the
@SuppressWarnings("nullness") annotation (see Chapter 33). An example use is

// might return null
@Nullable Object getObject(...) { ... }

void myMethod() {
@SuppressWarnings("nullness") // with argument x, getObject always returns a non-null value
@NonNull Object o2 = getObject(x);

}

The Nullness Checker supports an additional warning suppression string, nullness:generic.argument. Use of
@SuppressWarnings("nullness:generic.argument") causes the Nullness Checker to suppress warnings related
to misuse of generic type arguments. One use for this key is when a class is declared to take only @NonNull type
arguments, but you want to instantiate the class with a @Nullable type argument, as in List<@Nullable Object>.

The Nullness Checker also permits you to use assertions or method calls to suppress warnings; see below.

3.4.1 Suppressing warnings with assertions and method calls
Occasionally, it is inconvenient or verbose to use the @SuppressWarnings annotation. For example, Java does not
permit annotations such as @SuppressWarnings to appear on statements, expressions, static initializers, etc. Here are
three ways to suppress a warning in such cases:

• Create a local variable to hold a subexpression, and suppress a warning on the local variable declaration.
• Use the @AssumeAssertion string in an assert message (see Section 33.2).
• Write a call to the NullnessUtil.castNonNull method.

The rest of this section discusses the castNonNull method. It is useful if you wish to suppress a warning within an
expression.

The Nullness Checker considers both the return value, and also the argument, to be non-null after the castNonNull
method call. The Nullness Checker issues no warnings in any of the following code:

// One way to use castNonNull as a cast:
@NonNull String s = castNonNull(possiblyNull1);

// Another way to use castNonNull as a cast:
castNonNull(possiblyNull2).toString();

// It is possible, but not recommmended, to use castNonNull as a statement:
// (It would be better to write an assert statement with @AssumeAssertion
// in its message, instead.)
castNonNull(possiblyNull3);
possiblyNull3.toString();

37

../api/org/checkerframework/checker/nullness/qual/Nullable.html
http://plse.cs.washington.edu/daikon/download/doc/daikon.html#AnnotateNullable
http://plse.cs.washington.edu/daikon/
../api/org/checkerframework/checker/nullness/qual/NonNull.html
https://jastadd.cs.lth.se/jastadd-tutorial-examples/non-null-types-for-java/
https://jastadd.cs.lth.se/
../api/org/checkerframework/checker/nullness/util/NullnessUtil.html#castNonNull(T)

The castNonNull method throws AssertionError if Java assertions are enabled and the argument is null.
However, it is not intended for general defensive programming; see Section 33.2.1.

To use the castNonNull method, the checker-util.jar file must be on the classpath at run time.
The Nullness Checker introduces a new method, rather than re-using

an existing method such as org.junit.Assert.assertNotNull(Object) or
com.google.common.base.Preconditions.checkNotNull(Object). Those methods are commonly used
for defensive programming, so it is impossible to know the programmer’s intent when writing them. Therefore, it is
important to have a method call that is used only for warning suppression. See Section 33.2.1 for a discussion of the
distinction between warning suppression and defensive programming.

3.4.2 Null arguments to collection classes
For collection methods with Object formal parameter type, such as contains, indexOf, and remove, the annotated
JDK forbids null as an argument.

The reason is that some implementations (like ConcurrentHashMap) throw NullPointerException if null is
passed. It would be unsound to permit null, because it could lead to a false negative: the Checker Framework issuing
no warning even though a NullPointerException can occur at run time.

However, many other common implementations permit such calls, so some users may wish to sacrifice soundness for
a reduced number of false positive warnings. To permit null as an argument to these methods, pass the command-line
argument -Astubs=collection-object-parameters-may-be-null.astub.

3.4.3 Conservative nullness annotations on the JDK
The JDK contains nullness annotations that preserve the Nullness Checker’s guarantee (see Section 3.1) that your
program will not crash with a NullPointerException. In some cases, a formal parameter may be null in some
circumstances, but must be non-null in other circumstances, and those circumstances are not expressible using the
Nullness Checker’s annotations.

An example is restrictions on collection arguments (see Section 3.4.2).
Another example is this WeakReference constructor:

...
* @param q the queue with which the reference is to be registered,
* or {@code null} if registration is not required
*/

public WeakReference(@Nullable T referent, ReferenceQueue<? super T> q) {
...

For some calls, q must be non-null. Therefore, q is annotated as @NonNull (which is the default and need not be
explicitly written).

These JDK annotations reflect a verification philosophy: a verification tool finds all possible errors, but it sometimes
issues a false positive warning. An alternate philosophy is a bug-finding philosophy: permit all calls that might be
correct at run time, but sometimes miss a real error. If you wish to use the Checker Framework with the bug-finding
philosophy (though the Checker Framework is still much more thorough than other bug-finders), you can do so by
passing the command-line argument -Astubs=sometimes-nullable.astub.

3.5 Examples

3.5.1 Tiny examples
To try the Nullness Checker on a source file that uses the @NonNull qualifier, use the following command (where javac
is the Checker Framework compiler that is distributed with the Checker Framework, see Section 38.6 for details):
javac -processor org.checkerframework.checker.nullness.NullnessChecker docs/examples/NullnessExample.java

38

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Collection.html#contains(java.lang.Object)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/AbstractList.html#indexOf(java.lang.Object)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Collection.html#remove(java.lang.Object)
../api/org/checkerframework/checker/nullness/qual/NonNull.html

Compilation will complete without warnings.
To see the checker warn about incorrect usage of annotations (and therefore the possibility of a null pointer exception

at run time), use the following command:
javac -processor org.checkerframework.checker.nullness.NullnessChecker docs/examples/NullnessExampleWithWarnings.java

The compiler will issue two warnings regarding violation of the semantics of @NonNull.

3.5.2 Example annotated source code
Some libraries that are annotated with nullness qualifiers are:

• The Nullness Checker itself.
• The Java projects in the plume-lib GitHub organization. Type-checking occurs on each build.
• The Daikon invariant detector. Run the command make check-nullness.

3.5.3 Publications
The papers “Practical pluggable types for Java” [PAC+08] (ISSTA 2008, https://homes.cs.washington.edu/
~mernst/pubs/pluggable-checkers-issta2008.pdf) and “Building and using pluggable type-checkers” [DDE+11]
(ICSE 2011, https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-icse2011.pdf) describe
case studies in which the Nullness Checker found previously-unknown errors in real software.

3.6 Tips for getting started
Here are some tips about getting started using the Nullness Checker on a legacy codebase. For more generic advice
(not specific to the Nullness Checker), see Section 2.4.2. Also see the Checker Framework tutorial (https://
checkerframework.org/tutorial/), which includes an example of using the Nullness Checker.

Your goal is to add @Nullable annotations to the types of any variables that can be null. (The default is to assume
that a variable is non-null unless it has a @Nullable annotation.) Then, you will run the Nullness Checker. Each of
its errors indicates either a possible null pointer exception, or a wrong/missing annotation. When there are no more
warnings from the checker, you are done!

We recommend that you start by searching the code for occurrences of null in the following locations; when you
find one, write the corresponding annotation:

• in Javadoc: add @Nullable annotations to method signatures (parameters and return types).
• return null: add a @Nullable annotation to the return type of the given method.
• param == null: when a formal parameter is compared to null, then in most cases you can add a @Nullable

annotation to the formal parameter’s type
• TypeName field = null;: when a field is initialized to null in its declaration, then it needs either a
@Nullable or a @MonotonicNonNull annotation. If the field is always set to a non-null value in the constructor,
then you can just change the declaration to Type field;, without an initializer, and write no type annotation
(because the default is @NonNull).

• declarations of contains, containsKey, containsValue, equals, get, indexOf, lastIndexOf, and remove
(with Object as the argument type): change the argument type to @Nullable Object; for remove, also change
the return type to @Nullable Object.

You should ignore all other occurrences of null within a method body. In particular, you rarely need to annotate local
variables (except their type arguments or array element types).

Only after this step should you run the Nullness Checker. The reason is that it is quicker to search for places to
change than to repeatedly run the checker and fix the errors it tells you about, one at a time.

Here are some other tips:

39

../api/org/checkerframework/checker/nullness/qual/NonNull.html
https://github.com/plume-lib/
http://plse.cs.washington.edu/daikon/
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-issta2008.pdf
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-issta2008.pdf
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-icse2011.pdf
https://checkerframework.org/tutorial/
https://checkerframework.org/tutorial/
../api/org/checkerframework/checker/nullness/qual/Nullable.html
../api/org/checkerframework/checker/nullness/qual/Nullable.html
../api/org/checkerframework/checker/nullness/qual/MonotonicNonNull.html

• In any file where you write an annotation such as @Nullable, don’t forget to add import
org.checkerframework.checker.nullness.qual.*;.

• To indicate an array that can be null, write, for example: int @Nullable [].
By contrast, @Nullable Object [] means a non-null array that contains possibly-null objects.

• If you know that a particular variable is definitely not null, but the Nullness Checker estimates that the variable
might be null, then you can make the Nullness Checker trust your judgment by writing an assertion (see
Section 33.2):

assert var != null : "@AssumeAssertion(nullness)";

• To indicate that a routine returns the same value every time it is called, use @Pure (see Section 32.7.5).
• To indicate a method precondition (a contract stating the conditions under which a client is allowed to call it),

you can use annotations such as @RequiresNonNull (see Section 3.2.2).

3.7 Other tools for nullness checking
The Checker Framework’s nullness annotations are similar to annotations used in other tools. You might prefer to use
the Checker Framework because it has a more powerful analysis that can warn you about more null pointer errors in
your code. Most of the other tools are bug-finding tools rather than verification tools, since they give up precision,
soundness, or both in favor of being fast and easy to use. Also see Section 39.10.1 for a comparison to other tools.

If your code is already annotated with a different nullness annotation, the Checker Framework can type-check
your code. It treats annotations from other tools as if you had written the corresponding annotation from the Nullness
Checker, as described in Figures 3.2, 3.3, and 3.4. If the other annotation is a declaration annotation, it may be moved;
see Section 39.6.10.

The Checker Framework may issue more or fewer errors than another tool. This is expected, since each tool uses a
different analysis. Remember that the Checker Framework aims at soundness: it aims to never miss a possible null
dereference, while at the same time limiting false reports. Also, note SpotBugs’s non-standard meaning for @Nullable
(Section 3.7.2).

Java permits you to import at most one annotation of a given name. For example, if you use both android.annotation.NonNull
and lombok.NonNull in your source code, then you must write at least one of them in fully-qualified form, as
@android.annotation.NonNull rather than as @NonNull.

3.7.1 Which tool is right for you?
Different tools are appropriate in different circumstances. Section 39.10.1 compares verification tools like the Checker
Framework with bug detectors like SpotBugs and Error Prone. In brief, a bug detector is easier to use because it requires
fewer annotations, but it misses lots of real bugs that a verifier finds. You should use whichever tool is appropriate for
the importance of your code.

You may also choose to use multiple tools, especially since each tool focuses on different types of errors. If you
know that you will eventually want to do verification for some particular task (say, nullness checking), there is little
point using the nullness analysis of bug detector such as SpotBugs first. It is easier to go straight to using the Checker
Framework.

If some other tool discovers a nullness error that the Checker Framework does not, please report it to us (see
Section 40.2) so that we can enhance the Checker Framework. For example, SpotBugs might detect an error that the
Nullness Checker does not, if you are using an unannotated library (including an unannotated part of the JDK) and
running the Checker Framework in an unsound mode (see Section 2.2.2).

3.7.2 Incompatibility note about FindBugs and SpotBugs @Nullable
FindBugs and SpotBugs have a non-standard definition of @Nullable. This treatment is not documented in its own
Javadoc; it is different from the definition of @Nullable in every other tool for nullness analysis; it means the same
thing as @NonNull when applied to a formal parameter; and it invariably surprises programmers. Thus, SpotBugs’s

40

../api/org/checkerframework/dataflow/qual/Pure.html
../api/org/checkerframework/checker/nullness/qual/RequiresNonNull.html
https://www.javadoc.io/doc/com.github.spotbugs/spotbugs-annotations/latest/edu/umd/cs/findbugs/annotations/Nullable.html

android.annotation.NonNull
android.support.annotation.NonNull
android.support.annotation.RecentlyNonNull
androidx.annotation.NonNull
androidx.annotation.RecentlyNonNull
com.android.annotations.NonNull
com.google.firebase.database.annotations.NotNull
com.google.firebase.internal.NonNull
com.mongodb.lang.NonNull
com.sun.istack.NotNull
com.sun.istack.internal.NotNull
com.unboundid.util.NotNull
edu.umd.cs.findbugs.annotations.NonNull
io.micrometer.core.lang.NonNull
io.micronaut.core.annotation.NonNull
io.reactivex.annotations.NonNull
io.reactivex.rxjava3.annotations.NonNull
jakarta.annotation.Nonnull
javax.annotation.Nonnull
javax.validation.constraints.NotNull
libcore.util.NonNull
lombok.NonNull
net.bytebuddy.agent.utility.nullability.NeverNull
net.bytebuddy.utility.nullability.NeverNull
org.antlr.v4.runtime.misc.NotNull
org.checkerframework.checker.nullness.compatqual.NonNullDecl
org.checkerframework.checker.nullness.compatqual.NonNullType
org.chromium.build.annotations.OptimizeAsNonNull
org.codehaus.commons.nullanalysis.NotNull
org.eclipse.jdt.annotation.NonNull
org.eclipse.jgit.annotations.NonNull
org.eclipse.lsp4j.jsonrpc.validation.NonNull
org.jetbrains.annotations.NotNull
org.jmlspecs.annotation.NonNull
org.jspecify.annotations.NonNull
org.jspecify.nullness.NonNull
org.netbeans.api.annotations.common.NonNull
org.springframework.lang.NonNull
reactor.util.annotation.NonNull

⇒ org.checkerframework.checker.nullness.qual.NonNull

Figure 3.2: Correspondence between other nullness annotations and the Checker Framework’s NonNull annotation.

41

android.annotation.Nullable
android.support.annotation.Nullable
android.support.annotation.RecentlyNullable
androidx.annotation.Nullable
androidx.annotation.RecentlyNullable
com.android.annotations.Nullable
com.beust.jcommander.internal.Nullable
com.google.api.server.spi.config.Nullable
com.google.firebase.database.annotations.Nullable
com.google.firebase.internal.Nullable
com.google.gerrit.common.Nullable
com.google.protobuf.Internal.ProtoMethodAcceptsNullParameter
com.google.protobuf.Internal.ProtoMethodMayReturnNull
com.mongodb.lang.Nullable
com.sun.istack.Nullable
com.sun.istack.internal.Nullable
com.unboundid.util.Nullable
edu.umd.cs.findbugs.annotations.CheckForNull
edu.umd.cs.findbugs.annotations.Nullable
edu.umd.cs.findbugs.annotations.PossiblyNull
edu.umd.cs.findbugs.annotations.UnknownNullness
io.micrometer.core.lang.Nullable
io.micronaut.core.annotation.Nullable
io.reactivex.annotations.Nullable
io.reactivex.rxjava3.annotations.Nullable
io.vertx.codegen.annotations.Nullable
jakarta.annotation.Nullable
javax.annotation.CheckForNull
javax.annotation.Nullable
junitparams.converters.Nullable
libcore.util.Nullable
net.bytebuddy.agent.utility.nullability.AlwaysNull
net.bytebuddy.agent.utility.nullability.MaybeNull
net.bytebuddy.agent.utility.nullability.UnknownNull
net.bytebuddy.utility.nullability.AlwaysNull
net.bytebuddy.utility.nullability.MaybeNull
net.bytebuddy.utility.nullability.UnknownNull
org.apache.avro.reflect.Nullable
org.apache.cxf.jaxrs.ext.Nullable
org.apache.shindig.common.Nullable
org.checkerframework.checker.nullness.compatqual.NullableDecl
org.checkerframework.checker.nullness.compatqual.NullableType
org.chromium.build.annotations.Nullable
org.codehaus.commons.nullanalysis.Nullable
org.eclipse.jdt.annotation.Nullable
org.eclipse.jgit.annotations.Nullable
org.jetbrains.annotations.Nullable
org.jetbrains.annotations.UnknownNullability
org.jmlspecs.annotation.Nullable
org.jspecify.annotations.Nullable
org.jspecify.nullness.Nullable
org.jspecify.nullness.NullnessUnspecified
org.netbeans.api.annotations.common.CheckForNull
org.netbeans.api.annotations.common.NullAllowed
org.netbeans.api.annotations.common.NullUnknown
org.springframework.lang.Nullable
reactor.util.annotation.Nullable

⇒ org.checkerframework.checker.nullness.qual.Nullable

Figure 3.3: Correspondence between other nullness annotations and the Checker Framework’s Nullable annotation.

42

com.google.protobuf.Internal.ProtoPassThroughNullness ⇒ org.checkerframework.checker.nullness.qual.PolyNull
Figure 3.4: Correspondence between other nullness annotations and the Checker Framework’s PolyNull annotation.

@Nullable is detrimental rather than useful as documentation. In practice, your best bet is to not rely on SpotBugs for
nullness analysis, even if you find SpotBugs useful for other purposes.

You can skip the rest of this section unless you wish to learn more details.
SpotBugs suppresses all warnings at uses of a @Nullable variable. (You have to use @CheckForNull to indicate a

nullable variable that SpotBugs should check.) For example:

// declare getObject() to possibly return null
@Nullable Object getObject() { ... }

void myMethod() {
@Nullable Object o = getObject();
// SpotBugs issues no warning about calling toString on a possibly-null reference!
o.toString();

}

The Checker Framework does not emulate this non-standard behavior of SpotBugs, even if the code uses FindBugs/Spot-
Bugs annotations.

With SpotBugs, you annotate a declaration, which suppresses checking at all client uses, even the places that
you want to check. It is better to suppress warnings at only the specific client uses where the value is known to be
non-null; the Checker Framework supports this, if you write @SuppressWarnings at the client uses. The Checker
Framework also supports suppressing checking at all client uses, by writing a @SuppressWarnings annotation at the
declaration site. Thus, the Checker Framework supports both use cases, whereas SpotBugs supports only one and gives
the programmer less flexibility.

In general, the Checker Framework will issue more warnings than SpotBugs, and some of them may be about real
bugs in your program. See Section 3.4 for information about suppressing nullness warnings.

FindBugs and SpotBugs made a poor choice of names. The choice of names should make a clear distinction between
annotations that specify whether a reference is null, and annotations that suppress false warnings. The choice of names
should also have been consistent for other tools, and intuitively clear to programmers. The FindBugs/SpotBugs choices
make the SpotBugs annotations less helpful to people, and much less useful for other tools.

Another problem is that the SpotBugs @Nullable annotation is a declaration annotation rather than a type annotation.
This means that it cannot be written in important locations such as type arguments, and it is misleading when written on
a field of array type or a method that returns an array.

Overall, it is best to stay away from the SpotBugs nullness annotations and analysis, and use a tool with a more
principled design.

3.7.3 Relationship to Optional<T>

Many null pointer exceptions occur because the programmer forgets to check whether a reference is null before
dereferencing it. Java 8’s Optional<T> class provides a partial solution: a programmer must call the get method to
access the value, and the designers of Optional hope that the syntactic occurrence of the get method will remind
programmers to first check that the value is present. This is still easy to forget, however.

The Checker Framework contains an Optional Checker (see Chapter 5) that guarantees that programmers use
Optional correctly, such as calling isPresent before calling get.

There are some limitations to the utility of Optional, which might lead to you choose to use regular Java references
rather than Optional. (For more details, see the article “Nothing is better than the Optional type”.)

• It is still possible to call get on a non-present Optional, leading to a NoSuchElementException. In other
words, Optional doesn’t solve the underlying problem — it merely converts a NullPointerException into a
NoSuchElementException exception, and in either case your code crashes.

43

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html
https://homes.cs.washington.edu/~mernst/advice/nothing-is-better-than-optional.html

• NullPointerException is still possible in code that uses Optional.
• Optional adds syntactic complexity, making your code longer and harder to read.
• Optional adds time and space overhead.
• Optional does not address important sources of null pointer exceptions, such as partially-initialized objects and

calls to Map.get.

The Nullness Checker does not suffer these limitations. Furthermore, it works with existing code and types, it
ensures that you check for null wherever necessary, and it infers when the check for null is not necessary based on
previous statements in the method.

Java’s Optional class provides utility routines to reduce clutter when using Optional. The Nullness Checker
provides an Opt class that provides all the same methods, but written for regular possibly-null Java references. To use
the Opt class, the checker-util.jar file must be on the classpath at run time.

3.8 Initialization Checker
The Initialization Checker determines whether an object is initialized or not. For any object that is not fully initialized,
the Nullness Checker treats its fields as possibly-null — even fields annotated as @NonNull. (The Initialization Checker
focuses on @NonNull fields, to detect null pointer exceptions when using them. It does not currently ensure that
primitives or @Nullable fields are initialized. Use the Initialized Fields Checker (Chapter 26, page 162) to check
initialization with respect to properties other than nullness.)

Every object’s fields start out as null. By the time the constructor finishes executing, the @NonNull fields have been
set to a different value. Your code can suffer a NullPointerException when using a @NonNull field, if your code uses
the field during initialization. The Nullness Checker prevents this problem by warning you anytime that you may be
accessing an uninitialized field. This check is useful because it prevents errors in your code. However, the analysis can
be confusing to understand. If you wish to disable the initialization checks, see Section 3.8.8.

An object is partially initialized from the time that its constructor starts until its constructor finishes. This is relevant
to the Nullness Checker because while the constructor is executing — that is, before initialization completes — a
@NonNull field may be observed to be null, until that field is set. In particular, the Nullness Checker issues a warning
for code like this:

public class MyClass {
private @NonNull Object f;
public MyClass(int x) {

// Error because constructor contains no assignment to this.f.
// By the time the constructor exits, f must be initialized to a non-null value.

}
public MyClass(int x, int y) {

// Error because this.f is accessed before f is initialized.
// At the beginning of the constructor’s execution, accessing this.f
// yields null, even though field f has a non-null type.
this.f.toString();
f = new Object();

}
public MyClass(int x, int y, int z) {

m();
f = new Object();

}
public void m() {

// Error because this.f is accessed before f is initialized,
// even though the access is not in a constructor.
// When m is called from the constructor, accessing f yields null,

44

../api/org/checkerframework/checker/nullness/util/Opt.html
../api/org/checkerframework/checker/nullness/util/Opt.html

@UnknownInitialization Date

@UnknownInitialization Object

@Initialized Object @UnderInitialization Object

@Initialized Date @UnderInitialization Date

@UnderInitialization(Object.class) Giraffe

@UnderInitialization(Vertebrate.class) Giraffe

@UnderInitialization(Mammal.class) Giraffe

@UnderInitialization(Giraffe.class) Giraffe

Figure 3.5: Partial type hierarchy for the Initialization type system. @UnknownInitialization and
@UnderInitialization each take an optional parameter indicating how far initialization has proceeded, and the right
side of the figure illustrates its type hierarchy in more detail.

// even though field f has a non-null type.
this.f.toString();

}

When a field f is declared with a @NonNull type, then code can depend on the fact that the field is not null. However,
this guarantee does not hold for a partially-initialized object.

The Initialization Checker uses three annotations to indicate whether an object is initialized (all its @NonNull fields
have been assigned), under initialization (its constructor is currently executing), or its initialization state is unknown.

These distinctions are mostly relevant within the constructor, or for references to this that escape the constructor
(say, by being stored in a field or passed to a method before initialization is complete). Use of initialization annotations
is rare in most code.

3.8.1 Initialization qualifiers
The initialization hierarchy is shown in Figure 3.5. The initialization hierarchy contains these qualifiers:

@Initialized indicates a type that contains a fully-initialized object. Initialized is the default, so there is little
need for a programmer to write this explicitly.

@UnknownInitialization indicates a type that may contain a partially-initialized object. In a partially-initialized
object, fields that are annotated as @NonNull may be null because the field has not yet been assigned.
@UnknownInitialization takes a parameter that is the class the object is definitely initialized up to. For
instance, the type @UnknownInitialization(Foo.class) denotes an object in which every fields declared in
Foo or its superclasses is initialized, but other fields might not be. Just @UnknownInitialization is equivalent
to @UnknownInitialization(Object.class).

@UnderInitialization indicates a type that contains a partially-initialized object that is under initialization —
that is, its constructor is currently executing. It is otherwise the same as @UnknownInitialization. Within the
constructor, this has @UnderInitialization type until all the @NonNull fields have been assigned.

A partially-initialized object (this in a constructor) may be passed to a helper method or stored in a variable; if so, the
method receiver, or the field, would have to be annotated as @UnknownInitialization or as @UnderInitialization.

If a reference has @UnknownInitialization or @UnderInitialization type, then all of its @NonNull fields are
treated as @MonotonicNonNull: when read, they are treated as being @Nullable, but when written, they are treated as
being @NonNull.

The initialization hierarchy is orthogonal to the nullness hierarchy. It is legal for a reference
to be @NonNull @UnderInitialization, @Nullable @UnderInitialization, @NonNull @Initialized, or
@Nullable @Initialized. The nullness hierarchy tells you about the reference itself: might the reference be
null? The initialization hierarchy tells you about the @NonNull fields in the referred-to object: might those fields be
temporarily null in contravention of their type annotation? Figure 3.6 contains some examples.

45

../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/initialization/qual/Initialized.html
../api/org/checkerframework/checker/initialization/qual/UnknownInitialization.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/initialization/qual/UnderInitialization.html
../api/org/checkerframework/checker/initialization/qual/UnderInitialization.html
../api/org/checkerframework/checker/nullness/qual/MonotonicNonNull.html
../api/org/checkerframework/checker/nullness/qual/Nullable.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html

Declarations Expression Expression’s nullness type, or checker error
class C {
@NonNull Object f;
@Nullable Object g;
...

}
@NonNull @Initialized C a; a @NonNull

a.f @NonNull
a.g @Nullable

@NonNull @UnderInitialization C b; b @NonNull
b.f @MonotonicNonNull
b.g @Nullable

@Nullable @Initialized C c; c @Nullable
c.f error: deref of nullable
c.g error: deref of nullable

@Nullable @UnderInitialization C d; d @Nullable
d.f error: deref of nullable
d.g error: deref of nullable

Figure 3.6: Examples of the interaction between nullness and initialization. Declarations are shown at the left for
reference, but the focus of the table is the expressions and their nullness type or error.

3.8.2 How an object becomes initialized
Within the constructor, this starts out with @UnderInitialization type. As soon as all of the @NonNull fields
in class C have been initialized, then this is treated as @UnderInitialization(C). This means that this is still
being initialized, but all initialization of C’s fields is complete, including all fields of supertypes. Eventually, when all
constructors complete, the type is @Initialized.

The Initialization Checker issues an error if the constructor fails to initialize any @NonNull field. This ensures that
the object is in a legal (initialized) state by the time that the constructor exits. This is different than Java’s test for
definite assignment (see JLS ch.16), which does not apply to fields (except blank final ones, defined in JLS §4.12.4)
because fields have a default value of null.

All @NonNull fields must either have a default in the field declaration, or be assigned in the constructor or in a
helper method that the constructor calls. If your code initializes (some) fields in a helper method, you will need to
annotate the helper method with an annotation such as @EnsuresNonNull({"field1", "field2"}) for all the fields
that the helper method assigns.

3.8.3 @UnderInitialization examples
The most common use for the @UnderInitialization annotation is for a helper routine that is called by constructor.
For example:

class MyClass {
Object field1;
Object field2;
Object field3;

public MyClass(String arg1) {
this.field1 = arg1;
init_other_fields();

}

46

../api/org/checkerframework/checker/initialization/qual/UnderInitialization.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/initialization/qual/UnderInitialization.html
../api/org/checkerframework/checker/initialization/qual/Initialized.html
https://docs.oracle.com/javase/specs/jls/se17/html/jls-16.html
https://docs.oracle.com/javase/specs/jls/se17/html/jls-4.html#jls-4.12.4
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html

// A helper routine that initializes all the fields other than field1.
@EnsuresNonNull({"field2", "field3"})
private void init_other_fields(@UnderInitialization(Object.class) MyClass this) {

field2 = new Object();
field3 = new Object();

}

public MyClass(String arg1, String arg2, String arg3) {
this.field1 = arg1;
this.field2 = arg2;
this.field3 = arg3;
checkRep();

}

// Verify that the representation invariants are satisfied.
// Works as long as the MyClass fields are initialized, even if the receiver’s
// class is a subclass of MyClass and not all of the subclass fields are initialized.
private void checkRep(@UnderInitialization(MyClass.class) MyClass this) {

...
}

}

At the end of the constructor, this is not fully initialized. Rather, it is @UnderInitialization(CurrentClass.class).
The reason is that there might be subclasses with uninitialized fields. The following example illustrates this:

class A {
@NonNull String a;
public A() {

a = "";
// Now, all fields of A are initialized.
// However, if this constructor is invoked as part of ’new B()’, then
// the fields of B are not yet initialized.
// If we would type ’this’ as @Initialized, then the following call is valid:
doSomething();

}
void doSomething() {}

}

class B extends A {
@NonNull String b;
@Override
void doSomething() {

// Dereferencing ’b’ is ok, because ’this’ is @Initialized and ’b’ @NonNull.
// However, when executing ’new B()’, this line throws a null-pointer exception.
b.toString();

}
}

47

3.8.4 Partial initialization
So far, we have discussed initialization as if it is an all-or-nothing property: an object is non-initialized until initialization
completes, and then it is initialized. The full truth is a bit more complex: during the initialization process an object can
be partially initialized, and as the object’s superclass constructors complete, its initialization status is updated. The
Initialization Checker lets you express such properties when necessary.

Consider a simple example:

class A {
Object aField;
A() {

aField = new Object();
}

}
class B extends A {

Object bField;
B() {

super();
bField = new Object();

}
}

Consider what happens during execution of new B().

1. B’s constructor begins to execute. At this point, neither the fields of A nor those of B have been initialized yet.
2. B’s constructor calls A’s constructor, which begins to execute. No fields of A nor of B have been initialized yet.
3. A’s constructor completes. Now, all the fields of A have been initialized, and their invariants (such as that field a

is non-null) can be depended on. However, because B’s constructor has not yet completed executing, the object
being constructed is not yet fully initialized.

4. B’s constructor completes. The fields declared in A and B are initialized. However, the type system cannot assume
that the object is fully initialized — there might be a class C extends B {...}, and B’s constructor might
have been invoked from that.

At any moment during initialization, the superclasses of a given class can be divided into those that have completed
initialization and those that have not yet completed initialization. More precisely, at any moment there is a point in the
class hierarchy such that all the classes above that point are fully initialized, and all those below it are not yet initialized.
As initialization proceeds, this dividing line between the initialized and uninitialized classes moves down the type
hierarchy.

The Nullness Checker lets you indicate where the dividing line is between the initialized and non-initialized classes.
The @UnderInitialization(classliteral) indicates the first class that is known to be fully initialized. When
you write @UnderInitialization(OtherClass.class) MyClass x;, that means that variable x is initialized for
OtherClass and its superclasses, and x is (possibly) uninitialized for subclasses of OtherClass.

The example above lists 4 moments during construction. At those moments, the type of the object being constructed
is:

1. @UnderInitialization B
2. @UnderInitialization A
3. @UnderInitialization(A.class) A
4. @UnderInitialization(B.class) B

Note that neither @UnderInitialization(A.class) A nor @UnderInitialization(A.class) B may be used
where <@Initialized A> is required. Permitting that would be unsound. For example, consider this code, where all
types are @NonNull because @NonNull is the default annotation:

48

../api/org/checkerframework/checker/initialization/qual/UnderInitialization.html

class A {
Object aField;
A() {

aField = new Object();
}
Object get() {

return aField;
}

}
class B extends A {

Object bField;
B() {

super();
bField = new Object();

}
@Override
Object get() {

return bField;
}

}

Given these declarations:

@Initialized A w;
@Initialized B x;
@UnderInitialization(A.class) A y;
@UnderInitialization(A.class) B z;

the expressions w.get() and x.get() evaluate to a non-null value, but y.get() and z.get() might evaluate to null.
(y.get() might evaluate to null because the run-time type of y might be B. That is, y and z might refer to the same
value, just as w and x might refer to the same value.)

3.8.5 Method calls from the constructor
Consider the following incorrect program.

class A {
Object aField;
A() {

aField = new Object();
process(5); // illegal call

}
public void process(int arg) { ... }

}

The call to process() is not legal. process() is declared to be called on a fully-initialized receiver, which is
the default if you do not write a different initialization annotation. At the call to process(), all the fields of A have
been set, but this is not fully initialized because fields in subclasses of A have not yet been set. The type of this is
@UnderInitialization(A.class), meaning that this is partially-initialized, with the A part of initialization done
but the initialization of subclasses not yet complete.

The Initialization Checker output indicates this problem:

49

Client.java:7: error: [method.invocation] call to process(int) not allowed on the given receiver.
process(5); // illegal call

^
found : @UnderInitialization(A.class) A
required: @Initialized A

Here is a subclass and client code that crashes with a NullPointerException.

class B extends A {
List<Integer> processed;
B() {

super();
processed = new ArrayList<Integer>();

}
@Override
public void process(int arg) {

super();
processed.add(arg);

}
}
class Client {

public static void main(String[] args) {
new B();

}
}

You can correct the problem in multiple ways.
One solution is to not call methods that can be overridden from the constructor: move the call to process() to after

the constructor has completed.
Another solution is to change the declaration of process():

public void process(@UnderInitialization(A.class) A this, int arg) { ... }

If you choose this solution, you will need to rewrite the definition of B.process() so that it is consistent with the
declared receiver type.

A non-solution is to prevent subclasses from overriding process() by using final on the method. This doesn’t
work because even if process() is not overridden, it might call other methods that are overridden.

As final classes cannot have subclasses, they can be handled more flexibly: once all fields of the final class have
been initialized, this is fully initialized.

3.8.6 Initialization of circular data structures
There is one final aspect of the initialization type system to be considered: the rules governing reading and writing to
objects that are currently under initialization (both reading from fields of objects under initialization, as well as writing
objects under initialization to fields). By default, only fully-initialized objects can be stored in a field of another object.
If this was the only option, then it would not be possible to create circular data structures (such as a doubly-linked list)
where fields have a @NonNull type. However, the annotation @NotOnlyInitialized can be used to indicate that a
field can store objects that are currently under initialization. In this case, the rules for reading and writing to that field
become a little bit more interesting, to soundly support circular structures.

The rules for reading from a @NotOnlyInitialized field are summarized in Figure 3.7. Essentially, nothing is
known about the initialization status of the value returned unless the receiver was @Initialized.

Similarly, Figure 3.8 shows under which conditions an assignment x.f = y is allowed for a @NotOnlyInitialized
field f. If the receiver x is @UnderInitialization, then any y can be of any initialization state. If y is known to be
fully initialized, then any receiver is allowed. All other assignments are disallowed.

50

../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/initialization/qual/NotOnlyInitialized.html
../api/org/checkerframework/checker/initialization/qual/NotOnlyInitialized.html
../api/org/checkerframework/checker/initialization/qual/Initialized.html
../api/org/checkerframework/checker/initialization/qual/NotOnlyInitialized.html
../api/org/checkerframework/checker/initialization/qual/UnderInitialization.html

x.f f is @NonNull f is @Nullable
x is @Initialized @Initialized @NonNull @Initialized @Nullable
x is @UnderInitialization @UnknownInitialization @Nullable @UnknownInitialization @Nullable
x is @UnknownInitialization @UnknownInitialization @Nullable @UnknownInitialization @Nullable

Figure 3.7: Initialization rules for reading a @NotOnlyInitialized field f.

x.f = y y is @Initialized y is @UnderInitialization y is @UnknownInitialization
x is @Initialized yes no no
x is @UnderInitialization yes yes yes
x is @UnknownInitialization yes no no

Figure 3.8: Rules for deciding when an assignment x.f = y is allowed for a @NotOnlyInitialized field f.

These rules allow for the safe initialization of circular structures. For instance, consider a doubly linked list:

class List<T> {
@NotOnlyInitialized
Node<T> sentinel;

public List() {
this.sentinel = new Node<>(this);

}

void insert(@Nullable T data) {
this.sentinel.insertAfter(data);

}

public static void main() {
List<Integer> l = new List<>();
l.insert(1);
l.insert(2);

}
}

class Node<T> {
@NotOnlyInitialized
Node<T> prev;

@NotOnlyInitialized
Node<T> next;

@NotOnlyInitialized
List parent;

@Nullable
T data;

// for sentinel construction
Node(@UnderInitialization List parent) {

this.parent = parent;
this.prev = this;

51

../api/org/checkerframework/checker/initialization/qual/NotOnlyInitialized.html
../api/org/checkerframework/checker/initialization/qual/NotOnlyInitialized.html

this.next = this;
}

// for data node construction
Node(Node<T> prev, Node<T> next, @Nullable T data) {

this.parent = prev.parent;
this.prev = prev;
this.next = next;
this.data = data;

}

void insertAfter(@Nullable T data) {
Node<T> n = new Node<>(this, this.next, data);
this.next.prev = n;
this.next = n;

}
}

3.8.7 How to handle warnings
“error: the constructor does not initialize fields: . . . ”

Like any warning, “error: the constructor does not initialize fields: . . . ” indicates that either your annotations are
incorrect or your code is buggy. You can fix either the annotations or the code.

• Declare the field as @Nullable. Recall that if you did not write an annotation, the field defaults to @NonNull.
• Declare the field as @MonotonicNonNull. This is appropriate if the field starts out as null but is later set to a

non-null value. You may then wish to use the @EnsuresNonNull annotation to indicate which methods set the
field, and the @RequiresNonNull annotation to indicate which methods require the field to be non-null.

• Initialize the field in the constructor or in the field’s initializer, if the field should be initialized. (In this case, the
Initialization Checker has found a bug!)
Do not initialize the field to an arbitrary non-null value just to eliminate the warning. Doing so degrades your
code: it introduces a value that will confuse other programmers, and it converts a clear NullPointerException into
a more obscure error.

“call to . . . is not allowed on the given receiver”

If your code calls an instance method from a constructor, you may see a message such as the following:

MyFile.java:123: error: call to initHelper() not allowed on the given receiver.
initHelper();

^
found : @UnderInitialization(com.google.Bar.class) @NonNull MyClass
required: @Initialized @NonNull MyClass

The problem is that the current object (this) is under initialization, but the receiver formal parameter (Section 39.6.1)
of method initHelper() is implicitly annotated as @Initialized. If initHelper() doesn’t depend on its receiver
being initialized — that is, it’s OK to call x.initHelper even if x is not initialized — then you can indicate that by
using @UnderInitialization or @UnknownInitialization.

class MyClass {
void initHelper(@UnknownInitialization MyClass this, String param1) { ... }

}

52

../api/org/checkerframework/checker/nullness/qual/Nullable.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/MonotonicNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
../api/org/checkerframework/checker/nullness/qual/RequiresNonNull.html
../api/org/checkerframework/checker/initialization/qual/Initialized.html
../api/org/checkerframework/checker/initialization/qual/UnderInitialization.html
../api/org/checkerframework/checker/initialization/qual/UnknownInitialization.html

You are likely to want to annotate initHelper() with @EnsuresNonNull as well; see Section 3.2.2.
You may get the “call to . . . is not allowed on the given receiver” error even if your constructor has already initialized

all the fields. For this code:

public class MyClass {
@NonNull Object field;
public MyClass() {

field = new Object();
helperMethod();

}
private void helperMethod() {
}

}

the Nullness Checker issues the following warning:

MyClass.java:7: error: call to helperMethod() not allowed on the given receiver.
helperMethod();

^
found : @UnderInitialization(MyClass.class) @NonNull MyClass
required: @Initialized @NonNull MyClass

1 error

The reason is that even though the object under construction has had all the fields declared in MyClass ini-
tialized, there might be a subclass of MyClass. Thus, the receiver of helperMethod should be declared as
@UnderInitialization(MyClass.class), which says that initialization has completed for all the MyClass fields
but may not have been completed overall. If helperMethod had been a public method that could also be called
after initialization was actually complete, then the receiver should have type @UnknownInitialization, which is the
supertype of @UnknownInitialization and @UnderInitialization.

3.8.8 Suppressing warnings
To suppress most warnings related to partially-initialized values, use the warning suppression string “initialization”.
You can write @SuppressWarnings("initialization") on a field, constructor, or class, or pass the command-line
argument -AsuppressWarnings=initialization when running the Nullness Checker. (For more about suppressing
warnings, see Chapter 33, page 211.) You will no longer get a guarantee of no null pointer exceptions, but you can still
use the Nullness Checker to find most of the null-pointer problems in your code.

This suppresses warnings that are specific to the Initialization Checker, but does not suppress warnings issued by
the Checker Framework itself, such as about assignments or method overriding.

It is not possible to completely disable initialization checking while retaining nullness checking. That is because of
an implementation detail of the Nullness and Initialization Checkers: they are actually the same checker, rather than
being two separate checkers that are aggregated together.

3.8.9 More details about initialization checking
Use of method annotations A method with a non-initialized receiver may assume that a few fields (but not all of
them) are non-null, and it sometimes sets some more fields to non-null values. To express these concepts, use the
@RequiresNonNull, @EnsuresNonNull, and @EnsuresNonNullIf method annotations; see Section 3.2.2.

Source of the type system The type system enforced by the Initialization Checker is based on “Freedom Before
Commitment” [SM11]. Our implementation changes its initialization modifiers (“committed”, “free”, and “unclas-
sified”) to “initialized”, “unknown initialization”, and “under initialization”. Our implementation also has several

53

../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
../api/org/checkerframework/checker/nullness/qual/RequiresNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html

enhancements. For example, it supports partial initialization (the argument to the @UnknownInitialization and
@UnderInitialization annotations). The benefit (in terms of reduced false positive initialization warnings) from
supporting partial initialization is greater than the benefit from adopting the Freedom Before Commitment system.

54

Chapter 4

Map Key Checker

The Map Key Checker tracks which values are keys for which maps. If variable v has type @KeyFor("m")..., then the
value of v is a key in Map m. That is, the expression m.containsKey(v) evaluates to true.

Section 3.2.4 describes how @KeyFor annotations enable the Nullness Checker (Chapter 3, page 31) to treat calls to
Map.get more precisely by refining its result to @NonNull in some cases.

4.1 Invoking the Map Key Checker
You will not typically run the Map Key Checker. It is automatically run by other checkers, in particular the Nullness
Checker.

You can unsoundly suppress warnings related to map keys with @SuppressWarnings("keyfor"), or everywhere
by using command-line option -AsuppressWarnings=keyfor; see Chapter 33, page 211.

The command-line argument -AassumeKeyFor makes the Map Key Checker unsoundly assume that the argument
to Map.get is a key for the receiver map. This is like declaring the Map.get method as V get(Object key) rather
than @Nullable V get(Object key). (Just changing the JDK declaration would not work, however, because the
Map Key Checker has special-case logic for Map.get. This is different than suppressing warnings, because it changes a
method’s return type. This is not the same as assuming that the return value is @NonNull, because the map’s value type
might be @Nullable, as in Map<String, @Nullable Integer>.

4.2 Map key annotations
These qualifiers are part of the Map Key type system:

@KeyFor(String[] maps) indicates that the value assigned to the annotated variable is a key for at least the
given maps.

@UnknownKeyFor is used internally by the type system but should never be written by a programmer. It indicates
that the value assigned to the annotated variable is not known to be a key for any map. It is the default type
qualifier.

@KeyForBottom is used internally by the type system but should never be written by a programmer. There are no
values of this type (not even null).

The following method annotations can be used to establish a method postcondition that ensures that a certain
expression is a key for a map:

@EnsuresKeyFor(String[] value, String[] map) When the method with this annotation returns, the
expression (or all the expressions) given in the value element is a key for the given maps. More precisely, the
expression has the @KeyFor qualifier with the value arguments taken from the targetValue element of this
annotation.

55

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html#get(java.lang.Object)
../api/org/checkerframework/checker/nullness/qual/KeyFor.html
../api/org/checkerframework/checker/nullness/qual/UnknownKeyFor.html
../api/org/checkerframework/checker/nullness/qual/KeyForBottom.html
../api/org/checkerframework/checker/nullness/qual/EnsuresKeyFor.html

@UnknownKeyFor

@KeyForBottom

@KeyFor(map1) @KeyFor(map2)

@KeyFor({map1,map2}) @KeyFor({map2,map3})

@KeyFor({map1,...,mapn})

Figure 4.1: The subtyping relationship of the Map Key Checker’s qualifiers. @KeyFor(A) is a supertype of @KeyFor(B)
if and only if A is a subset of B. Qualifiers in gray are used internally by the type system but should never be written by
a programmer.

@EnsuresKeyForIf(String[] expression, boolean result, String[] map) If the method with
this annotation returns the given boolean value, then the given expression (or all the given expressions) is a key
for the given maps.

4.3 Default annotations
The qualifier for the type of the null literal is @UnknownKeyFor. If null were @KeyForBottom, that would mean that
null is guaranteed to be a key for every map (which is not necessarily true).

4.3.1 Default for lower bounds
Lower bounds are defaulted to @UnknownKeyFor. However, in java.* packages, the default for lower bounds is
@KeyForBottom.

It is challenging to choose a default for lower bounds of type variables and wildcards.
Here is a comparison of two choices for lower bounds:

@KeyForBottom default @UnknownKeyFor default (current choice)
class MyClass1<@UnknownKeyFor T> { class MyClass1<T> {
T var = null; // OK T var = null; // OK

class MyClass2<T> {
@UnknownKeyFor T var = null; // OK

class MyClass3<T> {
T var = null; // ERROR

class MySet1<T> implements Set<T> { }
MySet1<@KeyFor("m") String> s1; // ERROR

class Set<E> { } class Set<@KeyForBottom E> { }
class MySet2<T> implements Set<T> { } class MySet2<@KeyForBottom T> implements Set<T> { }
MySet2<@KeyFor("m") String> s2; // OK MySet2<@KeyFor("m") String> s2; // OK

If lower bounds are defaulted to @KeyForBottom (which is not currently the case), then whenever null is assigned
to a variable whose type is a type variable, programmers must write an @UnknownKeyFor annotation on either the type
variable declaration or on variable declarations, as shown in MyClass1 and MyClass2. A disadvantage of this default is
that the Map Key checker may issue warnings in code that has nothing to do with map keys, and in which no map key
annotations are used.

56

../api/org/checkerframework/checker/nullness/qual/EnsuresKeyForIf.html

If lower bounds are defaulted to @UnknownKeyFor (which is currently the case), then whenever a client might use a
@KeyFor type argument, programmers must write a @KeyForBottom annotation on the type parameter, as in MySet2
(and Set).

4.3.2 Diagnosing the need for explicit @KeyFor on lower bounds
Under the current defaulting (lower bounds default to @UnknownKeyFor), suppose you write this code:

public class Graph<N> {
Map<N, Integer> nodes = new HashMap<>();

}

class Client {
@Nullable Graph<@KeyFor("g.nodes") String> g;

}

The Nullness Checker issues this error message:

Graph.java:14: error: [type.argument] incompatible types in type argument.
@Nullable Graph<@KeyFor("g.nodes") String> g;

^
found : @KeyFor("this.g.nodes") String
required: [extends @UnknownKeyFor Object super @UnknownKeyFor null]

Note that the upper and lower bounds are both @UnknownKeyFor. You can make the code type-check by writing a
lower bound, which is written before the type variable name (Section 31.1.2):

public class Graph<@KeyForBottom N> {
...

4.4 Examples
The Map Key Checker keeps track of which variables reference keys to which maps. A variable annotated with
@KeyFor(mapSet) can only contain a value that is a key for all the maps in mapSet. For example:

Map<String,Date> m, n;
@KeyFor("m") String km;
@KeyFor("n") String kn;
@KeyFor({"m", "n"}) String kmn;
km = kmn; // OK - a key for maps m and n is also a key for map m
km = kn; // error: a key for map n is not necessarily a key for map m

As with any annotation, use of the @KeyFor annotation may force you to slightly refactor your code. For example,
this would be illegal:

Map<String,Object> m;
Collection<@KeyFor("m") String> coll;
coll.add(x); // error: element type is @KeyFor("m") String, but x does not have that type
m.put(x, ...);

The example type-checks if you reorder the two calls:

Map<String,Object> m;
Collection<@KeyFor("m") String> coll;
m.put(x, ...); // after this statement, x has type @KeyFor("m") String
coll.add(x); // OK

57

4.5 Local inference of @KeyFor annotations
Within a method body, you usually do not have to write @KeyFor explicitly (except sometimes on type arguments),
because the checker infers it based on usage patterns. When the Map Key Checker encounters a run-time check for map
keys, such as “if (m.containsKey(k)) ...”, then the Map Key Checker refines the type of k to @KeyFor("m")
within the scope of the test (or until k is side-effected within that scope). The Map Key Checker also infers @KeyFor
annotations based on iteration over a map’s key set or calls to put or containsKey. For more details about type
refinement, see Section 32.7.

Suppose we have these declarations:

Map<String,Date> m = new Map<>();
String k = "key";
@KeyFor("m") String km;

Ordinarily, the following assignment does not type-check:

km = k; // Error since k is not known to be a key for map m.

The following examples show cases where the Map Key Checker infers a @KeyFor annotation for variable k based
on usage patterns, enabling the km = k assignment to type-check.

m.put(k, ...);
// At this point, the type of k is refined to @KeyFor("m") String.
km = k; // OK

if (m.containsKey(k)) {
// At this point, the type of k is refined to @KeyFor("m") String.
km = k; // OK
...

} else {
km = k; // Error since k is not known to be a key for map m.
...

}

The following example shows a case where the Map Key Checker resets its assumption about the type of a field
used as a key because that field may have been side-effected.

class MyClass {
private Map<String,Object> m;
private String k; // The type of k defaults to @UnknownKeyFor String
private @KeyFor("m") String km;

public void myMethod() {
if (m.containsKey(k)) {

km = k; // OK: the type of k is refined to @KeyFor("m") String

sideEffectFreeMethod();
km = k; // OK: the type of k is not affected by the method call

// and remains @KeyFor("m") String

otherMethod();
km = k; // error: At this point, the type of k is once again

58

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html#keySet()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html#put(K,V)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html#containsKey(java.lang.Object)

// @UnknownKeyFor String, because otherMethod might have
// side-effected k such that it is no longer a key for map m.

}
}

@SideEffectFree
private void sideEffectFreeMethod() { ... }

private void otherMethod() { ... }
}

59

Chapter 5

Optional Checker for possibly-present data

Use of the Optional Checker guarantees that your program will not suffer a NoSuchElementException when calling
methods on an expression of Optional type. The Optional Checker also enforces Stuart Marks’s style guidelines (see
below).

Java 8 introduced the Optional class, a container that is either empty or contains a non-null value.
Using Optional is intended to help programmers remember to check whether data is present or not. However,

Optional itself is prone to misuse. The article Nothing is better than the Optional type gives reasons to use
regular nullable references rather than Optional. However, if you do use Optional, then the Optional Checker
will help you avoid Optional’s pitfalls. Most notably, the Optional Checker guarantees your code will not suffer a
NoSuchElementException due to use of an empty Optional.

Stuart Marks gave 7 rules to avoid problems with Optional:

1. Never, ever, use null for an Optional variable or return value.
2. Never use Optional.get() unless you can prove that the Optional is present.
3. Prefer alternative APIs over Optional.isPresent() and Optional.get().
4. It’s generally a bad idea to create an Optional for the specific purpose of chaining methods from it to get a value.
5. If an Optional chain has a nested Optional chain, or has an intermediate result of Optional, it’s probably too

complex.
6. Avoid using Optional in fields, method parameters, and collections.
7. Don’t use an Optional to wrap any collection type (List, Set, Map). Instead, use an empty collection to

represent the absence of values.

Rule #1 is guaranteed by the Nullness Checker (Chapter 3, page 31). Rules #2–#7 are guaranteed by the Optional
Checker, described in this chapter. (Exception: Rule #5 is not yet implemented and will be checked by the Optional
Checker in the future.)

5.1 How to run the Optional Checker
The standard way to run the Optional Checker is one of these command lines:

javac -processor optional MyFile.java ...
javac -processor org.checkerframework.checker.optional.OptionalChecker MyFile.java ...

5.2 Optional annotations
These qualifiers make up the Optional type system:

60

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html
https://homes.cs.washington.edu/~mernst/advice/nothing-is-better-than-optional.html
https://stuartmarks.wordpress.com/2016/09/27/vjug24-session-on-optional/
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html#get()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html#isPresent()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html#get()

@MaybePresent

@Present

Figure 5.1: The subtyping relationship of the Optional Checker’s qualifiers.

@MaybePresent The annotated Optional container may or may not contain a value. This is the default type, so
programmers do not have to write it.

@Present The annotated Optional container definitely contains a (non-null) value.
@PolyPresent indicates qualifier polymorphism. For a description of qualifier polymorphism, see Section 31.2.

The subtyping hierarchy of the Optional Checker’s qualifiers is shown in Figure 5.1.

5.2.1 Optional method annotations
The Optional Checker supports several annotations that specify method behavior. These are declaration annotations, not
type annotations: they apply to the method itself rather than to some particular type.

@RequiresPresent indicates a method precondition: The annotated method expects the specified expressions to
be a present Optional when this method is invoked. @RequiresPresent is a useful annotation for a method that
requires a @MaybePresent field to be @Present.

@EnsuresPresent indicates a method postcondition. The successful return (i.e., a non-exceptional return) of the
annotated method results in the given Optional expression being present. See the Javadoc for examples of its use.

@EnsuresPresentIf indicates a method postcondition. With @EnsuresPresent, the given Optional expression is
present after the method returns. With @EnsuresPresentIf, if the annotated method returns the given boolean
value (true or false), then the given Optional expression is present. See the Javadoc for examples of their use.

5.3 What the Optional Checker guarantees
The Optional Checker guarantees that your code will not throw a NoSuchElementException exception due to use of
an absent Optional where a present Optional is needed. More specifically, the Optional Checker will issue an error if
you call get or orElseThrow() on a @MaybePresent Optional receiver, because each of these methods throws a
NoSuchElementException exception if the receiver is a possibly-absent Optional.

By contrast, the Optional Checker does not issue an error if you call orElseThrow(Supplier) with a possibly-
absent Optional. That method call does not throw NoSuchElementException. The Optional Checker assumes
that the programmer has mechanisms in place to handle whatever exception it throws. If you wish for the Optional
Checker to warn about calling orElseThrow(Supplier) on a possibly-absent Optional, then you can use a stub file
(Section 35.5, page 231) to annotate its receiver as @Present.

The Optional Checker does not check nullness properties, such as requiring that the argument to of is non-null
or guaranteeing that the result of get is non-null. To obtain such a guarantee, run both the Optional Checker and the
Nullness Checker (Chapter 3, page 31).

As with any checker, the guarantee is subject to certain limitations (see Section 2.3).

61

../api/org/checkerframework/checker/optional/qual/MaybePresent.html
../api/org/checkerframework/checker/optional/qual/Present.html
../api/org/checkerframework/checker/optional/qual/PolyPresent.html
../api/org/checkerframework/checker/optional/qual/RequiresPresent.html
../api/org/checkerframework/checker/optional/qual/EnsuresPresent.html
../api/org/checkerframework/checker/optional/qual/EnsuresPresentIf.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html#get()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html#orElseThrow()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html#orElseThrow(java.util.function.Supplier)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html#of(T)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html#get()

5.4 Suppressing optional warnings
It is often best to change the code or annotations when the Optional Checker reports a warning. Alternatively, you might
choose to suppress the warning. This does not change the code but prevents the warning from being presented to you.

The Checker Framework supplies several ways to suppress warnings. The @SuppressWarnings("optional")
annotation is specific to warnings raised by the Optional Checker. See Chapter 33 for additional usages. An example
use is

// might return a possibly-empty Optional
Optional<T> wrapWithOptional(...) { ... }

void myMethod() {
@SuppressWarnings("optional") // with argument x, wrapWithOptional always returns a present Optional
@Present Optional<T> optX = wrapWithOptional(x);

}

The Optional Checker also permits the use of method calls and assertions to suppress warnings; see immediately
below.

5.4.1 Suppressing warnings with assertions and method calls
Occasionally, it is inconvenient or verbose to use the @SuppressWarnings annotation. For example, Java does not
permit annotations such as @SuppressWarnings to appear on statements, expressions, static initializers, etc. Here are
three ways to suppress a warning in such cases:

• Create a local variable to hold a subexpression, and suppress a warning on the local variable declaration.
• Use the @AssumeAssertion string in an assert message (see Section 33.2).
• Write a call to the OptionalUtil.castPresent method.

The rest of this section discusses the castPresent method. It is useful if you wish to suppress a warning within an
expression.

The Optional Checker considers both the return value, and also the argument, to be an instance of a present Optional
after the castPresent method call. The Optional Checker issues no warnings in any of the following code:

// One way to use castPresent as a cast:
@Present Optional<String> optString = castPresent(possiblyEmpty1);

// Another way to use castPresent as a cast:
castPresent(possiblyEmpty2).toString();

// It is possible, but not recommmended, to use castPresent as a statement:
// (It would be better to write an assert statement with @AssumeAssertion
// in its message, instead.)
castPresent(possiblyEmpty3);
possiblyEmpty3.toString();

The castPresent method throws AssertionError if Java assertions are enabled and the argument is an empty
Optional. However, it is not intended for general defensive programming; see Section 33.2.1.

To use the castPresent method, the checker-util.jar file must be on the classpath at run time.

62

../api/org/checkerframework/checker/optional/util/OptionalUtil.html#castPresent(java.util.Optional)

Chapter 6

Interning Checker

If the Interning Checker issues no errors for a given program, then all reference equality tests (i.e., all uses of “==”) are
proper; that is, == is not misused where equals() should have been used instead.

Interning is a design pattern in which the same object is used whenever two different objects would be considered
equal. Interning is also known as canonicalization or hash-consing, and it is related to the flyweight design pattern.
Interning has two benefits: it can save memory, and it can speed up testing for equality by permitting use of ==.

The Interning Checker prevents two types of problems in your code. First, it prevents using == on non-interned
values, which can result in subtle bugs. For example:

Integer x = new Integer(22);
Integer y = new Integer(22);
System.out.println(x == y); // prints false!

Second, the Interning Checker helps to prevent performance problems that result from failure to use interning. (See
Section 2.3 for caveats to the checker’s guarantees.)

Interning is such an important design pattern that Java builds it in for these types: String, Boolean, Byte,
Character, Integer, Short. Every string literal in the program is guaranteed to be interned (JLS §3.10.5), and the
String.intern() method performs interning for strings that are computed at run time. The valueOf methods in
wrapper classes always (Boolean, Byte) or sometimes (Character, Integer, Short) return an interned result (JLS
§5.1.7). Users can also write their own interning methods for other types.

It is a proper optimization to use ==, rather than equals(), whenever the comparison is guaranteed to produce the
same result — that is, whenever the comparison is never provided with two different objects for which equals() would
return true. Here are three reasons that this property could hold:

1. Interning. A factory method ensures that, globally, no two different interned objects are equals() to one another.
(For some classes, every instance is interned; however, in other cases it is possible for two objects of the class to
be equals() to one another, even if one of them is interned.) Interned objects should always be immutable.

2. Global control flow. The program’s control flow is such that the constructor for class C is called a limited number
of times, and with specific values that ensure the results are not equals() to one another. Objects of class C can
always be compared with ==. Such objects may be mutable or immutable.

3. Local control flow. Even though not all objects of the given type may be compared with ==, the specific objects
that can reach a given comparison may be.

• When searching for an element (say, in a collection), == may be appropriate.
• Some routines return either their argument, or a modified version of it. Your code might compare s ==
s.toLowerCase() to see whether a string contained any upper-case characters.

To eliminate Interning Checker errors, you will need to annotate the declarations of any expression used as an
argument to ==. Thus, the Interning Checker could also have been called the Reference Equality Checker.

To run the Interning Checker, supply the -processor org.checkerframework.checker.interning.InterningChecker
command-line option to javac. For examples, see Section 6.5.

63

https://docs.oracle.com/javase/specs/jls/se17/html/jls-3.html#jls-3.10.5
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#intern()
https://docs.oracle.com/javase/specs/jls/se17/html/jls-5.html#jls-5.1.7
https://docs.oracle.com/javase/specs/jls/se17/html/jls-5.html#jls-5.1.7

Date@Interned Object

Object

@Interned Date@InternedDistinct Object

@InternedDistinct Date

Figure 6.1: Type hierarchy for the Interning type system.

6.1 Interning annotations

6.1.1 Interning qualifiers
These qualifiers are part of the Interning type system:

@Interned indicates a type that includes only interned values (no non-interned values).
@InternedDistinct indicates a type such that each value is not equals() to any other Java value. This is a

stronger (more restrictive) property than @Interned, but is a weaker property than writing @Interned on a class
declaration. For details, see Section 6.3.3.

@UnknownInterned indicates a type whose values might or might not be interned. It is used internally by the type
system and is not written by programmers.

@PolyInterned indicates qualifier polymorphism. For a description of qualifier polymorphism, see Section 31.2.

6.1.2 Interning method and class annotations
@UsesObjectEquals is a class annotation (not a type annotation) that indicates that this class’s equals method is

the same as that of Object. Since Object.equals uses reference equality, this means that for such a class, ==
and equals are equivalent, and so the Interning Checker does not issue errors or warnings for either one.
Two ways to satisfy this annotation are: (1) neither this class nor any of its superclasses overrides the equals
method, or (2) this class defines equals with body return this == o;.

@InternMethod is a method declaration annotation that indicates that this method returns an interned object and
may be invoked on an uninterned object. See Section 6.3.1 for more details.

@EqualsMethod is a method declaration annotation that indicates that this method has a specification like equals().
The Interning Checker permits use of this == arg within the body.

@CompareToMethod is a method declaration annotation that indicates that this method has a specification like
compareTo(). The Interning Checker permits use of if (arg1 == arg2) { return 0; } within the body.

@FindDistinct is a formal parameter declaration annotation that indicates that this method uses == to perform
comparisons against the annotated formal parameter. A common reason is that the method searches for the formal
parameter in some data structure, using ==. Any value may be passed to the method.

6.2 Annotating your code with @Interned
In order to perform checking, you must annotate your code with the @Interned type annotation. A type annotated with
@Interned contains the canonical representation of an object:

String s1 = ...; // type is (uninterned) "String"
@Interned String s2 = ...; // type is "@Interned String"

The Interning Checker ensures that only interned values can be assigned to s2.

64

../api/org/checkerframework/checker/interning/qual/Interned.html
../api/org/checkerframework/checker/interning/qual/InternedDistinct.html
../api/org/checkerframework/checker/interning/qual/UnknownInterned.html
../api/org/checkerframework/checker/interning/qual/PolyInterned.html
../api/org/checkerframework/checker/interning/qual/UsesObjectEquals.html
../api/org/checkerframework/checker/interning/qual/InternMethod.html
../api/org/checkerframework/checker/interning/qual/EqualsMethod.html
../api/org/checkerframework/checker/interning/qual/CompareToMethod.html
../api/org/checkerframework/checker/interning/qual/FindDistinct.html
../api/org/checkerframework/checker/interning/qual/Interned.html

6.3 Interned classes
An interned annotation on a class declaration indicates that all objects of a type are interned except for newly created
objects. That means that all uses of such types are @Interned by default and the type @UnknownInterned MyClass is
an invalid type.

An exception is constructor results. Constructor results and this within the body of the constructor are @UnknownInterned
by default. Although @UnknownInterned InternClass is not a legal type, no “type.invalid” error is issued at con-
structor declarations. Instead, an “interned.object.creation” error is issued at the invocation of the constructor. The user
should inspect this location and suppress the warning if the newly created object is interned.

For example:

@Interned class InternedClass {
@UnknownInterned InternedClass() {

// error, "this" is @UnknownInterned.
@Interned InternedClass that = this;

}

@SuppressWarnings("intern") // Only creation of an InternedClass object.
static final InternedClass ONE = new InternedClass();

}

6.3.1 The intern() methods
Some interned classes use an intern() method to look up the interned version of the object. These methods must
be annotated with the declaration annotation @InternMethod. This allows the checker to verify that a newly created
object is immediately interned and therefore not issue an interned object creation error.

new InternedClass().intern() // no error

Because an intern method is expected to be called on uninterned objects, the type of this in intern is implicitly
@UnknownInterned. This will cause an error if this is used someplace where an interned object is expected. Some of
these warnings will be false positives that should be suppressed by the user.

@InternMethod
public InternedClass intern() {

// Type of "this" inside an @InternMethod is @UnknownInterned
@Interned InternedClass that = this; // error

if (!pool.contains(this)) {
@SuppressWarnings("interning:assignment")
@Interned InternedClass internedThis = this;
pool.add(internedThis);

}
return pool.get(this);

}

Some interned classes do not use an intern method to ensure that every object of that class is interned. For these
classes, the user will have to manually inspect every constructor invocation and suppress the “interned.object.creation”
error.

If every invocation of a constructor is guaranteed to be interned, then the user should annotate the constructor result
with @Interned and suppress a warning at the constructor.

65

@Interned class AnotherInternedClass {
// manually verified that all constructor invocations used such that all
// new objects are interned
@SuppressWarnings("super.invocation")
@Interned AnotherInternedClass() {}

}

6.3.2 Default qualifiers and qualifiers for literals
The Interning Checker adds qualifiers to unannotated types, reducing the number of annotations that must appear in
your code (see Section 32.4).

For a complete description of all defaulting rules for interning qualifiers, see the Javadoc for InterningAnnotatedTypeFactory.

6.3.3 InternedDistinct: values not equals() to any other value
The @InternedDistinct annotation represents values that are not equals() to any other value. Suppose expression e
has type @InternedDistinct. Then e.equals(x) == (e == x). Therefore, it is legal to use == whenever at least
one of the operands has type @InternedDistinct.

@InternedDistinct is stronger (more restrictive) than @Interned. For example, consider these variables:

@Interned String i = "22";
String s = new Integer(22).toString();

The variable i is not @InternedDistinct because i.equals(s) is true.
@InternedDistinct is not as restrictive as stating that all objects of a given Java type are interned.
The @InternedDistinct annotation is rarely used, because it arises from coding paradigms that are tricky to

reason about. One use is on static fields that hold canonical values of a type. Given this declaration:

class MyType {
final static @InternedDistinct MyType SPECIAL = new MyType(...);
...

}

it would be legal to write myValue == MyType.SPECIAL rather than myValue.equals(MyType.SPECIAL).
The @InternedDistinct is trusted (not verified), because it would be too complex to analyze the equals()

method to ensure that no other value is equals() to a @InternedDistinct value. You will need to manually verify
that it is only written in locations where its contract is satisfied. For example, here is one set of guidelines that you
could check manually:

• The constructor is private.
• The factory method (whose return type is annotated with @InternedDistinct returns the canonical version for

certain values.
• The class is final, so that subclasses cannot violate these properties.

6.4 What the Interning Checker checks
Objects of an @Interned type may be safely compared using the “==” operator.

The checker issues an error in two cases:

1. When a reference (in)equality operator (“==” or “!=”) has an operand of non-@Interned type. As a special case,
the operation is permitted if either argument is of @InternedDistinct type

2. When a non-@Interned type is used where an @Interned type is expected.

66

../api/org/checkerframework/checker/interning/InterningAnnotatedTypeFactory.html
../api/org/checkerframework/checker/interning/qual/InternedDistinct.html
../api/org/checkerframework/checker/interning/qual/Interned.html
../api/org/checkerframework/checker/interning/qual/Interned.html
../api/org/checkerframework/checker/interning/qual/InternedDistinct.html
../api/org/checkerframework/checker/interning/qual/Interned.html
../api/org/checkerframework/checker/interning/qual/Interned.html

This example shows both sorts of problems:

Date date;
@Interned Date idate;

@InternedDistinct Date ddate;
...
if (date == idate) ... // error: reference equality test is unsafe
idate = date; // error: idate’s referent might no longer be interned
ddate = idate; // error: idate’s referent might be equals() to some other value

The Interning Checker’s warnings look like

MyFile.java:716: error: [interning:not.interned] attempting to use a non-@Interned comparison operand
if (date == idate)

^

To resolve a not.interned error, you should change the argument that is passed to ==, or use .equals() instead of
==, or suppress the warning.

The checker also issues a warning when .equals is used where == could be safely used. You can disable this
behavior via the javac -Alint=-dotequals command-line option.

For a complete description of all checks performed by the checker, see the Javadoc for InterningVisitor.
To restrict which types the checker should type-check, pass a canonical name (fully-qualified name) using the

-Acheckclass option. For example, to find only the interning errors related to uses of String, you can pass
-Acheckclass=java.lang.String. The Interning Checker always checks all subclasses and superclasses of the
given class.

6.4.1 Imprecision (false positive warnings) of the Interning Checker
The Interning Checker conservatively assumes that the Character, Integer, and Short valueOf methods return a
non-interned value. In fact, these methods sometimes return an interned value and sometimes a non-interned value,
depending on the run-time argument (JLS §5.1.7). If you know that the run-time argument to valueOf implies that
the result is interned, then you will need to suppress an error. (The Interning Checker should make use of the Value
Checker to estimate the upper and lower bounds on char, int, and short values so that it can more precisely determine
whether the result of a given valueOf call is interned.)

6.5 Examples
To try the Interning Checker on a source file that uses the @Interned qualifier, use the following command:

javac -processor org.checkerframework.checker.interning.InterningChecker docs/examples/InterningExample.java

Compilation will complete without errors or warnings.
To see the checker warn about incorrect usage of annotations, use the following command:

javac -processor org.checkerframework.checker.interning.InterningChecker docs/examples/InterningExampleWithWarnings.java

The compiler will issue an error regarding violation of the semantics of @Interned.
The Daikon invariant detector (http://plse.cs.washington.edu/daikon/) is also annotated with @Interned.

From directory java/, run make check-interning.
The paper “Building and using pluggable type-checkers” [DDE+11] (ICSE 2011, https://homes.cs.washington.

edu/~mernst/pubs/pluggable-checkers-icse2011.pdf) describes case studies in which the Interning Checker
found previously-unknown errors in real software.

67

../api/org/checkerframework/checker/interning/InterningVisitor.html
https://docs.oracle.com/javase/specs/jls/se17/html/jls-5.html#jls-5.1.7
../api/org/checkerframework/checker/interning/qual/Interned.html
../api/org/checkerframework/checker/interning/qual/Interned.html
http://plse.cs.washington.edu/daikon/
../api/org/checkerframework/checker/interning/qual/Interned.html
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-icse2011.pdf
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-icse2011.pdf

com.sun.istack.internal.Interned ⇒ org.checkerframework.checker.interning.qual.Interned
Figure 6.2: Correspondence between other interning annotations and the Checker Framework’s annotations.

6.6 Other interning annotations
The Checker Framework’s interning annotations are similar to annotations used elsewhere.

If your code is already annotated with a different interning annotation, the Checker Framework can type-check your
code. It treats annotations from other tools as if you had written the corresponding annotation from the Interning Checker,
as described in Figure 6.2. If the other annotation is a declaration annotation, it may be moved; see Section 39.6.10.

68

Chapter 7

Called Methods Checker for the builder
pattern and more

The Called Methods Checker tracks the names of methods that have definitely been called on an object. This checker
is useful for checking any property of the form “call method A before method B”. For the purpose of this checker, a
method has “definitely been called” if it is invoked: a method that might never return or that might throw an exception
has definitely been called on every path after the call, including exceptional paths. The checker also assumes that
the program is free of null-pointer dereferences. You can verify that all pointer dereferences are safe by running the
Nullness Checker (Section 3).

The Called Methods Checker provides built-in support for one such property: that clients of the builder pattern for
object construction always provide all required arguments before calling build(). The builder pattern is a flexible
and readable way to construct objects, but it is error-prone. Failing to provide a required argument causes a run-time
error that manifests during testing or in the field, instead of at compile time as for regular Java constructors. The Called
Methods Checker verifies at compile time that your code correctly uses the builder pattern, never omitting a required
argument. The Called Methods Checker has built-in support for Lombok (see the caveats about Lombok in Section 7.2)
and AutoValue.

You can verify other builders, or verify other properties of the form “foo() must be called before bar()”, by
writing method specifications. Section 7.5 describes another example related to a security property.

If the checker issues no warnings, then you have a guarantee that your code supplies all the required information to
the builder. The checker might yield a false positive warning when your code is too tricky for it to verify. Please submit
an issue if you discover this.

7.1 How to run the Called Methods Checker
javac -processor calledmethods MyFile.java ...
javac -processor org.checkerframework.checker.calledmethods.CalledMethodsChecker MyFile.java ...

The Called Methods Checker supports the following optional command-line arguments:

• The -ACalledMethodsChecker_disableBuilderFrameworkSupports option disables automatic annotation
inference for builder frameworks. Section 7.4 describes its syntax. Supply this if you are uninterested in errors in
the use of builders, but are using the Called Methods Checker to detect errors in other types of code.

• The -ACalledMethodsChecker_disableReturnsReceiver option disables the Returns Receiver Checker
(Chapter 24, page 155), which ordinarily runs as a subchecker of the Called Methods Checker. If the code being
checked does not use fluent APIs, then you can supply this option and the Called Methods Checker will run much
faster. This option is the default when the Called Methods Checker is run as part of the Resource Leak Checker
(Chapter 8, page 74).

69

https://projectlombok.org/
https://github.com/google/auto/blob/master/value/userguide/index.md
https://github.com/typetools/checker-framework/issues

@CalledMethods({})

@CalledMethodsBottom

@CalledMethods("a") @CalledMethods("b")

@CalledMethods({"a", "b"})

Figure 7.1: The type hierarchy for the Called Methods type system, for an object with two methods: a() and b().
Types displayed in gray should rarely be written by the programmer.

• The -ACalledMethodsChecker_useValueChecker option improves precision when analyzing code that uses
the AWS SDK’s DescribeImageRequest API. See Section 7.5.

7.2 For Lombok users
The Called Methods Checker supports projects that use Lombok via the io.freefair.lombok Gradle plugin automatically.
However, note that the checker’s error messages refer to Lombok’s output, which is a variant of your source code that
appears in a delombok directory. To fix issues, you should edit your original source code, not the files in the checker’s
error messages.

If you use Lombok with a build system other than Gradle, you must configure it to do two tasks. If either of these is
not done, the checker will not issue any errors on Lombok code.

• set Lombok configuration option lombok.addLombokGeneratedAnnotation = true
• delombok the code before passing it to the checker

7.3 Specifying your code
The Called Methods Checker reads method specifications (contracts) that state what a method requires when it is called.
It warns if method arguments do not satisfy the method’s specification.

If you use AutoValue or Lombok, most specifications are automatically inferred by the Called Methods Checker,
from field annotations such as @Nullable and field types such as Optional. Section 7.4 gives defaulting rules for
Lombok and AutoValue.

In some cases, you may need to specify your code. You do so by writing one of the following type annotations
(Figure 7.1):

@CalledMethods(String[] methodNames) The annotated type represents values on which all the given
method were definitely called. (Other methods might also have been called.) @CalledMethods(), with no
arguments, is the default annotation.
Suppose that the method build is annotated as

class MyObjectBuilder {
MyObject build(@CalledMethods({"setX", "setY"}) MyObjectBuilder this) { ... }

}

70

https://plugins.gradle.org/plugin/io.freefair.lombok
../api/org/checkerframework/checker/calledmethods/qual/CalledMethods.html

Then the receiver for any call to build() must have had setX() and setY() called on it.
A typical case for Lombok users for manually writing this annotation is when performing extra builder input
validation. Performing validation can be done through subclassing generated builders and overriding the generated
build() method as follows.

class MyObjectSubBuilder extends MyObjectBuilder {
@Override
MyObject build(@CalledMethods({"setX", "setY"}) MyObjectSubBuilder this) {
MyObject o = super.build();
if ((o.getX() == null) != (o.getY() == null)) {

throw new IllegalArgumentException("Nullness for x and y should be equal");
}
return o;

}
}

@CalledMethodsPredicate(String expression) The boolean expression specifies the required method
calls. The string is a boolean expression composed of method names, disjunction (||), conjunction (&&), not (!),
and parentheses.
For example, the annotation @CalledMethodsPredicate("x && y || z") on a type represents objects such
that either both the x() and y() methods have been called on the object, or the z() method has been called on
the object.
A note on the not operator (!): the annotation @CalledMethodsPredicate("!m") means “it is not true
m was definitely called”; equivalently “there is some path on which m was not called”. The annotation
@CalledMethodsPredicate("!m") does not mean “m was not called”.
The Called Methods Checker does not have a way of expressing that a method must never be called. You can do
unsound bug-finding for such a property by using the ! operator. The Called Methods Checker will detect if the
method was always called, but will silently approve the code if the method is called on some but not all paths.

@This @This may only be written on a method return type, and means that the method returns its receiver. This is
helpful when type-checking fluent APIs. This annotation is defined by the Returns Receiver Checker (Chapter 24,
page 155), but is particularly useful for the Called Methods Checker because many builders are fluent APIs.
For Lombok users it is important to (manually) add @This to any custom method that calls any other generated
builder method. For instance, in the following example, it is important to annotate setXMod42() with @This,
since the added method calls setX() (which returns the current builder instance).

class MyObjectBuilder {

@This
MyObjectBuilder setXMod42(int x) {

return setX(x % 42);
}

}

@CalledMethodsBottom The bottom type for the Called Methods hierarchy. Conceptually, this annotation
means that all possible methods have been called on the object. Programmers should rarely, if ever, need
to write this annotation—write an appropriate @CalledMethods annotation instead. The type of null is
@CalledMethodsBottom.

There are also method annotations:

@EnsuresCalledMethods This declaration annotation specifies a post-condition on a method, indicating the
methods it guarantees to be called. This annotation is repeatable, meaning that you can write multiple copies of it
(with different arguments) on the same method, and the checker will check all of them.
For example, this specification:

71

../api/org/checkerframework/checker/calledmethods/qual/CalledMethodsPredicate.html
../api/org/checkerframework/common/returnsreceiver/qual/This.html
../api/org/checkerframework/checker/calledmethods/qual/CalledMethodsBottom.html
../api/org/checkerframework/checker/calledmethods/qual/EnsuresCalledMethods.html

@EnsuresCalledMethods(value = "#1", methods = {"x", "y"})
void m(Param p) { ... }

guarantees that p.x() and p.y() will always be called before m returns. The body of m must satisfy that property,
and clients of m can depend on the property.
Sometimes, you need to provide information to enable the Called Methods Checker to verify the property.
Consider this example:

@EnsuresCalledMethods(value="#1", methods="close")
public void closeSocket(Socket sock) throws IOException {

sock.close();
m();

}

If m() might have side-effects (i.e., it is not annotated as @SideEffectFree or @Pure), then the Called Methods
Checker issues an error because it cannot make any assumptions about the call to m(), and therefore assumes the
worst: that all information it knows about in-scope variables (including that close() was called on sock) is stale
and must be discarded. There are two possible fixes:

• add a @SideEffectFree or @Pure annotation to m(), if m() is in fact side-effect free or pure; or
• re-order the calls to sock.close() and m() so that the call to sock.close() appears last in closeSocket().

@EnsuresCalledMethodsIf This declaration annotation specifies a post-condition on a method, indicating the
methods it guarantees to be called if it returns a given result.
For example, this specification:

@EnsuresCalledMethodsIf(expression = "#1", methods = {"x", "y"}, result=true)
boolean m(Param p) { ... }

guarantees that p.x() and p.y() will always be called if m returns true. The body of m must satisfy that property,
and clients of m can depend on the property.

@EnsuresCalledMethodsVarargs This version of @EnsuresCalledMethods always applies to the varargs
parameter of the annotated method. It has only one argument, which is the list of methods that are guaranteed
to be called on the varargs parameter’s elements before the method returns. This annotation currently cannot
be verified, and a ensuresvarargs.unverified error is always issued when it is used. When annotating a
method as @EnsuresCalledMethodsVarargs, you should verify that the named methods are actually called on
every element of the varargs parameter via some other method (such as manual inspection) and then suppress the
warning.

@EnsuresCalledMethodsOnException This declaration annotation specifies a post-condition on a method,
indicating the methods it guarantees to call when it throws an exception. Like most post-condition annotations, the
other Called Methods post-condition annotations (@EnsuresCalledMethods, @EnsuresCalledMethodsIf, and
@EnsuresCalledMethodsVarargs) only specify behavior for normal returns. The annotation @EnsuresCalledMethodsOnException
allows you to write stronger specifications indicating that a method always calls the given methods:

@EnsuresCalledMethods(expression = "#1", methods = {"close"})
@EnsuresCalledMethodsOnException(expression = "#1", methods = {"close"})
void closeIfNonNull(Closeable p) {

if (p != null) {
p.close();

}
}

@EnsuresCalledMethodsOnException can also be used together with the Resource Leak Checker’s @Owning
annotation. See 8.4.1.

@RequiresCalledMethods This declaration annotation specifies a pre-condition on a method, indicating that
the expressions in its value argument must have called-methods types that include all the methods named in its
methods argument. If the expression is a parameter of the annotated method, you should use an @CalledMethods
annotation on the parameter instead.

72

../api/org/checkerframework/dataflow/qual/SideEffectFree.html
../api/org/checkerframework/dataflow/qual/Pure.html
../api/org/checkerframework/checker/calledmethods/qual/EnsuresCalledMethodsIf.html
../api/org/checkerframework/checker/calledmethods/qual/EnsuresCalledMethodsVarargs.html
../api/org/checkerframework/checker/calledmethods/qual/EnsuresCalledMethodsOnException.html
../api/org/checkerframework/checker/calledmethods/qual/RequiresCalledMethods.html

7.4 Default handling for Lombok and AutoValue
This section explains how the Called Methods Checker infers types for code that uses the Lombok and AutoValue
frameworks. Most readers can skip these details.

You can disable the builder framework support by specifying them in a comma-separated lowercase list to the
command-line flag disableBuilderFrameworkSupports. For example, to disable both Lombok and AutoValue
support, use:
-ACalledMethodsChecker_disableBuilderFrameworkSupports=autovalue,lombok

The Called Methods Checker automatically assumes default annotations for code that uses builders generated by
Lombok and AutoValue. There are three places annotations are usually assumed:

• A @CalledMethods annotation is placed on the receiver of the build() method, indicating the setter methods
that must be invoked on the builder before calling build(). For Lombok, this annotation’s argument is the set
of @lombok.NonNull fields that do not have default values. For AutoValue, it is the set of fields that are not
@Nullable, Optional, or a Guava Immutable Collection.

• The return type of a toBuilder() method (for example, if the toBuilder = true option is passed to Lombok’s
@Builder annotation) is annotated with the same @CalledMethods annotation as the receiver of build(), using
the same rules as above.

• A @This annotation is placed on the return type of each setter in the builder’s implementation.

If your program directly defines any of these methods (for example, by adding your own setters to a Lombok
builder), you may need to write the annotations manually.

Minor notes/caveats on these rules:

• Lombok fields annotated with @Singular will be treated as defaulted (i.e., not required), because Lombok will
set them to empty collections if the corresponding setter is not called.

• If you manually provide defaults to a Lombok builder (for example, by defining the builder yourself and assigning
a default value to the builder’s field), the checker will treat that field as defaulted most of the time. In particular, it
will not treat it as defaulted if it is defined in bytecode rather than in source code.

7.5 Using the Called Methods Checker for properties unrelated to builders
The Called Methods Checker can be used to verify any property of the form “always call A before B”, even if the
property is unrelated to builders.

For example, consider the AWS EC2 describeImages API, which clients use during the process of initializing
a new cloud instance. CVE-2018-15869 describes how an improperly-configured request to this API can make the
requesting client vulnerable to a “machine-image sniping” attack that would allow a malicious third-party to control the
operating system image used to initialize the machine. To prevent this attack, clients must specify some trusted source
for the image by calling the withOwners or withImageIds methods on the request prior to sending it to AWS. Using a
stub file for the describeImages API (DescribeImages.astub), the Called Methods Checker can prove that a client is
not vulnerable to such an attack.

To improve precision, you can specify the -ACalledMethodsChecker_useValueChecker command-line option,
which instructs the checker to treat provably-safe calls to the withFilters method of a DescribeImagesRequest as
equivalent to the withOwners or withImageIds methods.

7.6 More information
The paper “Verifying Object Construction” [KRS+20] (ICSE 2020, https://homes.cs.washington.edu/~mernst/
pubs/object-construction-icse2020-abstract.html) gives more information about the Called Methods Checker,
such as theoretical underpinnings and results of experiments. (The paper uses an earlier name, “Object Construction
Checker”.)

73

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-15869
https://github.com/typetools/checker-framework/blob/master/checker/src/main/java/org/checkerframework/checker/calledmethods/DescribeImages.astub
https://homes.cs.washington.edu/~mernst/pubs/object-construction-icse2020-abstract.html
https://homes.cs.washington.edu/~mernst/pubs/object-construction-icse2020-abstract.html

Chapter 8

Resource Leak Checker for must-call
obligations

The Resource Leak Checker guarantees that the program fulfills every object’s must-call obligations before the object is
de-allocated.

A resource leak occurs when a program does not explicitly dispose of some finite underlying resource, such as a
socket, file descriptor, or database connection. To dispose of the resource, the program should call some method on an
object. (De-allocating or garbage-collecting the object is not sufficient.) For example, the program must call close()
on every object that implements the interface java.io.Closeable.

The Resource Leak Checker can check any property of the form “the programmer must call each method in a set of
methods M at least once on object O before O is de-allocated”. For resource leaks, by default M is the set containing
close() and O is any object that implements the interface java.io.Closeable. You can extend this guarantee to
other types and methods by writing @MustCall or @InheritableMustCall annotations, as described in Section 28.1.

The Resource Leak Checker works in three stages:

1. The Must Call Checker (Chapter 28, page 169) over-approximates each expression’s must-call methods as a
@MustCall type.

2. The Called Methods Checker (Chapter 7, page 69) under-approximates each expression’s definitely-called
methods as a @CalledMethods type.

3. When any program element goes out of scope (i.e., it is ready to be de-allocated), the Resource Leak Checker
compares the types @MustCall(MC) and @CalledMethods(CM). It reports an error if there exists some method
in MC that is not in CM.

The paper “Lightweight and Modular Resource Leak Verification” [KSSE21] (ESEC/FSE 2021, https://homes.
cs.washington.edu/~mernst/pubs/resource-leak-esecfse2021-abstract.html) gives more details about
the Resource Leak Checker.

8.1 How to run the Resource Leak Checker
Run one of these lines:

javac -processor resourceleak MyFile.java ...
javac -processor org.checkerframework.checker.resourceleak.ResourceLeakChecker MyFile.java ...

The Resource Leak Checker supports all the command-line arguments listed in Section 7.1 for the Called Methods
Checker, plus four others:

-ApermitStaticOwning See Section 8.4.2.

74

../api/org/checkerframework/checker/mustcall/qual/MustCall.html
../api/org/checkerframework/checker/calledmethods/qual/CalledMethods.html
https://homes.cs.washington.edu/~mernst/pubs/resource-leak-esecfse2021-abstract.html
https://homes.cs.washington.edu/~mernst/pubs/resource-leak-esecfse2021-abstract.html

-AresourceLeakIgnoredExceptions=... See Section 8.7.
-ApermitInitializationLeak See Section 8.8.
-AenableReturnsReceiverForRlc Enables the Returns Receiver Checker (Section ??) when running this

checker. By default, the Returns Receiver checker is disabled when running the Called Methods Checker as
part of the RLC, because it has a significant runtime cost but provides little benefit in the common case, since
resources are rarely combined with fluent builders.

If you are running the Resource Leak Checker, then there is no need to run the Must Call Checker (Chapter 28,
page 169), because the Resource Leak Checker does so automatically.

8.2 Resource Leak Checker annotations
The Resource Leak Checker relies on the type qualifiers of two other checkers: the Must Call Checker (Section 28.1)
and the Called Methods Checker (Section 7.3). You might need to write qualifiers from either type hierarchy. The most
common annotations from these checkers that you might need to write are:

@MustCall(String[] value) for example on an element with compile-time type Object that might contain a
Socket. See Section 28.1.

@InheritableMustCall(String[] value) on any classes defined in your program that have must-call
obligations. See Section 28.2.

@EnsuresCalledMethods and/or @EnsuresCalledMethodsOnException on a method in your code that
fulfills a must-call obligation of one of its parameters or of a field. See Section 7.3.

The Resource Leak Checker supports annotations that express aliasing patterns related to resource leaks:

@Owning
@NotOwning expresses ownership. When two aliases exist to the same Java object, @Owning and @NotOwning

indicate which of the two is responsible for fulfilling must-call obligations. Constructor results are always
@Owning. Method returns default to @Owning. Formal parameters and fields default to @NotOwning. For more
details, see Section 8.4.

@MustCallAlias represents a “resource-aliasing” relationship. Resource aliases are distinct Java objects that
control the same resource(s): fulfilling the must-call obligations of one object also fulfills the obligations of the
other object. For details, see Section 8.5.

The Resource Leak Checker also supports an annotation to permit re-assigning fields or re-opening resources:

@CreatesMustCallFor(String value) is a declaration annotation that indicates that after a call to a method
with this annotation none of the must-call obligations of the in-scope, owning expression listed in value have
been met. In other words, the annotated method “resets” the must-call obligations of the expression. Multiple
@CreatesMustCallFor annotations can be written on the same method. Section 8.6 explains how this annotation
permits re-assignment of owning fields or the re-opening of resources.

8.3 Example of how safe resource usage is verified
Consider the following example of safe use of a Socket, in which the comments indicate the inferred Must Call and
Called Methods type qualifiers for s:

{
Socket s = null;
// 1. @MustCall({}) @CalledMethodsBottom
try {

s = new Socket(myHost, myPort);

75

../api/org/checkerframework/checker/mustcall/qual/MustCall.html
../api/org/checkerframework/checker/mustcall/qual/InheritableMustCall.html
../api/org/checkerframework/checker/calledmethods/qual/EnsuresCalledMethods.html
../api/org/checkerframework/checker/calledmethods/qual/EnsuresCalledMethodsOnException.html
../api/org/checkerframework/checker/mustcall/qual/Owning.html
../api/org/checkerframework/checker/mustcall/qual/NotOwning.html
../api/org/checkerframework/checker/mustcall/qual/MustCallAlias.html
../api/org/checkerframework/checker/mustcall/qual/CreatesMustCallFor.html

// 2. @MustCall("close") @CalledMethods({})
} catch (Exception e) {

// do nothing
} finally {

if (s != null) {
s.close();
// 3. @MustCall("close") @CalledMethods("close")

} else {
// do nothing
// 4. @MustCall("close") @CalledMethodsBottom

}
// 5. @MustCall("close") @CalledMethods("close")

}
// 6. @MustCall("close") @CalledMethods("close")

}

At point 1, s’s type qualifiers are the type qualifiers of null: null has no must-call obligations (@MustCall({})),
and methods cannot be called on it (@CalledMethodsBottom).

At point 2, s is a new Socket object, which has a must-call obligation (@MustCall("close")) and has had no
methods called on it (@CalledMethods({})).

At point 3, close() has definitely been called on s, so s’s Called Methods type is updated. Note that the Must Call
type does not change.

At point 4, s is definitely null and its type is adjusted accordingly.
At point 5, s’s type is the least upper bound of the types at points 3 and 4.
At point 6, s goes out of scope. The Resource Leak Checker reports a required.method.not.called error if the

Must Call set contains any element that the Called Methods set does not.

8.4 Aliased references and ownership transfer
Resource leak checking is complicated by aliasing. Multiple expressions may evaluate to the same Java object, but each
object only needs to be closed once. (Section 8.5 describes a related situation called “resource aliasing”, when multiple
Java objects refer to the same underlying resource.)

For example, consider the following code that safely closes a Socket:

void example(String myHost, int myPort) throws IOException {
Socket s = new Socket(myHost, myPort);
closeSocket(s);

}
void closeSocket(@Owning @MustCall("close") Socket t) {

try {
t.close();

} catch (IOException e) {
e.printStackTrace();

}
}

There are two aliases for a socket object: s in example() and t in closeSocket(). Ordinarily, the Resource
Leak Checker requires that close() is called on every expression of type Socket, but that is not necessary here. The
Resource Leak Checker should not warn when s goes out of scope in example(), because closeSocket() takes
ownership of the socket — that is, closeSocket() takes responsibility for closing it. The @Owning annotation on t’s
declaration expresses this fact; it tells the Resource Leak Checker that t is the reference that must be closed, and its
alias s need not be closed.

76

Constructor returns are always @Owning. Method returns default to @Owning, and parameters and fields default to
@NotOwning. This treatment of parameter and return types ensures sound handling of unannotated third-party libraries:
any object returned from such a library will be tracked by default, and the checker never assumes that passing an object
to an unannotated library will satisfy its obligations.

@Owning and @NotOwning always transfer must-call obligations: must-call obligations are conserved (i.e., neither
created nor destroyed) by ownership annotations. Writing @Owning or @NotOwning can never make the checker
unsound: a real warning can never be hidden by them. As with any annotation, incorrect or missing annotations can
lead to false positive warnings.

8.4.1 Owning parameters and exceptions
When @Owning is written on a method parameter, the method only takes ownership of the parameter when it returns
normally. In this example, the Resource Leak Checker will report an error in the example method and allow the
definition of closeSocket:

void example(String myHost, int myPort) throws Exception {
// Error: ‘s‘ is not closed on all paths
Socket s = new Socket(myHost, myPort);

// ‘closeSocket‘ does not have to close ‘s‘ when it throws IOException.
// Instead, this method has to catch the exception and close ‘s‘.
closeSocket(s);

}

void closeSocket(@Owning Socket t) throws IOException {
throw new IOException();

}

Sometimes a method really does promise to call some methods on an @Owning parameter, even if it throws an
exception. The annotation @EnsuresCalledMethodsOnException can overcome this limitation. For example, a
constructor that throws an exception might choose to close an @Owning parameter instead of letting ownership remain
with the caller:

@EnsuresCalledMethodsOnException(value = "#1", methods = "close")
public Constructor(@Owning Closeable resource) {

this.resource = resource;
try {

initialize();
} catch (Exception e) {

resource.close();
throw e;

}
}

8.4.2 Owning fields
Unannotated fields are treated as non-owning.

For final, non-static owning fields, the Resource Leak Checker enforces the “resource acquisition is initialization
(RAII)” programming idiom. Some destructor-like method d() must satisfy the field’s must-call obligation (and
this fact must be expressed via a @EnsuresCalledMethods annotation on d()), and the enclosing class must have a
@MustCall("d") obligation to ensure the destructor is called. In addition to the @EnsuresCalledMethods annotation,
which guarantees that the field(s) it references have their must-call obligations satisfied on non-exceptional paths, the

77

Resource Leak Checker requires those fields to have their must-call obligations satisfied on all paths in (only) the
destructor, and will issue a destructor.exceptional.postcondition error if they are not satisfied. Resolve this
error by ensuring that the required methods are called on all exceptional paths.

Non-final, non-static owning fields usually require one or more @CreatesMustCallFor annotations when they
might be re-assigned. See Section 8.6 for more details on how to annotate a non-final, non-static owning field.

Owning fields are treated slightly differently in constructors versus normal methods. In normal methods, assigning
a value to an owning field always satisfies the object’s must-call obligations. However, within a constructor, those
obligations are only satisfied if the constructor returns normally. If the constructor throws an exception, the constructed
object will not be accessible afterward, and therefore its fields need to be closed before it exits.

This constructor safely closes the object it allocates before throwing an exception:

private final @Owning Socket socket;

public ConstructorThatCanThrow() throws IOException {
Socket s = new Socket(myHost, myPort);
try {

initialize(s); // may throw IOException
} catch (Exception e) {

s.close();
throw e;

}
this.socket = s;

}

An assignment to a static owning field does not satisfy a must-call obligation; for example,
static @Owning PrintWriter debugLog = new PrintWriter("debug.log");

The Resource Leak Checker issues a warning about every assignment of an object with a must-call annotation into a
static owning field, indicating that the obligation of the field’s content might not be satisfied. When those fields are used
throughout execution, until the program exits, there is no good place to dispose of them, so these warnings might not be
useful. The -ApermitStaticOwning command-line argument suppresses warnings related to static owning fields. This
can help in checking legacy code. It permits only a small number of resource retained throughout execution, related to
the number of such fields and assignments to them.

8.5 Resource aliasing
A resource alias set is a set of Java objects that correspond to the same underlying system resource. Calling a must-call
method on any member of a resource-alias set fulfills that obligation for all members of the set. Members of the set may
have different Java types.

Programmers most often encounter resource aliasing when using wrapper types. For example, the Java Buffered-
OutputStream wrapper adds buffering to a delegate stream. The wrapper’s close() method invokes close() on the
delegate. Calling close() on either object has the same effect: it closes the underlying resource.

A resource aliasing relationship is expressed in source code via a pair of @MustCallAlias annotations: one on a
parameter of a method or constructor, and another on its return type. For example, the annotated JDK contains this
constructor of BufferedOutputStream:

@MustCallAlias BufferedOutputStream(@MustCallAlias OutputStream out);

When a pair of @MustCallAlias annotations is written on a method or constructor m’s return type and its parameter
p, the Resource Leak Checker requires one of the following:

1. p is passed to another method or constructor (including super) in a @MustCallAlias position, and m returns
that method’s result, or

2. p is stored in the only @Owning field of the enclosing class (a class with more than one @Owning field cannot have
a resource alias relationship).

78

8.5.1 A complete wrapper type example
Here is a complete example of a type InputStreamWrapper that wraps an InputStream as a resource alias. Defin-
ing a wrapper type typically involves combined usage of @InheritableMustCall, @EnsuresCalledMethods, an
@Owning field, and @MustCallAlias. The test method shows that the checker is able to verify code that releases an
InputStream using either the InputStream directly or a wrapping InputStreamWrapper.

@InheritableMustCall("dispose")
class InputStreamWrapper {

private final @Owning InputStream stream;

@MustCallAlias InputStreamWrapper(@MustCallAlias InputStream stream) {
this.stream = stream;

}

@EnsuresCalledMethods(value = "this.stream", methods = "close")
public void dispose() throws IOException {

this.stream.close();
}

/** Shows that either the stream or the wrapper can be closed. */
static void test(@Owning InputStream stream, boolean b) throws IOException {

InputStreamWrapper wrapper = new InputStreamWrapper(stream);
if (b) {

stream.close();
} else {

wrapper.dispose();
}

}
}

8.6 Creating obligations (how to re-assign a non-final owning field)
Consider a class that has must-call obligations; that is, the class declaration is annotated with @MustCall(...). Every
constructor implicitly creates obligations for the newly-created object. Non-constructor methods may also create
obligations when re-assigning non-final owning fields or allocating new system-level resources.

A post-condition annotation, @CreatesMustCallFor, indicates for which expression an obligation is created. If
you write @CreatesMustCallFor(T) on a method N that overrides a method M, then M must also be annotated as
@CreatesMustCallFor(T). (M may also have other @CreatesMustCallFor annotations that N does not.)

@CreatesMustCallFor allows the Resource Leak Checker to verify uses of non-final fields that contain a resource,
even if they are re-assigned. Consider the following example:

@MustCall("close") // default qualifier for uses of SocketContainer
class SocketContainer {

private @Owning Socket sock;

public SocketContainer() { sock = ...; }

void close() { sock.close() };

@CreatesMustCallFor("this")
void reconnect() {

79

if (!sock.isClosed()) {
sock.close();

}
sock = ...;

}
}

In the lifetime of a SocketContainer object, sock might be re-assigned arbitrarily many times: once at each call
to reconnect(). This code is safe, however: reconnect() ensures that sock is closed before re-assigning it.

Sections 8.6.1 and 8.6.2 explain how the Resource Leak Checker verifies uses and declarations of methods annotated
with @CreatesMustCallFor.

8.6.1 Requirements at a call site of a @CreatesMustCallFor method
At a call site to a method annotated as @CreatesMustCallFor(expr), the Resource Leak Checker:

1. Treats any existing @MustCall obligations of expr as satisfied,
2. Creates a fresh obligation to check, as if expr was assigned to a newly-allocated object (i.e. as if expr were a

constructor result).
3. Un-refines the type in the Called Methods Checker’s type hierarchy for expr to @CalledMethods({}), if it had

any other Called Methods type.
4. Requires that the expression corresponding to expr (that is, expr viewpoint-adapted to the method call site) is

owned; that is, it is annotated or defaulted as @Owning. Otherwise, the checker will issue a reset.not.owning
error at the call-site. You can avoid this error by extracting expr into a new local variable (because locals are
@Owning by default) and replacing all instances of expr in the call with references to the new local variable.

Treating the obligation before the call as satisfied is sound: the checker creates a new obligation for calls
to @CreatesMustCallFor methods, and the Must Call Checker (Chapter 28, page 169) ensures the @MustCall
type for the target expression will have a superset of any methods present before the call. Intuitively, calling an
@CreatesMustCallFor method “resets” the obligations of the target expression, so whether they were satisfied before
the call or not is irrelevant.

If an @CreatesMustCallFor method n is invoked within a method m that has an @CreatesMustCallFor annota-
tion, and the @CreatesMustCallFor annotations on n and m have the same target expression—imposing the obligation
produced by calling n on the caller of m—then the newly-created obligation is treated as satisfied immediately at the
call-site of n in the body of m (because it is imposed at call-sites of m instead).

8.6.2 Requirements at a declaration of a @CreatesMustCallFor method
Any method that re-assigns a non-final, owning field of some object obj must be annotated @CreatesMustCallFor("obj").
Other methods may also be annotated with @CreatesMustCallFor.

The Resource Leak Checker enforces two rules to ensure that re-assignments to non-final, owning fields (like sock
in method reconnect above) are sound:

• any method that re-assigns a non-final, owning field of an object must be annotated with a @CreatesMustCallFor
annotation whose expression is a reference to that object.

• when a non-final, owning field f is re-assigned at statement s, at the program point before s, f ’s must-call
obligations must have been satisfied.

The first rule ensures that close() is called after the last call to reconnect(), and the second rule ensures that
reconnect() safely closes sock before re-assigning it. Because the Called Methods Checker treats calls to an
@CreatesMustCallFor method like reconnect() as if the call might cause arbitrary side-effects, after such a call the
only method known to have been definitely called is the @CreatesMustCallFor method: previous called methods
(including close()) do not appear in the @CalledMethods type qualifier.

80

8.7 Ignored exception types
The Resource Leak Checker checks that an element’s must-call obligations are fulfilled when that element may go out
of scope: at the end of its lexical scope or when control may be transferred to the end of its lexical scope, such as via a
break or continue statement or via throwing an exception. As an example of an exception, consider the following
method:

void foo() {
Socket s = ...;
bar();
s.close();

}

If bar is declared to throw an exception, the Resource Leak Checker warns that a Socket may be leaked. If bar
throws an exception, the only reference to s is lost, which could lead to a resource leak.

The Resource Leak Checker ignores control flow due to some exceptions.

• By default the Resource Leak Checker ignores run-time errors that can occur unpredictably at most points
in the program. For example, the JVM can throw an OutOfMemoryError on any allocation. Similarly,
ClassCircularityError, ClassFormatError, and NoClassDefFoundError may occur at any reference to
a class. Such exceptions usually terminate the program, and in that case unclosed resources do not matter.
Furthermore, any method can throw RuntimeException, and the Checker Framework pessimistically assumes
one can be thrown at every call site. Accounting for such exceptions would lead to vast numbers of false positive
warnings, so the Resource Leak Checker assumes they are never thrown. Strictly speaking, this is an unsoundness:
it can lead to false negatives (missed resource leaks) if the programmer catches these exceptions, which is a
discouraged practice.

• The Resource Leak Checker also ignores exception types that can be verified to never occur. In particular, the
Resource Leak Checker ignores NullPointerExceptions (use the Nullness Checker, Chapter 3, page 31) and
ArrayIndexOutOfBoundsExceptions and NegativeArraySizeExceptions (use the Index Checker, Chap-
ter 11, page 98). Other exception types may be added to this list in the future. Please let us know if there is a type
that you think should be ignored by filing an issue listing both the exception type and the verification tool.

The set of ignored exception types can be controlled with the option -AresourceLeakIgnoredExceptions=....
The option takes a comma-separated list of fully-qualified exception types. A type can be prefixed with = to ignore
exactly that type and not its subclasses. For example, for a very pedantic set of ignored exceptions use:

-AresourceLeakIgnoredExceptions=java.lang.Error, =java.lang.NullPointerException

which ignores java.lang.Error (and all its subclasses) as well as java.lang.NullPointerException (but not
its subclasses).

The keyword default will expand to the default set of ignored exceptions. So, to add an additional exception to
the set of ignored exceptions, use:

-AresourceLeakIgnoredExceptions=default,package.MyCustomException

8.8 Errors about field initialization
The Resource Leak Checker warns about re-assignments to owning fields, because the value that was overwritten might
not have had its obligations satisfied. Such a warning is not necessary on the first assignment to a field, since the field
had no content before the assignment. Sometimes, the Resource Leak Checker is unable to determine that an assignment
is the first one, so it conservatively assumes the assignment is a re-assignment and issues an error.

One way to prevent this false positive warning is to declare the field as final.

81

Alternately, to suppress all warnings related to field assignments in the constructor and in initializer blocks, pass
the -ApermitInitializationLeak command-line argument. This makes the checker unsound: the Resource Leak
Checker will not warn if the constructor and initializers set a field more than once. The amount of leakage is limited to
how many times the field is set.

8.9 Errors about unknown must call obligations
The Resource Leak Checker issues a required.method.not.known error when a variable with the type @MustCallUnknown
has a must call obligation. @MustCallUnknown rarely occurs, but if you encounter this error usually the right thing
to do is to write an explicit @MustCall annotation on the indicated expression (e.g., as a cast), because the Must Call
Checker will only use @MustCallUnknown as a default when encountering a language feature that it is unable to reason
about.

8.10 Collections of resources
The Resource Leak Checker cannot verify code that stores a collection of resources in a generic collection (e.g.,
java.util.List) and then resolves the obligations of each element of the collection at once (e.g., by iterating over the
List). In the future, the checker will support this. The remainder of this section explains the implementation issues;
most users can skip it.

The first implementation issue is that @Owning and @NotOwning are declaration annotations rather than type
qualifiers, so they cannot be written on type arguments. It is possible under the current design to have an @Owning
List<Socket>, but not a List<@Owning Socket>. It would be better to make @Owning a type annotation, but this is
a challenging design problem.

The second implementation issue is the defaulting rule for @MustCall on type variable upper bounds. Currently,
this default is @MustCall({}), which prevents many false positives in code with type variables that makes no use of
resources — an important design principle. However, this defaulting rule does have an unfortunate consequence: it is
an error to write List<Socket> or any other type with a concrete type argument where the type argument itself isn’t
@MustCall({}). A programmer who needs to write such a type while using the Resource Leak Checker has a few
choices, all of which have some downsides:

• Write List<? extends Socket>. This rejects calls to add() or other methods that require an instance of the
type variable, but it preserves some of the behavior (e.g., calls to remove() are permitted). This is the best choice
most of the time if the List is not intended to be owning.

• Write List<@MustCall Socket>. This makes it an error to add a Socket to the list, since the type of the Socket
is @MustCall("close") but the list requires @MustCall().

• Suppress one or more warnings.

The recommended way to use the Resource Leak Checker in this situation is to rewrite the code to avoid a List of
owning resources. If rewriting is not possible, the programmer will probably need to suppress a warning and then verify
the code using a method other than the Resource Leak Checker.

8.11 Resource Leak Checker annotation inference algorithm
The Resource Leak Checker uses a specialized algorithm to infer annotations when whole program inference (WPI,
Section 34.2) is enabled. The algorithm is described in the paper “Inference of Resource Management Specifica-
tions” [SGT+23] (OOPSLA 2023, https://homes.cs.washington.edu/~mernst/pubs/resource-inference-oopsla2023-abstract.
html).

82

https://homes.cs.washington.edu/~mernst/pubs/resource-inference-oopsla2023-abstract.html
https://homes.cs.washington.edu/~mernst/pubs/resource-inference-oopsla2023-abstract.html

Chapter 9

Fake Enum Checker for fake enumerations

The Fake Enum Checker, or Fenum Checker, enables you to define a type alias or typedef, in which two different sets
of values have the same representation (the same Java type) but are not allowed to be used interchangeably. It is also
possible to create a typedef using the Subtyping Checker (Chapter 29, page 172), and that approach is sometimes more
appropriate.

One common use for the Fake Enum Checker is the fake enumeration pattern (Section 9.6). For example, consider
this code adapted from Android’s IntDef documentation:

@NavigationMode int NAVIGATION_MODE_STANDARD = 0;
@NavigationMode int NAVIGATION_MODE_LIST = 1;
@NavigationMode int NAVIGATION_MODE_TABS = 2;

@NavigationMode int getNavigationMode();

void setNavigationMode(@NavigationMode int mode);

The Fake Enum Checker can issue a compile-time warning if the programmer ever tries to call setNavigationMode
with an int that is not a @NavigationMode int.

The Fake Enum Checker gives the same safety guarantees as a true enumeration type or typedef, but retaining
backward-compatibility with interfaces that use existing Java types. You can apply fenum annotations to any Java type,
including all primitive types and also reference types. Thus, you could use it (for example) to represent floating-point
values between 0 and 1, or Strings with some particular characteristic. (Note that the Fake Enum Checker does not let
you create a shorter alias for a long type name, as a real typedef would if Java supported it.)

As explained in Section 9.1, you can either define your own fenum annotations, such as @NavigationMode above,
or you can use the @Fenum type qualifier with a string argument. Figure 9.1 shows part of the type hierarchy for the
Fenum type system.

9.1 Fake enum annotations
The Fake Enum Checker supports two ways to introduce a new fake enum (fenum):

1. Introduce your own specialized fenum annotation with code like this in file MyFenum.java:
package myPackage.qual;

import java.lang.annotation.Documented;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

83

https://developer.android.com/reference/android/support/annotation/IntDef
../api/org/checkerframework/checker/fenum/qual/Fenum.html

@Fenum("A") @FenumUnqualified

@FenumTop

@FenumBottom

@Fenum("B") @FenumC @FenumD

Figure 9.1: Partial type hierarchy for the Fenum type system. There are two forms of fake enumeration annotations —
above, illustrated by @Fenum("A") and @FenumC. See Section 9.1 for descriptions of how to introduce both types of
fenums. The type qualifiers in gray (@FenumTop, @FenumUnqualified, and @FenumBottom) should never be written in
source code; they are used internally by the type system. @FenumUnqualified is the default qualifier for unannotated
types, except for upper bounds which default to @FenumTop.

import java.lang.annotation.Target;
import org.checkerframework.checker.fenum.qual.FenumTop;
import org.checkerframework.framework.qual.SubtypeOf;

@Documented
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
@SubtypeOf(FenumTop.class)
public @interface MyFenum {}
You only need to adapt the italicized package, annotation, and file names in the example.
Note that all custom annotations must have the @Target({ElementType.TYPE_USE}) meta-annotation. See
section 36.5.1.

2. Use the provided @Fenum annotation, which takes a String argument to distinguish different fenums or type
aliases. For example, @Fenum("A") and @Fenum("B") are two distinct type qualifiers.

The first approach allows you to define a short, meaningful name suitable for your project, whereas the second
approach allows quick prototyping.

9.2 What the Fenum Checker checks
The Fenum Checker ensures that unrelated types are not mixed. All types with a particular fenum annotation, or
@Fenum(...) with a particular String argument, are disjoint from all unannotated types and from all types with a
different fenum annotation or String argument.

The checker ensures that only compatible fenum types are used in comparisons and arithmetic operations (if
applicable to the annotated type).

It is the programmer’s responsibility to ensure that fields with a fenum type are properly initialized before use.
Otherwise, one might observe a null reference or zero value in the field of a fenum type. (The Nullness Checker
(Chapter 3, page 31) can prevent failure to initialize a reference variable.)

9.3 Running the Fenum Checker
The Fenum Checker can be invoked by running the following commands.

• If you define your own annotation(s), provide the name(s) of the annotation(s) through the -Aquals option, using
a comma-no-space-separated notation:

84

../api/org/checkerframework/checker/fenum/qual/FenumTop.html
../api/org/checkerframework/checker/fenum/qual/FenumUnqualified.html
../api/org/checkerframework/checker/fenum/qual/FenumBottom.html
../api/org/checkerframework/checker/fenum/qual/Fenum.html

javac -classpath /full/path/to/myProject/bin:/full/path/to/myLibrary/bin \
-processor org.checkerframework.checker.fenum.FenumChecker \
-Aquals=myPackage.qual.MyFenum MyFile.java ...

The annotations listed in -Aquals must be accessible to the compiler during compilation. Before you run the
Fenum Checker with javac, they must be compiled and on the same path (the classpath or processorpath) as the
Checker Framework. It is not sufficient to supply their source files on the command line.
You can also provide the fully-qualified paths to a set of directories that contain the annotations through the
-AqualDirs option, using a colon-no-space-separated notation. For example, if the Checker Framework is on the
classpath rather than the processorpath:
javac -classpath /full/path/to/myProject/bin:/full/path/to/myLibrary/bin \

-processor org.checkerframework.checker.fenum.FenumChecker \
-AqualDirs=/full/path/to/myProject/bin:/full/path/to/myLibrary/bin MyFile.java ...

Note that in these two examples, the compiled class file of the myPackage.qual.MyFenum annotation must exist
in either the myProject/bin directory or the myLibrary/bin directory. The following placement of the class
file will work with the above commands:
.../myProject/bin/myPackage/qual/MyFenum.class

The two options can be used at the same time to provide groups of annotations from directories, and individually
named annotations.

• If your code uses the @Fenum annotation, you do not need the -Aquals or -AqualDirs option:

javac -processor org.checkerframework.checker.fenum.FenumChecker MyFile.java ...

For an example of running the Fake Enum Checker on Android code, see https://github.com/karlicoss/
checker-fenum-android-demo.

9.4 Suppressing warnings
One example of when you need to suppress warnings is when you initialize the fenum constants to literal values.
To remove this warning message, add a @SuppressWarnings annotation to either the field or class declaration, for
example:

@SuppressWarnings("fenum:assignment") // initialization of fake enums
class MyConsts {

public static final @Fenum("A") int ACONST1 = 1;
public static final @Fenum("A") int ACONST2 = 2;

}

9.5 Example
The following example introduces two fenums in class TestStatic and then performs a few typical operations.

@SuppressWarnings("fenum:assignment") // initialization of fake enums
public class TestStatic {

public static final @Fenum("A") int ACONST1 = 1;
public static final @Fenum("A") int ACONST2 = 2;

public static final @Fenum("B") int BCONST1 = 4;
public static final @Fenum("B") int BCONST2 = 5;

}

class FenumUser {
@Fenum("A") int state1 = TestStatic.ACONST1; // ok

85

../api/org/checkerframework/checker/fenum/qual/Fenum.html
https://github.com/karlicoss/checker-fenum-android-demo
https://github.com/karlicoss/checker-fenum-android-demo

@Fenum("B") int state2 = TestStatic.ACONST1; // Incompatible fenums forbidden!

void fenumArg(@Fenum("A") int p) {}

void fenumTest() {
state1 = 4; // Direct use of value forbidden!
state1 = TestStatic.BCONST1; // Incompatible fenums forbidden!
state1 = TestStatic.ACONST2; // ok

fenumArg(5); // Direct use of value forbidden!
fenumArg(TestStatic.BCONST1); // Incompatible fenums forbidden!
fenumArg(TestStatic.ACONST1); // ok

}
}

Also, see the example project in the docs/examples/fenum-extension directory.
The paper “Building and using pluggable type-checkers” [DDE+11] (ICSE 2011, https://homes.cs.washington.

edu/~mernst/pubs/pluggable-checkers-icse2011.pdf) describes case studies of the Fake Enum Checker.

9.6 The fake enumeration pattern
Java’s enum keyword lets you define an enumeration type: a finite set of distinct values that are related to one another
but are disjoint from all other types, including other enumerations. Before enums were added to Java, there were two
ways to encode an enumeration, both of which are error-prone:

the fake enum pattern a set of int or String constants (as often found in older C code).
the typesafe enum pattern a class with private constructor.

Sometimes you need to use the fake enum pattern, rather than a real enum or the typesafe enum pattern. One
reason is backward-compatibility. A public API that predates Java’s enum keyword may use int constants; it cannot be
changed, because doing so would break existing clients. For example, Java’s JDK still uses int constants in the AWT
and Swing frameworks, and Android also uses int constants rather than Java enums. Another reason is performance,
especially in environments with limited resources. Use of an int instead of an object can reduce code size, memory
requirements, and run time.

In cases when code has to use the fake enum pattern, the Fake Enum Checker, or Fenum Checker, gives the same
safety guarantees as a true enumeration type. The developer can introduce new types that are distinct from all values of
the base type and from all other fake enums. Fenums can be introduced for primitive types as well as for reference
types.

9.7 References
• Case studies of the Fake Enum Checker:

“Building and using pluggable type-checkers” [DDE+11] (ICSE 2011, https://homes.cs.washington.edu/
~mernst/pubs/pluggable-checkers-icse2011.pdf#page=3)

• Java Language Specification on enums:
https://docs.oracle.com/javase/specs/jls/se17/html/jls-8.html#jls-8.9

• Tutorial trail on enums:
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html

• Java Tip 122: Beware of Java typesafe enumerations:
https://www.infoworld.com/article/2077487/java-tip-122--beware-of-java-typesafe-enumerations.
html

86

https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-icse2011.pdf
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-icse2011.pdf
https://docs.oracle.com/javase/specs/jls/se17/html/jls-8.html#jls-8.9
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-icse2011.pdf#page=3
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-icse2011.pdf#page=3
https://docs.oracle.com/javase/specs/jls/se17/html/jls-8.html#jls-8.9
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
https://www.infoworld.com/article/2077487/java-tip-122--beware-of-java-typesafe-enumerations.html
https://www.infoworld.com/article/2077487/java-tip-122--beware-of-java-typesafe-enumerations.html

Chapter 10

Lock Checker

The Lock Checker prevents certain concurrency errors by enforcing a locking discipline. A locking discipline indicates
which locks must be held when a given operation occurs. You express the locking discipline by declaring a variable’s
type to have the qualifier @GuardedBy("lockexpr"). This indicates that the variable’s value may be dereferenced
only if the given lock is held.

To run the Lock Checker, supply the -processor org.checkerframework.checker.lock.LockChecker command-
line option to javac. The -AconcurrentSemantics command-line option is always enabled for the Lock Checker (see
Section 39.4.6).

10.1 What the Lock Checker guarantees
The Lock Checker gives the following guarantee. Suppose that expression e has type @GuardedBy({"x", "y.z"}).
Then the value computed for e is only dereferenced by a thread when the thread holds locks x and y.z. Dereferencing
a value is reading or writing one of its fields. The guarantee about e’s value holds not only if the expression e is
dereferenced directly, but also if the value was first copied into a variable, returned as the result of a method call, etc.
Copying a reference is always permitted by the Lock Checker, regardless of which locks are held.

A lock is held if it has been acquired but not yet released. Java has two types of locks. A monitor lock is acquired
upon entry to a synchronized method or block, and is released on exit from that method or block. An explicit lock
is acquired by a method call such as Lock.lock(), and is released by another method call such as Lock.unlock().
The Lock Checker enforces that any expression whose type implements Lock is used as an explicit lock, and all other
expressions are used as monitor locks.

Ensuring that your program obeys its locking discipline is an easy and effective way to eliminate a common and
important class of errors. If the Lock Checker issues no warnings, then your program obeys its locking discipline.
However, your program might still have other types of concurrency errors. For example, you might have specified
an inadequate locking discipline because you forgot some @GuardedBy annotations. Your program might release and
re-acquire the lock, when correctness requires it to hold it throughout a computation. And, there are other concurrency
errors that cannot, or should not, be solved with locks.

10.2 Lock annotations
This section describes the lock annotations you can write on types and methods.

10.2.1 Type qualifiers
@GuardedBy(exprSet) If a variable x has type @GuardedBy("expr"), then a thread may dereference the value

referred to by x only when the thread holds the lock that expr currently evaluates to.

87

../api/org/checkerframework/checker/lock/qual/GuardedBy.html
../api/org/checkerframework/checker/lock/qual/GuardedBy.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/locks/Lock.html#lock()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/locks/Lock.html#unlock()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/locks/Lock.html
../api/org/checkerframework/checker/lock/qual/GuardedBy.html
../api/org/checkerframework/checker/lock/qual/GuardedBy.html

@GuardedBy({})

@NewObject

@GuardedBy("a") @GuardedBy("b") @GuardedBy({"a","b"})

@GuardedByUnknown

...

@GuardedByBottom

Figure 10.1: The subtyping relationship of the Lock Checker’s qualifiers. @GuardedBy({}) is the default type qualifier
for unannotated types (except all CLIMB-to-top locations other than upper bounds and exception parameters — see
Section 32.5.3).

The @GuardedBy annotation can list multiple expressions, as in @GuardedBy({"expr1", "expr2"}), in
which case the dereference is permitted only if the thread holds all the locks.
Section 32.8 explains which expressions the Lock Checker is able to analyze as lock expressions. These include
<self>, the value of the annotated reference (non-primitive) variable. For example, @GuardedBy("<self>")
Object o indicates that the value referenced by o is guarded by the intrinsic (monitor) lock of the value referenced
by o.
@GuardedBy({}), which means the value is always allowed to be dereferenced, is the default type qualifier
that is used for all locations where the programmer does not write an explicit locking type qualifier (except all
CLIMB-to-top locations other than upper bounds and exception parameters — see Section 32.5.3). (Section 10.5.4
discusses this choice.) It is also the conservative default type qualifier for method parameters in unannotated
libraries (see Chapter 35, page 227).

@GuardedByUnknown If a variable x has type @GuardedByUnknown, then it is not known which locks protect x’s
value. Those locks might even be out of scope (inaccessible) and therefore unable to be written in the annotation.
The practical consequence is that the value referred to by x can never be dereferenced.
Any value can be assigned to a variable of type @GuardedByUnknown. In particular, if it is written on a formal
parameter, then any value, including one whose locks are not currently held, may be passed as an argument.
@GuardedByUnknown is the conservative default type qualifier for method receivers in unannotated libraries (see
Chapter 35, page 227).

@NewObject This type represents a newly-constructed value; such as the result of calling a constructor or factory
method. The client can use the value as any @GuardedBy type.

@GuardedByBottom If a variable x has type @GuardedByBottom, then the value referred to by x is null and can
never be dereferenced.

Figure 10.1 shows the type hierarchy of these qualifiers. All @GuardedBy annotations are incomparable: if exprSet1
6= exprSet2, then @GuardedBy(exprSet1) and @GuardedBy(exprSet2) are siblings in the type hierarchy. You
might expect that @GuardedBy({"x", "y"}) T is a subtype of @GuardedBy({"x"}) T. The first type requires two
locks to be held, and the second requires only one lock to be held and so could be used in any situation where both
locks are held. The type system conservatively prohibits this in order to prevent type-checking loopholes that would
result from aliasing and side effects — that is, from having two mutable references, of different types, to the same data.
See Section 10.4.2 for an example of a problem that would occur if this rule were relaxed.

Polymorphic type qualifiers

@GuardSatisfied(index) If a variable x has type @GuardSatisfied, then all lock expressions for x’s value are
held.
As with other qualifier-polymorphism annotations (Section 31.2), the index argument indicates when two values
are guarded by the same (unknown) set of locks.
@GuardSatisfied is only allowed in method signatures: on formal parameters (including the receiver) and
return types. It may not be written on fields. Also, it is a limitation of the current design that @GuardSatisfied
may not be written on array elements or on local variables.

88

../api/org/checkerframework/checker/lock/qual/GuardedByUnknown.html
../api/org/checkerframework/checker/lock/qual/NewObject.html
../api/org/checkerframework/checker/lock/qual/GuardedBy.html
../api/org/checkerframework/checker/lock/qual/GuardedByBottom.html
../api/org/checkerframework/checker/lock/qual/GuardSatisfied.html

A return type can only be annotated with @GuardSatisfied(index), not @GuardSatisfied.
See Section 10.4.6 for an example of a use of @GuardSatisfied.

10.2.2 Declaration annotations
The Lock Checker supports several annotations that specify method behavior. These are declaration annotations, not
type annotations: they apply to the method itself rather than to some particular type.

Method pre-conditions and post-conditions

@Holding(String[] locks) All the given lock expressions are held at the method call site.
@EnsuresLockHeld(String[] locks) The given lock expressions are locked upon method return if the method termi-

nates successfully. This is useful for annotating a method that acquires a lock such as ReentrantLock.lock().
@EnsuresLockHeldIf(String[] locks, boolean result) If the annotated method returns the given boolean value (true

or false), the given lock expressions are locked upon method return if the method terminates successfully. This is
useful for annotating a method that conditionally acquires a lock. See Section 10.4.4 for examples.

Side effect specifications

@LockingFree The method does not acquire or release locks, directly or indirectly. The method is not
synchronized, it contains no synchronized blocks, it contains no calls to lock or unlock methods, and
it contains no calls to methods that are not themselves @LockingFree.
Since @SideEffectFree implies @LockingFree, if both are applicable then you only need to write
@SideEffectFree.

@ReleasesNoLocks The method maintains a strictly nondecreasing lock hold count on the current thread for
any locks that were held prior to the method call. The method might acquire locks but then release them, or
might acquire locks but not release them (in which case it should also be annotated with @EnsuresLockHeld or
@EnsuresLockHeldIf).
This is the default for methods being type-checked that have no @LockingFree, @MayReleaseLocks,
@SideEffectFree, or @Pure annotation.

@MayReleaseLocks The method may release locks that were held prior to the method being called. You can write
this when you are certain the method releases locks, or when you don’t know whether the method releases locks.
This is the conservative default for methods in unannotated libraries (see Chapter 35, page 227).

10.3 Type-checking rules
In addition to the standard subtyping rules enforcing the subtyping relationship described in Figure 10.1, the Lock
Checker enforces the following additional rules.

10.3.1 Polymorphic qualifiers
@GuardSatisfied The overall rules for polymorphic qualifiers are given in Section 31.2.

Here are additional constraints for (pseudo-)assignments:

• If the left-hand side has type @GuardSatisfied (with or without an index), then all locks mentioned in the
right-hand side’s @GuardedBy type must be currently held.

• A formal parameter with type qualifier @GuardSatisfied without an index cannot be assigned to.
• If the left-hand side is a formal parameter with type @GuardSatisfied(index), the right-hand-side must

have identical @GuardSatisfied(index) type.

If a formal parameter type is annotated with @GuardSatisfied without an index, then that formal parameter type
is unrelated to every other type in the @GuardedBy hierarchy, including other occurrences of @GuardSatisfied
without an index.

89

../api/org/checkerframework/checker/lock/qual/Holding.html
../api/org/checkerframework/checker/lock/qual/EnsuresLockHeld.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/locks/ReentrantLock.html#lock()
../api/org/checkerframework/checker/lock/qual/EnsuresLockHeldIf.html
../api/org/checkerframework/checker/lock/qual/LockingFree.html
../api/org/checkerframework/checker/lock/qual/ReleasesNoLocks.html
../api/org/checkerframework/checker/lock/qual/EnsuresLockHeld.html
../api/org/checkerframework/checker/lock/qual/EnsuresLockHeldIf.html
../api/org/checkerframework/checker/lock/qual/MayReleaseLocks.html

@GuardSatisfied may not be used on formal parameters, receivers, or return types of a method annotated with
@MayReleaseLocks.

10.3.2 Dereferences
@GuardedBy An expression of type @GuardedBy(eset) may be dereferenced only if all locks in eset are held.
@GuardSatisfied An expression of type @GuardSatisfied may be dereferenced.
Not @GuardedBy or @GuardSatisfied An expression whose type is not annotated with @GuardedBy or @GuardSatisfied

may not be dereferenced.

10.3.3 Primitive types, boxed primitive types, and Strings
Primitive types, boxed primitive types (such as java.lang.Integer), and type java.lang.String are annotated
with @GuardedBy({}). It is an error for the programmer to annotate any of these types with an annotation from the
@GuardedBy type hierarchy, including @GuardedBy({}).

10.3.4 Overriding
Overriding methods annotated with @Holding If class B overrides method m from class A, then the expressions

in B’s @Holding annotation must be a subset of or equal to that of A’s @Holding annotation.
Overriding methods annotated with side effect annotations If class B overrides method m from class A, then the

side effect annotation on B’s declaration of m must be at least as strong as that in A’s declaration of m. From
weakest to strongest, the side effect annotations processed by the Lock Checker are:

@MayReleaseLocks
@ReleasesNoLocks
@LockingFree
@SideEffectFree
@Pure

10.3.5 Side effects
Releasing explicit locks Any method that releases an explicit lock must be annotated with @MayReleaseLocks. The

Lock Checker issues a warning if it encounters a method declaration annotated with @MayReleaseLocks and
having a formal parameter or receiver annotated with @GuardSatisfied. This is because the Lock Checker
cannot guarantee that the guard will be satisfied throughout the body of a method if that method may release a
lock.

No side effects on lock expressions If expression expr is used to acquire a lock, then expr must evaluate to the same
value, starting from when expr is used to acquire a lock until expr is used to release the lock. An expression
is used to acquire a lock if it is the receiver at a call site of a synchronized method, is the expression in a
synchronized block, or is the argument to a lock method.

Locks are released after possible side effects After a call to a method annotated with @LockingFree, @ReleasesNoLocks,
@SideEffectFree, or @Pure, the Lock Checker’s estimate of held locks after a method call is the same as that
prior to the method call. After a call to a method annotated with @MayReleaseLocks, the estimate of held
locks is conservatively reset to the empty set, except for those locks specified to be held after the call by an
@EnsuresLockHeld or @EnsuresLockHeldIf annotation on the method. Assignments to variables also cause
the estimate of held locks to be conservatively reduced to a smaller set if the Checker Framework determines that
the assignment might have side-effected a lock expression. For more information on side effects, please refer to
Section 32.7.5.

90

10.4 Examples
The Lock Checker guarantees that a value that was computed from an expression of @GuardedBy type is dereferenced
only when the current thread holds all the expressions in the @GuardedBy annotation.

10.4.1 Examples of @GuardedBy
The following example demonstrates the basic type-checking rules.

class MyClass {
final ReentrantLock lock; // Initialized in the constructor

@GuardedBy("lock") Object x = new Object();
@GuardedBy("lock") Object y = x; // OK, since dereferences of y will require "lock" to be held.
@GuardedBy({}) Object z = x; // ILLEGAL since dereferences of z don’t require "lock" to be held.
@GuardedBy("lock") Object myMethod() { // myMethod is implicitly annotated with @ReleasesNoLocks.

return x; // OK because the return type is annotated with @GuardedBy("lock")
}

[...]

void exampleMethod() {
x.toString(); // ILLEGAL because the lock is not known to be held
y.toString(); // ILLEGAL because the lock is not known to be held
myMethod().toString(); // ILLEGAL because the lock is not known to be held
lock.lock();
x.toString(); // OK: the lock is known to be held
y.toString(); // OK: the lock is known to be held, and toString() is annotated with @SideEffectFree.
myMethod().toString(); // OK: the lock is known to be held, since myMethod

// is implicitly annotated with @ReleasesNoLocks.
}

}

Note that the expression new Object() is inferred to have type @GuardedBy("lock") because it is immediately
assigned to a newly-declared variable having type annotation @GuardedBy("lock"). You could explicitly write new
@GuardedBy("lock") Object() but it is not required.

The following example demonstrates that using <self> as a lock expression allows a guarded value to be derefer-
enced even when the original variable name the value was originally assigned to falls out of scope.

class MyClass {
private final @GuardedBy("<self>") Object x = new Object();
void method() {

x.toString(); // ILLEGAL because x is not known to be held.
synchronized(x) {

x.toString(); // OK: x is known to be held.
}

}

public @GuardedBy("<self>") Object get_x() {
return x; // OK, since the return type is @GuardedBy("<self>").

}
}

91

class MyOtherClass {
void method() {

MyClass m = new MyClass();
final @GuardedBy("<self>") Object o = m.get_x();
o.toString(); // ILLEGAL because o is not known to be held.
synchronized(o) {

o.toString(); // OK: o is known to be held.
}

}
}

10.4.2 @GuardedBy({“a”, “b”}) is not a subtype of @GuardedBy({“a”})
@GuardedBy(exprSet)

The following example demonstrates the reason the Lock Checker enforces the following rule: if exprSet1 6=
exprSet2, then @GuardedBy(exprSet1) and @GuardedBy(exprSet2) are siblings in the type hierarchy.

class MyClass {
final Object lockA = new Object();
final Object lockB = new Object();
@GuardedBy("lockA") Object x = new Object();
@GuardedBy({"lockA", "lockB"}) Object y = new Object();
void myMethod() {

y = x; // ILLEGAL; if legal, later statement x.toString() would cause trouble
synchronized(lockA) {

x.toString(); // dereferences y’s value without holding lock lockB
}

}
}

If the Lock Checker permitted the assignment y = x;, then the undesired dereference would be possible.

10.4.3 Examples of @Holding
The following example shows the interaction between @GuardedBy and @Holding:

void helper1(@GuardedBy("myLock") Object a) {
a.toString(); // ILLEGAL: the lock is not held
synchronized(myLock) {

a.toString(); // OK: the lock is held
}

}
@Holding("myLock")
void helper2(@GuardedBy("myLock") Object b) {

b.toString(); // OK: the lock is held
}
void helper3(@GuardedBy("myLock") Object d) {

d.toString(); // ILLEGAL: the lock is not held
}
void myMethod2(@GuardedBy("myLock") Object e) {

helper1(e); // OK to pass to another routine without holding the lock

92

// (but helper1’s body has an error)
e.toString(); // ILLEGAL: the lock is not held
synchronized (myLock) {

helper2(e); // OK: the lock is held
helper3(e); // OK, but helper3’s body has an error

}
}

10.4.4 Examples of @EnsuresLockHeld and @EnsuresLockHeldIf
@EnsuresLockHeld and @EnsuresLockHeldIf are primarily intended for annotating JDK locking methods, as in:

package java.util.concurrent.locks;

class ReentrantLock {

@EnsuresLockHeld("this")
public void lock();

@EnsuresLockHeldIf(expression="this", result=true)
public boolean tryLock();

...
}

They can also be used to annotate user methods, particularly for higher-level lock constructs such as a Monitor, as
in this simplified example:

public class Monitor {

private final ReentrantLock lock; // Initialized in the constructor

...

@EnsuresLockHeld("lock")
public void enter() {

lock.lock();
}

...
}

10.4.5 Example of @LockingFree, @ReleasesNoLocks, and @MayReleaseLocks
@LockingFree is useful when a method does not make any use of synchronization or locks but causes other side
effects (hence @SideEffectFree is not appropriate). @SideEffectFree implies @LockingFree, therefore if both are
applicable, you should only write @SideEffectFree. @ReleasesNoLocks has a weaker guarantee than @LockingFree,
and @MayReleaseLocks provides no guarantees.

private Object myField;
private final ReentrantLock lock; // Initialized in the constructor
private @GuardedBy("lock") Object x; // Initialized in the constructor

93

[...]

// This method does not use locks or synchronization, but it cannot
// be annotated as @SideEffectFree since it alters myField.
@LockingFree
void myMethod() {

myField = new Object();
}

@SideEffectFree
int mySideEffectFreeMethod() {

return 0;
}

@MayReleaseLocks
void myUnlockingMethod() {

lock.unlock();
}

@ReleasesNoLocks
void myLockingMethod() {

lock.lock();
}

@MayReleaseLocks
void clientMethod() {

if (lock.tryLock()) {
x.toString(); // OK: the lock is held
myMethod();
x.toString(); // OK: the lock is still held since myMethod is locking-free
mySideEffectFreeMethod();
x.toString(); // OK: the lock is still held since mySideEffectFreeMethod is side-effect-free
myUnlockingMethod();
x.toString(); // ILLEGAL: myUnlockingMethod may have released a lock

}
if (lock.tryLock()) {

x.toString(); // OK: the lock is held
myLockingMethod();
x.toString(); // OK: the lock is held

}
if (lock.isHeldByCurrentThread()) {

x.toString(); // OK: the lock is known to be held
}

}

10.4.6 Polymorphism and method formal parameters with unknown guards
The polymorphic @GuardSatisfied type annotation allows a method body to dereference the method’s formal
parameters even if the @GuardedBy annotations on the actual parameters are unknown at the method declaration site.

The declaration of StringBuffer.append(String str) is annotated as:

@LockingFree

94

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/StringBuffer.html#append(java.lang.String)

public @GuardSatisfied(1) StringBuffer append(@GuardSatisfied(1) StringBuffer this,
@GuardSatisfied(2) String str)

The method manipulates the values of its arguments, so all their locks must be held. However, the declaration does
not know what those are and they might not even be in scope at the declaration. Therefore, the declaration cannot
use @GuardedBy and must use @GuardSatisfied. The arguments to @GuardSatisfied indicate that the receiver
and result (which are the same value) are guarded by the same (unknown, possibly empty) set of locks, and the str
parameter may be guarded by a different set of locks.

The @LockingFree annotation indicates that this method makes no use of locks or synchronization.
Given these annotations on append, the following code type-checks:

final ReentrantLock lock1, lock2; // Initialized in the constructor
@GuardedBy("lock1") StringBuffer filename;
@GuardedBy("lock2") StringBuffer extension;
...
lock1.lock();
lock2.lock();
filename = filename.append(extension);

10.5 More locking details
This section gives some details that are helpful for understanding how Java locking and the Lock Checker works.

The paper “Locking discipline inference and checking” [ELM+16] (ICSE 2016, https://homes.cs.washington.
edu/~mernst/pubs/locking-inference-checking-icse2016-abstract.html) gives additional details.

10.5.1 Two types of locking: monitor locks and explicit locks
Java provides two types of locking: monitor locks and explicit locks.

• A synchronized(E) block acquires the lock on the value of E; similarly, a method declared using the
synchronized method modifier acquires the lock on the method receiver when called. (More precisely, the
current thread locks the monitor associated with the value of E; see JLS §17.1.) The lock is automatically released
when execution exits the block or the method body, respectively. We use the term “monitor lock” for a lock
acquired using a synchronized block or synchronized method modifier.

• A method call, such as Lock.lock(), acquires a lock that implements the Lock interface. The lock is released
by another method call, such as Lock.unlock(). We use the term “explicit lock” for a lock expression acquired
in this way.

You should not mix the two varieties of locking, and the Lock Checker enforces this. To prevent an object from
being used both as a monitor and an explicit lock, the Lock Checker issues a warning if a synchronized(E) block’s
expression E has a type that implements Lock.

10.5.2 Held locks and held expressions; aliasing
Whereas Java locking is defined in terms of values, Java programs are written in terms of expressions. We say that a
lock expression is held if the value to which the expression currently evaluates is held.

The Lock Checker conservatively estimates the expressions that are held at each point in a program. The Lock
Checker does not track aliasing (different expressions that evaluate to the same value); it only considers the exact
expression used to acquire a lock to be held. After any statement that might side-effect a held expression or a lock
expression, the Lock Checker conservatively considers the expression to be no longer held.

Section 32.8 explains which Java expressions the Lock Checker is able to analyze as lock expressions.

95

https://homes.cs.washington.edu/~mernst/pubs/locking-inference-checking-icse2016-abstract.html
https://homes.cs.washington.edu/~mernst/pubs/locking-inference-checking-icse2016-abstract.html
https://docs.oracle.com/javase/specs/jls/se17/html/jls-17.html#jls-17.1
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/locks/Lock.html#lock()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/locks/Lock.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/locks/Lock.html#unlock()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/locks/Lock.html

The @LockHeld and @LockPossiblyHeld type qualifiers are used internally by the Lock Checker and should never
be written by the programmer. If you see a warning mentioning @LockHeld or @LockPossiblyHeld, please contact
the Checker Framework developers as it is likely to indicate a bug in the Checker Framework.

10.5.3 Run-time checks for locking
When you perform a run-time check for locking, such as if (explicitLock.isHeldByCurrentThread()){...}
or if (Thread.holdsLock(monitorLock)){...}, then the Lock Checker considers the lock expression to be held
within the scope of the test. For more details, see Section 32.7.

10.5.4 Discussion of default qualifier
The default qualifier for unannotated types is @GuardedBy({}). This default forces you to write explicit @GuardSatisfied
in method signatures in the common case that clients ensure that all locks are held.

It might seem that @GuardSatisfied would be a better default for method signatures, but such a default would
require even more annotations. The reason is that @GuardSatisfied cannot be used on fields. If @GuardedBy({})
is the default for fields but @GuardSatisfied is the default for parameters and return types, then getters, setters, and
many other types of methods do not type-check without explicit lock qualifiers.

10.5.5 Discussion of @Holding
A programmer might choose to use the @Holding method annotation in two different ways: to specify correctness
constraints for a synchronization protocol, or to summarize intended usage. Both of these approaches are useful, and
the Lock Checker supports both.

Synchronization protocol @Holding can specify a synchronization protocol that is not expressible as locks over the
parameters to a method. For example, a global lock or a lock on a different object might need to be held. By requiring
locks to be held, you can create protocol primitives without giving up the benefits of the annotations and checking of
them.

Method summary that simplifies reasoning @Holding can be a method summary that simplifies reasoning. In this
case, the @Holding doesn’t necessarily introduce a new correctness constraint; the program might be correct even if the
lock were not already acquired.

Rather, here @Holding expresses a fact about execution: when execution reaches this point, the following locks are
known to be already held. This fact enables people and tools to reason intra- rather than inter-procedurally.

In Java, it is always legal to re-acquire a lock that is already held, and the re-acquisition always works. Thus,
whenever you write

@Holding("myLock")
void myMethod() {

...
}

it would be equivalent, from the point of view of which locks are held during the body, to write

void myMethod() {
synchronized (myLock) { // no-op: re-acquire a lock that is already held

...
}

}

It is better to write a @Holding annotation rather than writing the extra synchronized block. Here are reasons:

96

net.jcip.annotations.GuardedBy
javax.annotation.concurrent.GuardedBy

⇒ org.checkerframework.checker.lock.qual.GuardedBy (for fields), or
org.checkerframework.checker.lock.qual.Holding (for methods)

Figure 10.2: Correspondence between other lock annotations and the Checker Framework’s annotations.

• The annotation documents the fact that the lock is intended to already be held; that is, the method’s contract
requires that the lock be held when the method is called.

• The Lock Checker enforces that the lock is held when the method is called, rather than masking a programmer
error by silently re-acquiring the lock.

• The version with a synchronized statement can deadlock if, due to a programmer error, the lock is not already
held. The Lock Checker prevents this type of error.

• The annotation has no run-time overhead. The lock re-acquisition consumes time, even if it succeeds.

10.6 Other lock annotations
The Checker Framework’s lock annotations are similar to annotations used elsewhere.

If your code is already annotated with a different lock annotation, the Checker Framework can type-check your
code. It treats annotations from other tools as if you had written the corresponding annotation from the Lock Checker,
as described in Figure 10.2. If the other annotation is a declaration annotation, it may be moved; see Section 39.6.10.

10.6.1 Relationship to annotations in Java Concurrency in Practice
The book Java Concurrency in Practice [GPB+06] defines a @GuardedBy annotation that is the inspiration for ours.
The book’s @GuardedBy serves two related but distinct purposes:

• When applied to a field, it means that the given lock must be held when accessing the field. The lock acquisition
and the field access may occur arbitrarily far in the future.

• When applied to a method, it means that the given lock must be held by the caller at the time that the method is
called — in other words, at the time that execution passes the @GuardedBy annotation.

The Lock Checker renames the method annotation to @Holding, and it generalizes the @GuardedBy annotation into
a type annotation that can apply not just to a field but to an arbitrary type (including the type of a parameter, return
value, local variable, generic type parameter, etc.). Another important distinction is that the Lock Checker’s annotations
express and enforce a locking discipline over values, just like the JLS expresses Java’s locking semantics; by contrast,
JCIP’s annotations express a locking discipline that protects variable names and does not prevent race conditions. This
makes the annotations more expressive and also more amenable to automated checking. It also accommodates the
distinct meanings of the two annotations, and resolves ambiguity when @GuardedBy is written in a location that might
apply to either the method or the return type.

(The JCIP book gives some rationales for reusing the annotation name for two purposes. One rationale is that
there are fewer annotations to learn. Another rationale is that both variables and methods are “members” that can
be “accessed” and @GuardedBy creates preconditions for doing so. Variables can be accessed by reading or writing
them (putfield, getfield), and methods can be accessed by calling them (invokevirtual, invokeinterface). This informal
intuition is inappropriate for a tool that requires precise semantics.)

10.7 Possible extensions
The Lock Checker validates some uses of locks, but not all. It would be possible to enrich it with additional annotations.
This would increase the programmer annotation burden, but would provide additional guarantees.

Lock ordering: Specify that one lock must be acquired before or after another, or specify a global ordering for all
locks. This would prevent deadlock.

Not-holding: Specify that a method must not be called if any of the listed locks are held.
These features are supported by Clang’s thread-safety analysis.

97

https://jcip.net/
https://jcip.net/annotations/doc/net/jcip/annotations/GuardedBy.html
../api/org/checkerframework/checker/lock/qual/Holding.html
../api/org/checkerframework/checker/lock/qual/GuardedBy.html
http://clang.llvm.org/docs/ThreadSafetyAnalysis.html

Chapter 11

Index Checker for sequence bounds (arrays
and strings)

The Index Checker warns about potentially out-of-bounds accesses to sequence data structures, such as arrays and
strings.

The Index Checker prevents IndexOutOfBoundsExceptions that result from an index expression that might be
negative or might be equal to or larger than the sequence’s length. It also prevents NegativeArraySizeExceptions
that result from a negative array dimension in an array creation expression. (A caveat: the Index Checker does not check
for arithmetic overflow. If an expression overflows, the Index Checker might fail to warn about a possible exception.
This is unlikely to be a problem in practice unless you have an array whose length is Integer.MAX_VALUE.)

The programmer can write annotations that indicate which expressions are indices for which sequences. The Index
Checker prohibits any operation that may violate these properties, and the Index Checker takes advantage of these
properties when verifying indexing operations. Typically, a programmer writes few annotations, because the Index
Checker infers properties of indexes from the code around them. For example, it will infer that x is positive within the
then block of an if (x > 0) statement. The programmer does need to write field types and method pre-conditions or
post-conditions. For instance, if a method’s formal parameter is used as an index for myArray, the programmer might
need to write an @IndexFor("myArray") annotation on the formal parameter’s types.

The Index Checker checks fixed-size data structures, whose size is never changed after creation. A fixed-size data
structure has no add or remove operation. Examples are strings and arrays, and you can add support for other fixed-size
data structures (see Section 11.9).

To run the Index Checker, run either of these commands:

javac -processor index MyJavaFile.java
javac -processor org.checkerframework.checker.index.IndexChecker MyJavaFile.java

Recall that in Java, type annotations are written before the type; in particular, array annotations appear immediately
before “[]”. Here is how to declare a length-9 array of positive integers:

@Positive int @ArrayLen(9) []

Multi-dimensional arrays are similar. Here is how to declare a length-2 array of length-4 arrays:

String @ArrayLen(2) [] @ArrayLen(4) []

The paper “Lightweight Verification of Array Indexing” (ISSTA 2018, https://homes.cs.washington.edu/
~mernst/pubs/array-indexing-issta2018-abstract.html) gives more details about the Index Checker. “En-
forcing correct array indexes with a type system” [San16] (FSE 2016) describes an earlier version.

98

../api/org/checkerframework/checker/index/qual/IndexFor.html
https://homes.cs.washington.edu/~mernst/pubs/array-indexing-issta2018-abstract.html
https://homes.cs.washington.edu/~mernst/pubs/array-indexing-issta2018-abstract.html

11.1 Index Checker structure and annotations
Internally, the Index Checker computes information about integers that might be indices:

• the lower bound on an integer, such as whether it is known to be positive (Section 11.2)
• the upper bound on an integer, such as whether it is less than the length of a given sequence (Section 11.3)
• whether an integer came from calling the JDK’s binary search routine on an array (Section 11.6)
• whether an integer came from calling a string search routine (Section 11.7)

and about sequence lengths:

• the minimum length of a sequence, such “myArray contains at least 3 elements” (Section 11.4)
• whether two sequences have the same length (Section 11.5)

The Index Checker checks of all these properties at once, but this manual discusses each type system in a different
section. There are some annotations that are shorthand for writing multiple annotations, each from a different type
system:

@IndexFor(String[] names) The value is a valid index for the named sequences. For example, the String.charAt(int)
method is declared as

class String {
char charAt(@IndexFor("this") int index) { ... }

}

More generally, a variable declared as @IndexFor("someArray") int i has type @IndexFor("someArray")
int and its run-time value is guaranteed to be non-negative and less than the length of someArray. You could also
express this as @NonNegative @LTLengthOf("someArray") int i, but @IndexFor("someArray") int i
is more concise.

@IndexOrHigh(String[] names) The value is non-negative and is less than or equal to the length of each
named sequence. This type combines @NonNegative and @LTEqLengthOf.
For example, the Arrays.fill method is declared as
class Arrays {
void fill(Object[] a, @IndexFor("#1") int fromIndex, @IndexOrHigh("#1") int toIndex, Object val)

}

@LengthOf(String[] names) The value is exactly equal to the length of the named sequences. In the imple-
mentation, this type aliases @IndexOrHigh, so writing it only adds documentation (although future versions of
the Index Checker may use it to improve precision).

@IndexOrLow(String[] names) The value is -1 or is a valid index for each named sequence. This type
combines @GTENegativeOne and @LTLengthOf.

@PolyIndex indicates qualifier polymorphism. This type combines @PolyLowerBound and @PolyUpperBound. For
a description of qualifier polymorphism, see Section 31.2.

@PolyLength is a special polymorphic qualifier that combines @PolySameLen and @PolyValue from the Constant
Value Checker (see Chapter 23, page 150). @PolyLength exists as a shorthand for these two annotations, since
they often appear together.

11.2 Lower bounds
The Index Checker issues an error when a sequence is indexed by an integer that might be negative. The Lower Bound
Checker uses a type system (Figure 11.1) with the following qualifiers:

@Positive The value is 1 or greater, so it is not too low to be used as an index. Note that this annotation is trusted
by the Constant Value Checker, so if the Constant Value Checker is run on code containing this annotation, the
Lower Bound Checker must be run on the same code in order to guarantee soundness.

99

../api/org/checkerframework/checker/index/qual/IndexFor.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#charAt(int)
../api/org/checkerframework/checker/index/qual/NonNegative.html
../api/org/checkerframework/checker/index/qual/LTLengthOf.html
../api/org/checkerframework/checker/index/qual/IndexOrHigh.html
../api/org/checkerframework/checker/index/qual/NonNegative.html
../api/org/checkerframework/checker/index/qual/LTEqLengthOf.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Arrays.html#fill(java.lang.Object%5B%5D,int,int,java.lang.Object)
../api/org/checkerframework/checker/index/qual/LengthOf.html
../api/org/checkerframework/checker/index/qual/IndexOrHigh.html
../api/org/checkerframework/checker/index/qual/IndexOrLow.html
../api/org/checkerframework/checker/index/qual/GTENegativeOne.html
../api/org/checkerframework/checker/index/qual/LTLengthOf.html
../api/org/checkerframework/checker/index/qual/PolyIndex.html
../api/org/checkerframework/checker/index/qual/PolyLowerBound.html
../api/org/checkerframework/checker/index/qual/PolyUpperBound.html
../api/org/checkerframework/checker/index/qual/PolyLength.html
../api/org/checkerframework/checker/index/qual/PolySameLen.html
../api/org/checkerframework/common/value/qual/PolyValue.html
../api/org/checkerframework/checker/index/qual/PolyLength.html
../api/org/checkerframework/checker/index/qual/Positive.html

@LowerBoundUnknown

@Positive

@GTENegativeOne

@NonNegative

@LowerBoundBottom

@UpperBoundUnknown

@UpperBoundBottom

@LTOMLengthOf("myArray")

@LTLengthOf("myArray")

@LTEqLengthOf("myArray")

Figure 11.1: The two type hierarchies for integer types used by the Index Checker. On the left is a type system for
lower bounds. On the right is a type system for upper bounds. Qualifiers written in gray should never be written in
source code; they are used internally by the type system.
In the Upper Bound type system, subtyping rules depend on both the array name ("myArray", in the figure) and on the
offset (which is 0, the default, in the figure). Another qualifier is @UpperBoundLiteral, whose subtyping relationships
depend on its argument and on offsets for other qualifiers.

@NonNegative The value is 0 or greater, so it is not too low to be used as an index.
@GTENegativeOne The value is -1 or greater. It may not be used as an index for a sequence, because it might be

too low. (“GTE” stands for “Greater Than or Equal to”.)
@PolyLowerBound indicates qualifier polymorphism. For a description of qualifier polymorphism, see Section 31.2.
@LowerBoundUnknown There is no information about the value. It may not be used as an index for a sequence,

because it might be too low.
@LowerBoundBottom The value cannot take on any integral types. The bottom type, which should not need to be

written by the programmer.

11.3 Upper bounds
The Index Checker issues an error when a sequence index might be too high. To do this, it maintains information
about which expressions are safe indices for which sequences. The length of a sequence is arr.length for arrays and
str.length() for strings. It uses a type system (Figure 11.1) with the following qualifiers:

It issues an error when a sequence arr is indexed by an integer that is not of type @LTLengthOf("arr") or
@LTOMLengthOf("arr").

@LTLengthOf(String[] names, String[] offset) An expression with this type has value less than the
length of each sequence listed in names. The expression may be used as an index into any of those sequences, if
it is non-negative. For example, an expression of type @LTLengthOf("a") int might be used as an index to a.
The type @LTLengthOf({"a", "b"}) is a subtype of both @LTLengthOf("a") and @LTLengthOf("b"). (“LT”
stands for “Less Than”.)
@LTLengthOf takes an optional offset element, meaning that the annotated expression plus the offset is less
than the length of the given sequence. For example, suppose expression e has type @LTLengthOf(value =

100

../api/org/checkerframework/checker/index/qual/UpperBoundLiteral.html
../api/org/checkerframework/checker/index/qual/NonNegative.html
../api/org/checkerframework/checker/index/qual/GTENegativeOne.html
../api/org/checkerframework/checker/index/qual/PolyLowerBound.html
../api/org/checkerframework/checker/index/qual/LowerBoundUnknown.html
../api/org/checkerframework/checker/index/qual/LowerBoundBottom.html
../api/org/checkerframework/checker/index/qual/LTLengthOf.html

{"a", "b"}, offset = {"-1", "x"}). Then e - 1 is less than a.length, and e + x is less than b.length.
This helps to make the checker more precise. Programmers rarely need to write the offset element.

@LTEqLengthOf(String[] names) An expression with this type has value less than or equal to the length of
each sequence listed in names. It may not be used as an index for these sequences, because it might be too high.
@LTEqLengthOf({"a", "b"}) is a subtype of both @LTEqLengthOf("a") and @LTEqLengthOf("b"). (“LTEq”
stands for “Less Than or Equal to”.)
@LTEqLengthOf({"a"}) = @LTLengthOf(value={"a"}, offset=-1), and
@LTEqLengthOf(value={"a"}, offset=x) = @LTLengthOf(value={"a"}, offset=x-1) for any x.

@LTOMLengthOf(String[] names) An expression with this type has value at least 2 less than the length of
each sequence listed in names. It may always used as an index for a sequence listed in names, if it is non-negative.
This type exists to allow the checker to infer the safety of loops of the form:

for (int i = 0; i < array.length - 1; ++i) {
arr[i] = arr[i+1];

}

This annotation should rarely (if ever) be written by the programmer; usually @LTLengthOf(String[] names)
should be written instead. @LTOMLengthOf({"a", "b"}) is a subtype of both @LTOMLengthOf("a") and
@LTOMLengthOf("b"). (“LTOM” stands for “Less Than One Minus”, because another way of saying “at least 2
less than a.length” is “less than a.length-1”.)
@LTOMLengthOf({"a"}) = @LTLengthOf(value={"a"}, offset=1), and
@LTOMLengthOf(value={"a"}, offset=x) = @LTLengthOf(value={"a"}, offset=x+1) for any x.

@UpperBoundLiteral represents a constant value, typically a literal written in source code. Its subtyping rela-
tionship is: @UpperBoundLiteral(lit) <: LTLengthOf(value="myArray", offset=off) if lit+offset
≤ -1.

@PolyUpperBound indicates qualifier polymorphism. For a description of qualifier polymorphism, see Section 31.2.
@UpperBoundUnknown There is no information about the upper bound on the value of an expression with this type.

It may not be used as an index for a sequence, because it might be too high. This type is the top type, and should
never need to be written by the programmer.

@UpperBoundBottom This is the bottom type for the upper bound type system. It should never need to be written
by the programmer.

The following method annotations can be used to establish a method postcondition that ensures that a certain
expression is a valid index for a sequence:

@EnsuresLTLengthOf(String[] value, String[] targetValue, String[] offset) When the
method with this annotation returns, the expression (or all the expressions) given in the value element is less than
the length of the given sequences with the given offsets. More precisely, the expression has the @LTLengthOf
qualifier with the value and offset arguments taken from the targetValue and offset elements of this
annotation.

@EnsuresLTLengthOfIf(String[] expression, boolean result, String[] targetValue, String[] offset)
If the method with this annotation returns the given boolean value, then the given expression (or all the given
expressions) is less than the length of the given sequences with the given offsets.

There is one declaration annotation that indicates the relationship between two sequences:

@HasSubsequence(String[] value, String[] from, String[] to) indicates that a subsequence
(from from to to) of the annotated sequence is equal to some other sequence, named by value).
For example, to indicate that shorter is a subsequence of longer:

int start;
int end;
int[] shorter;
@HasSubsequence(value="shorter", from="this.start", to="this.end")
int[] longer;

101

../api/org/checkerframework/checker/index/qual/LTEqLengthOf.html
../api/org/checkerframework/checker/index/qual/LTOMLengthOf.html
../api/org/checkerframework/checker/index/qual/LTLengthOf.html
../api/org/checkerframework/checker/index/qual/UpperBoundLiteral.html
../api/org/checkerframework/checker/index/qual/PolyUpperBound.html
../api/org/checkerframework/checker/index/qual/UpperBoundUnknown.html
../api/org/checkerframework/checker/index/qual/UpperBoundBottom.html
../api/org/checkerframework/checker/index/qual/EnsuresLTLengthOf.html
../api/org/checkerframework/checker/index/qual/EnsuresLTLengthOfIf.html
../api/org/checkerframework/checker/index/qual/HasSubsequence.html

Thus, a valid index into shorter is also a valid index (between start and end-1 inclusive) into longer. More
generally, if x is @IndexFor("shorter") in the example above, then start + x is @IndexFor("longer").
If y is @IndexFor("longer") and @LessThan("end"), then y - start is @IndexFor("shorter"). Finally,
end - start is @IndexOrHigh("shorter").
This annotation is in part checked and in part trusted. When an array is assigned to longer, three facts are
checked: that start is non-negative, that start is less than or equal to end, and that end is less than or equal to
the length of longer. This ensures that the indices are valid. The programmer must manually verify that the
value of shorter equals the subsequence that they describe.

11.4 Sequence minimum lengths
The Index Checker estimates, for each sequence expression, how long its value might be at run time by computing
a minimum length that the sequence is guaranteed to have. This enables the Index Checker to verify indices that are
compile-time constants. For example, this code:

String getThirdElement(String[] arr) {
return arr[2];

}

is legal if arr has at least three elements, which can be indicated in this way:

String getThirdElement(String @MinLen(3) [] arr) {
return arr[2];

}

When the index is not a compile-time constant, as in arr[i], then the Index Checker depends not on a @MinLen
annotation but on i being annotated as @LTLengthOf("arr").

The MinLen type qualifier is implemented in practice by the Constant Value Checker, using @ArrayLenRange
annotations (see Chapter 23, page 150). This means that errors related to the minimum lengths of arrays must be
suppressed using the "value" argument to @SuppressWarnings. @ArrayLenRange and @ArrayLen annotations can
also be used to establish the minimum length of a sequence, if a more precise estimate of length is known. For example,
if arr is known to have exactly three elements:

String getThirdElement(String @ArrayLen(3) [] arr) {
return arr[2];

}

The following type qualifiers (from Chapter 23, page 150) can establish the minimum length of a sequence:

@MinLen(int value) The value of an expression of this type is a sequence with at least value elements. The
default annotation is @MinLen(0), and it may be applied to non-sequences. @MinLen(x) is a subtype of
@MinLen(x−1). An @MinLen annotation is treated internally as an @ArrayLenRange with only its from field
filled.

@ArrayLen(int[] value) The value of an expression of this type is a sequence whose length is exactly one of
the integers listed in its argument. The argument can contain at most ten integers; larger collections of integers
are converted to @ArrayLenRange annotations. The minimum length of a sequence with this annotation is the
smallest element of the argument.

@ArrayLenRange(int from, int to) The value of an expression of this type is a sequence whose length
is bounded by its arguments, inclusive. The minimum length of a sequence with this annotation is its from
argument.

The following method annotation can be used to establish a method postcondition that ensures that a certain
sequence has a minimum length:

102

../api/org/checkerframework/checker/index/qual/LTLengthOf.html
../api/org/checkerframework/common/value/qual/ArrayLenRange.html
../api/org/checkerframework/common/value/qual/ArrayLen.html
../api/org/checkerframework/common/value/qual/MinLen.html
../api/org/checkerframework/common/value/qual/ArrayLenRange.html
../api/org/checkerframework/common/value/qual/ArrayLen.html
../api/org/checkerframework/common/value/qual/ArrayLenRange.html
../api/org/checkerframework/common/value/qual/ArrayLenRange.html

@SameLenUnknown

@SameLenBottom

@SameLen("a") @SameLen("b")

@SameLen({"a", "b"})

Figure 11.2: The type hierarchy for arrays of equal length ("a" and "b" are assumed to be in-scope sequences). Qualifiers
written in gray should never be written in source code; they are used internally by the type system.

@EnsuresMinLenIf(String[] expression, boolean result, int targetValue) If the method
with this annotation returns the given boolean value, then the given expression (or all the given expressions) is a
sequence with at least targetValue elements.

11.5 Sequences of the same length
The Index Checker determines whether two or more sequences have the same length. This enables it to verify that all
the indexing operations are safe in code like the following:

boolean lessThan(double[] arr1, double @SameLen("#1") [] arr2) {
for (int i = 0; i < arr1.length; i++) {

if (arr1[i] < arr2[i]) {
return true;

} else if (arr1[i] > arr2[i]) {
return false;

}
}
return false;

}

When needed, you can specify which sequences have the same length using the following type qualifiers (Fig-
ure 11.2):

@SameLen(String[] names) An expression with this type represents a sequence that has the same length as the
other sequences named in names. In general, @SameLen types that have non-intersecting sets of names are not
subtypes of each other. However, if at least one sequence is named by both types, the types are actually the same,
because all the named sequences must have the same length.

@PolySameLen indicates qualifier polymorphism. For a description of qualifier polymorphism, see Section 31.2.
@SameLenUnknown No information is known about which other sequences have the same length as this one. This is

the top type, and programmers should never need to write it.
@SameLenBottom This is the bottom type, and programmers should rarely need to write it. null has this type.

103

../api/org/checkerframework/common/value/qual/EnsuresMinLenIf.html
../api/org/checkerframework/checker/index/qual/SameLen.html
../api/org/checkerframework/checker/index/qual/PolySameLen.html
../api/org/checkerframework/checker/index/qual/SameLenUnknown.html
../api/org/checkerframework/checker/index/qual/SameLenBottom.html

@SearchIndexUnknown

@SearchIndexBottom

@SearchIndex("a")

@NegativeIndexFor("a")@SearchIndex({"a", "b})

@NegativeIndexFor({"a", "b"})

Figure 11.3: The type hierarchy for the Index Checker’s internal type system that captures information about the results
of calls to Arrays.binarySearch.

11.6 Binary search indices
The JDK’s Arrays.binarySearch method returns either where the value was found, or a negative value indicating
where the value could be inserted. The Search Index Checker represents this concept.

The Search Index Checker’s type hierarchy (Figure 11.3) has four type qualifiers:

@SearchIndexFor(String[] names) An expression with this type represents an integer that could have been
produced by calling Arrays.binarySearch: for each array a specified in the annotation, the annotated integer
is between -a.length-1 and a.length-1, inclusive

@NegativeIndexFor(String[] names) An expression with this type represents a “negative index” that is
between a.length-1 and -1, inclusive; that is, a value that is both a @SearchIndex and is negative. Applying
the bitwise complement operator (~) to an expression of this type produces an expression of type @IndexOrHigh.

@SearchIndexBottom This is the bottom type, and programmers should rarely need to write it.
@SearchIndexUnknown No information is known about whether this integer is a search index. This is the top type,

and programmers should rarely need to write it.

11.7 Substring indices
The methods String.indexOf and String.lastIndexOf return an index of a given substring within a given string,
or -1 if no such substring exists. The index i returned from receiver.indexOf(substring) satisfies the following
property, which is stated here in three equivalent ways:

i == -1 || (i >= 0 && i <= receiver.length() - substring.length())
i == -1 || (@NonNegative && @LTLengthOf(value="receiver", offset="substring.length()-1"))
@SubstringIndexFor(value="receiver", offset="substring.length()-1")

The return type of methods String.indexOf and String.lastIndexOf has the annotation @SubstringIndexFor(
value="this", offset="#1.length()-1")). This allows writing code such as the following with no warnings
from the Index Checker:

104

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Arrays.html#binarySearch(java.lang.Object%5B%5D,java.lang.Object)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Arrays.html#binarySearch(java.lang.Object%5B%5D,java.lang.Object)
../api/org/checkerframework/checker/index/qual/SearchIndexFor.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Arrays.html#binarySearch(java.lang.Object%5B%5D,java.lang.Object)
../api/org/checkerframework/checker/index/qual/NegativeIndexFor.html
../api/org/checkerframework/checker/index/qual/IndexOrHigh.html
../api/org/checkerframework/checker/index/qual/SearchIndexBottom.html
../api/org/checkerframework/checker/index/qual/SearchIndexUnknown.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#indexOf(java.lang.String)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#lastIndexOf(java.lang.String)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#indexOf(java.lang.String)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#lastIndexOf(java.lang.String)
../api/org/checkerframework/checker/index/qual/SubstringIndexFor.html

@SubstringIndexUnknown

@SubstringIndexBottom

@SubstringIndexFor(value="myStr", offset="subStr.length()-1")

Figure 11.4: The type hierarchy for the Substring Index Checker, which captures information about the results of calls
to String.indexOf and String.lastIndexOf.

public static String removeSubstring(String original, String removed) {
int i = original.indexOf(removed);
if (i != -1) {

return original.substring(0, i) + original.substring(i + removed.length());
}
return original;

}

The @SubstringIndexFor annotation is implemented in a Substring Index Checker that runs together with the
Index Checker and has its own type hierarchy (Figure 11.4) with three type qualifiers:

@SubstringIndexFor(String[] value, String[] offset) An expression with this type represents
an integer that could have been produced by calling String.indexOf: the annotated integer is either -1, or it is
non-negative and is less than or equal to receiver.length - offset (where the sequence receiver and the
offset offset are corresponding elements of the annotation’s arguments).

@SubstringIndexBottom This is the bottom type, and programmers should rarely need to write it.
@SubstringIndexUnknown No information is known about whether this integer is a substring index. This is the

top type, and programmers should rarely need to write it.

11.7.1 The need for the @SubstringIndexFor annotation
No other annotation supported by the Index Checker precisely represents the possible return values of methods
String.indexOf and String.lastIndexOf. The reason is the methods’ special cases for empty strings and for failed
matches.

Consider the result i of receiver.indexOf(substring):

• i is @GTENegativeOne, because i >= -1.
• i is @LTEqLengthOf("receiver"), because i <= receiver.length().
• i is not @IndexOrLow("receiver"), because for receiver = "", substring = "", i = 0, the property i
>= -1 && i < receiver.length() does not hold.

• i is not @IndexOrHigh("receiver"), because for receiver = "", substring = "b", i = -1, the prop-
erty i >= 0 && i <= receiver.length() does not hold.

• i is not @LTLengthOf(value = "receiver", offset = "substring.length()-1"), because for receiver
= "", substring = "abc", i = -1, the property i + substring.length() - 1 < receiver.length()
does not hold.

The last annotation in the list above, @LTLengthOf(value = "receiver", offset = "substring.length()-1"),
is the correct and precise upper bound for all values of i except -1. The offset expresses the fact that we can add
substring.length() to this index and still get a valid index for receiver. That is useful for type-checking code that

105

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#indexOf(java.lang.String)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#lastIndexOf(java.lang.String)
../api/org/checkerframework/checker/index/qual/SubstringIndexFor.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#indexOf(java.lang.String)
../api/org/checkerframework/checker/index/qual/SubstringIndexBottom.html
../api/org/checkerframework/checker/index/qual/SubstringIndexUnknown.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#indexOf(java.lang.String)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#lastIndexOf(java.lang.String)

adds the length of the substring to the found index, in order to obtain the rest of the string. However, the upper bound
applies only after the index is explicitly checked not to be -1:

int i = receiver.indexOf(substring);
// i is @GTENegativeOne and @LTEqLengthOf("receiver")
// i is not @LTLengthOf(value = "receiver", offset = "substring.length()-1")
if (i != -1) {

// i is @NonNegative and @LTLengthOf(value = "receiver", offset = "substring.length()-1")
int j = i + substring.length();
// j is @IndexOrHigh("receiver")
return receiver.substring(j); // this call is safe

}

The property of the result of indexOf cannot be expressed by any combination of lower-bound (Section 11.2) and
upper-bound (Section 11.3) annotations, because the upper-bound annotations apply independently of the lower-bound
annotations, but in this case, the upper bound i <= receiver.length() - substring.length() holds only if i
>= 0. Therefore, to express this property and make the example type-check without false positives, a new annotation
such as @SubstringIndexFor(value = "receiver", offset = "substring.length()-1") is necessary.

11.8 Inequalities
The Index Checker estimates which expression’s values are less than other expressions’ values.

@LessThan(String[] values) An expression with this type has a value that is less than the value of each
expression listed in values. The expressions in values must be composed of final or effectively final variables
and constants.

@LessThanUnknown There is no information about the value of an expression this type relative to other expressions.
This is the top type, and should not be written by the programmer.

@LessThanBottom This is the bottom type for the less than type system. It should never need to be written by the
programmer.

11.9 Annotating fixed-size data structures
The Index Checker has built-in support for Strings and arrays. You can add support for additional fixed-size data
structures by writing annotations. This allows the Index Checker to typecheck the data structure’s implementation and
to typecheck uses of the class.

This section gives an example: a fixed-length collection.

/** ArrayWrapper is a fixed-size generic collection. */
public class ArrayWrapper<T> {

private final Object @SameLen("this") [] delegate;

@SuppressWarnings("index") // constructor creates object of size @SameLen(this) by definition
ArrayWrapper(@NonNegative int size) {

delegate = new Object[size];
}

public @LengthOf("this") int size() {
return delegate.length;

}

106

../api/org/checkerframework/checker/index/qual/LessThan.html
../api/org/checkerframework/checker/index/qual/LessThanUnknown.html
../api/org/checkerframework/checker/index/qual/LessThanBottom.html

public void set(@IndexFor("this") int index, T obj) {
delegate[index] = obj;

}

@SuppressWarnings("unchecked") // required for normal Java compilation due to unchecked cast
public T get(@IndexFor("this") int index) {

return (T) delegate[index];
}

}

The Index Checker treats methods annotated with @LengthOf("this") as the length of a sequence like arr.length
for arrays and str.length() for strings.

With these annotations, client code like the following typechecks with no warnings:

public static void clearIndex1(ArrayWrapper<? extends Object> a, @IndexFor("#1") int i) {
a.set(i, null);

}

public static void clearIndex2(ArrayWrapper<? extends Object> a, int i) {
if (0 <= i && i < a.size()) {

a.set(i, null);
}

}

107

Chapter 12

Tainting Checker

The Tainting Checker prevents certain kinds of trust errors. A tainted, or untrusted, value is one that comes from an
arbitrary, possibly malicious source, such as user input or unvalidated data. In certain parts of your application, using a
tainted value can compromise the application’s integrity, causing it to crash, corrupt data, leak private data, etc.

For example, a user-supplied pointer, handle, or map key should be validated before being dereferenced. As another
example, a user-supplied string should not be concatenated into a SQL query, lest the program be subject to a SQL
injection attack. A location in your program where malicious data could do damage is called a sensitive sink.

A program must “sanitize” or “untaint” an untrusted value before using it at a sensitive sink. There are two general
ways to untaint a value: by checking that it is innocuous/legal (e.g., it contains no characters that can be interpreted
as SQL commands when pasted into a string context), or by transforming the value to be legal (e.g., quoting all the
characters that can be interpreted as SQL commands). A correct program must use one of these two techniques so that
tainted values never flow to a sensitive sink. The Tainting Checker ensures that your program does so.

If the Tainting Checker issues no warning for a given program, then no tainted value ever flows to a sensitive sink.
However, your program is not necessarily free from all trust errors. As a simple example, you might have forgotten
to annotate a sensitive sink as requiring an untainted type, or you might have forgotten to annotate untrusted data as
having a tainted type.

To run the Tainting Checker, supply the -processor TaintingChecker or -processor org.checkerframework.checker.tainting.TaintingChecker
command-line option to javac.

12.1 Tainting annotations
The Tainting type system uses the following annotations:

@Untainted indicates a type that includes only untainted (trusted) values.
@Tainted indicates a type that may include tainted (untrusted) or untainted (trusted) values. @Tainted is a supertype

of @Untainted. It is the default qualifier.
@PolyTainted indicates qualifier polymorphism. For a description of qualifier polymorphism, see Section 31.2.

12.2 Tips on writing @Untainted annotations
Most programs are designed with a boundary that surrounds sensitive computations, separating them from untrusted
values. Outside this boundary, the program may manipulate malicious values, but no malicious values ever pass the
boundary to be operated upon by sensitive computations.

In some programs, the area outside the boundary is very small: values are sanitized as soon as they are received from
an external source. In other programs, the area inside the boundary is very small: values are sanitized only immediately
before being used at a sensitive sink. Either approach can work, so long as every possibly-tainted value is sanitized
before it reaches a sensitive sink.

108

https://en.wikipedia.org/wiki/Sql_injection
https://en.wikipedia.org/wiki/Sql_injection
../api/org/checkerframework/checker/tainting/qual/Untainted.html
../api/org/checkerframework/checker/tainting/qual/Tainted.html
../api/org/checkerframework/checker/tainting/qual/PolyTainted.html

Once you determine the boundary, annotating your program is easy: put @Tainted outside the boundary, @Untainted
inside, and @SuppressWarnings("tainting") at the validation or sanitization routines that are used at the boundary.

The Tainting Checker’s standard default qualifier is @Tainted (see Section 32.5 for overriding this default). This is
the safest default, and the one that should be used for all code outside the boundary (for example, code that reads user
input). You can set the default qualifier to @Untainted in code that may contain sensitive sinks.

The Tainting Checker does not know the intended semantics of your program, so it cannot warn you if you mis-
annotate a sensitive sink as taking @Tainted data, or if you mis-annotate external data as @Untainted. So long as you
correctly annotate the sensitive sinks and the places that untrusted data is read, the Tainting Checker will ensure that all
your other annotations are correct and that no undesired information flows exist.

As an example, suppose that you wish to prevent SQL injection attacks. You would start by annotating the
Statement class to indicate that the execute operations may only operate on untainted queries (Chapter 35 describes
how to annotate external libraries):

public boolean execute(@Untainted String sql) throws SQLException;
public boolean executeUpdate(@Untainted String sql) throws SQLException;

12.3 @Tainted and @Untainted can be used for many purposes
The @Tainted and @Untainted annotations have only minimal built-in semantics. In fact, the Tainting Checker
provides only a small amount of functionality beyond the Subtyping Checker (Chapter 29). This lack of hard-coded
behavior has two consequences. The first consequence is that the annotations can serve many different purposes, such
as:

• Prevent SQL injection attacks: @Tainted is external input, @Untainted has been checked for SQL syntax.
• Prevent cross-site scripting attacks: @Tainted is external input, @Untainted has been checked for JavaScript

syntax.
• Prevent information leakage: @Tainted is secret data, @Untainted may be displayed to a user.

The second consequence is that the Tainting Checker is not useful unless you annotate the appropriate sources,
sinks, and untainting/sanitization routines.

If you want more specialized semantics, or you want to annotate multiple types of tainting (for example, HTML and
SQL) in a single program, then you can copy the definition of the Tainting Checker to create a new annotation and
checker with a more specific name and semantics. You will change the copy to rename the annotations, and you will
annotate libraries and/or your code to identify sources, sinks, and validation/sanitization routines. See Chapter 36 for
more details.

12.4 A caution about polymorphism and side effects
Misuse of polymorphism can lead to unsoundness with the Tainting Checker and other similar information flow checkers.
To understand the potential problem, consider the append function in java.lang.StringBuffer:

public StringBuffer append(StringBuffer this, String toAppend);

Given these declarations:

@Tainted StringBuffer tsb;
@Tainted String ts;
@Untainted StringBuffer usb;
@Untainted String us;

both of these invocations should be legal:

109

https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Statement.html

tsb.append(ts);
usb.append(us);

That suggests that perhaps the function should be annotated as polymorphic:

// UNSOUND annotation -- do not do this!
public @PolyTainted StringBuffer append(@PolyTainted StringBuffer this, @PolyTainted String toAppend);

The problem with the above annotation is that it permits the undesirable invocation:

usb.append(ts); // illegal invocation

This invocation is permitted because, in the expression, all @PolyTainted annotations on formal parameters are
instantiated to @Tainted, the top annotation, and each argument is a subtype of the corresponding formal parameter.

Beware this problem both in code you write, and also in annotated libraries (such as stub files). The correct way to
annotate this class is to add a class qualifier parameter; see Section 31.3.

(Side note: if append were purely functional (had no side effects and returned a new StringBuffer) the method
call would be acceptable, because the return type is instantiated to @Tainted StringBuffer for the expression
usb.append(ts). However, the append method works via side-effect, and only returns a reference to the buffer as a
convenience for writing “fluent” client code.)

110

Chapter 13

SQL Quotes Checker

The SQL Quotes Checker helps prevent SQL injection vulnerabilities. Many SQL injection attacks involve malicious
user input containing unescaped special characters such as the single quote, which can change whether subsequent
concatenations are interpreted as SQL command code or as SQL query values.

The SQL Quotes Checker determines whether a string contains an unescaped single quote character. Furthermore, it
marks user-supplied Strings as unsafe for SQL query use, because their quoting is unknown; the program must sanitize
or validate all such values before concatenating them to a SQL query for execution. Sanitization can be done by quoting
user input as necessary to ensure special characters are properly escaped. The SQL Quotes Checker follows the ANSI
standard and considers two consecutive single quote characters as one escaped single quote. (Some databases support
the use of the backslash as an escape character for single quotes. The SQL Quotes Checker does not support that syntax
because it is not safe for all SQL database implementations.)

The SQL Quotes Checker guarantees that no unchecked values are passed to a SQL query execution statement. It
does not guarantee that SQL queries written by the code author are safe for execution; e.g., the checker will not warn at
compile time about syntax errors or improper uses of DELETE or DROP statements.

When possible, it is better code style to use a prepared statement or other mechanisms that automatically handle
quoting without the need for the programmer to do any work. The SQL Quotes Checker is useful for the large quantity
of code that still uses string concatenation to create SQL queries.

To run the SQL Quotes Checker, supply the -processor SqlQuotesChecker or -processor org.checkerframework.checker.sqlquotes.SqlQuotesChecker
command-line option to javac.

13.1 SQL Quotes annotations
The SQL Quotes type system uses the following annotations:

@SqlEvenQuotes indicates a String literal that contains an even number of single quotes (possibly zero).
@SqlOddQuotes indicates a String literal that contains an odd number of single quotes.
@SqlQuotesUnknown indicates a String whose quoting is unknown. It is the default qualifier for non-literal Strings.
@SqlQuotesBottom is the bottom qualifier. Programmers rarely need to write it.

The subtyping hierarchy of the SQL Quotes Checker’s qualifiers is shown in Figure 13.1.

13.2 What the SQL Quotes Checker checker
Concatenation of @SqlEvenQuotes and @SqlOddQuotes Strings parallels integer parity over addition. In other words,
concatenation of @SqlOddQuotes and @SqlEvenQuotes Strings are most narrowly typed as follows:

111

https://en.wikipedia.org/wiki/Sql_injection
../api/org/checkerframework/checker/sqlquotes/qual/SqlEvenQuotes.html
../api/org/checkerframework/checker/sqlquotes/qual/SqlOddQuotes.html
../api/org/checkerframework/checker/sqlquotes/qual/SqlQuotesUnknown.html
../api/org/checkerframework/checker/sqlquotes/qual/SqlQuotesBottom.html

@SqlEvenQuotes@SqlOddQuotes

@SqlQuotesUnknown

@SqlQuotesBottom

Figure 13.1: The subtyping relationship of the SQL Quotes Checker’s qualifiers. The type qualifiers are applicable to
Strings. Qualifiers in gray are used internally by the type system but should never be written by a programmer.

@SqlOddQuotes + @SqlOddQuotes = @SqlEvenQuotes
@SqlOddQuotes + @SqlEvenQuotes = @SqlOddQuotes
@SqlEvenQuotes + @SqlOddQuotes = @SqlOddQuotes
@SqlEvenQuotes + @SqlEvenQuotes = @SqlEvenQuotes

13.3 Library annotations
The programmer needs to write trusted annotations on SQL-related methods. This is already done for you, for
commonly-used libraries such as java.sql and org.springframework.security.crypto.bcrypt. (If you annotate
other libraries, please contribute them to the Checker Framework project. Thanks!)

A SQL query execution method such as Statement.executeQuery must be annotated to take a @SqlEvenQuotes
string as a parameter.

A sanitization or quoting method should be annotated to take a @SqlQuotesUnknown parameter and to return a
@SqlEvenQuotes result.

Given such annotations, the type system will issue an error if an un-sanitized value can ever flow into a database
query. (You might need to write some annotations in your own code as well.)

112

../api/org/checkerframework/checker/sqlquotes/qual/SqlQuotesUnknown.html
../api/org/checkerframework/checker/sqlquotes/qual/SqlEvenQuotes.html

Chapter 14

Regex Checker for regular expression syntax

The Regex Checker prevents, at compile-time, use of syntactically invalid regular expressions and access of invalid
capturing groups.

A regular expression, or regex, is a pattern for matching certain strings of text. In Java, a programmer writes a
regular expression as a string. The syntax of regular expressions is complex, so it is easy to make a mistake. It is also
easy to accidentally use a regex feature from another language that is not supported by Java (see section “Comparison
to Perl 5” in the Pattern Javadoc). These problems cause run-time errors.

Regular expressions in Java also have capturing groups, which are delimited by parentheses and allow for
extraction from text. If a programmer uses an incorrect index (larger than the number of capturing groups), an
IndexOutOfBoundsException is thrown.

The Regex Checker warns about these problems at compile time, guaranteeing that your program does not crash
due to incorrect use of regular expressions.

For further details, including case studies, see the paper “A type system for regular expressions” [SDE12] (FTfJP
2012, https://homes.cs.washington.edu/~mernst/pubs/regex-types-ftfjp2012-abstract.html).

To run the Regex Checker, supply the -processor org.checkerframework.checker.regex.RegexChecker
command-line option to javac.

14.1 Regex annotations
These qualifiers make up the Regex type system:

@Regex indicates that the run-time value is a valid regular expression String. If the optional parameter is supplied to
the qualifier, then the number of capturing groups in the regular expression is at least that many. If not provided,
the parameter defaults to 0. For example, if an expression’s type is @Regex(1) String, then its run-time value
could be "colo(u?)r" or "(brown|beige)" but not "colou?r" nor a non-regex string such as "1) first
point".

@PolyRegex indicates qualifier polymorphism. For a description of qualifier polymorphism, see Section 31.2.

The subtyping hierarchy of the Regex Checker’s qualifiers is shown in Figure 14.1.

14.2 Annotating your code with @Regex

14.2.1 Implicit qualifiers
The Regex Checker adds implicit qualifiers, reducing the number of annotations that must appear in your code (see
Section 32.4). If a String literal is a valid regex, the checker implicitly adds the @Regex qualifier with the argument
set to the correct number of capturing groups. The Regex Checker allows the null literal to be assigned to any type
qualified with the Regex qualifier.

113

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html
https://homes.cs.washington.edu/~mernst/pubs/regex-types-ftfjp2012-abstract.html
../api/org/checkerframework/checker/regex/qual/Regex.html
../api/org/checkerframework/checker/regex/qual/PolyRegex.html

@UnknownRegex

@Regex(0) = @Regex

@Regex(2)

@Regex(1)

@RegexBottom

.

.

.

Figure 14.1: The subtyping relationship of the Regex Checker’s qualifiers. The type qualifiers are applicable to
CharSequence and its subtypes. Because the parameter to a @Regex qualifier is at least the number of capturing groups
in a regular expression, a @Regex qualifier with more capturing groups is a subtype of a @Regex qualifier with fewer
capturing groups. Qualifiers in gray are used internally by the type system but should never be written by a programmer.

public @Regex String parenthesize(@Regex String regex) {
return "(" + regex + ")"; // Even though the parentheses are not @Regex Strings,

// the whole expression is a @Regex String
}

Figure 14.2: An example of the Regex Checker’s support for concatenation of non-regular-expression Strings to produce
valid regular expression Strings.

14.2.2 Capturing groups
The Regex Checker validates that a legal capturing group number is passed to Matcher’s group, start and end
methods. To do this, the type of Matcher must be qualified with a @Regex annotation with the number of capturing
groups in the regular expression. This is handled implicitly by the Regex Checker for local variables (see Section 32.7),
but you may need to add @Regex annotations with a capturing group count to Pattern and Matcher fields and
parameters.

14.2.3 Concatenation of partial regular expressions
In general, concatenating a non-regular-expression String with any other string yields a non-regular-expression

String. The Regex Checker can sometimes determine that concatenation of non-regular-expression Strings will produce
valid regular expression Strings. For an example see Figure 14.2.

114

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Matcher.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Matcher.html#group(int)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Matcher.html#start(int)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Matcher.html#end(int)

String regex = getRegexFromUser();
if (! RegexUtil.isRegex(regex)) {

throw new RuntimeException("Error parsing regex " + regex, RegexUtil.regexException(regex));
}
Pattern p = Pattern.compile(regex);

Figure 14.3: Example use of RegexUtil methods.

14.2.4 Testing whether a string is a regular expression
Sometimes, the Regex Checker cannot infer whether a particular expression is a regular expression — and sometimes
your code cannot either! In these cases, you can use the isRegex method to perform such a test, and other helper
methods to provide useful error messages. A common use is for user-provided regular expressions (such as ones passed
on the command-line). Figure 14.3 gives an example of the intended use of the RegexUtil methods.

RegexUtil.isRegex returns true if its argument is a valid regular expression.
RegexUtil.regexError returns a String error message if its argument is not a valid regular expression, or null

if its argument is a valid regular expression.
RegexUtil.regexException returns the PatternSyntaxException that Pattern.compile(String) throws

when compiling an invalid regular expression. It returns null if its argument is a valid regular expression.

An additional version of each of these methods is also provided that takes an additional group count param-
eter. The RegexUtil.isRegex method verifies that the argument has at least the given number of groups. The
RegexUtil.regexError and RegexUtil.regexException methods return a String error message and Pattern-
SyntaxException, respectively, detailing why the given String is not a syntactically valid regular expression with at
least the given number of capturing groups.

If you detect that a String is not a valid regular expression but would like to report the error higher
up the call stack (potentially where you can provide a more detailed error message) you can throw a
RegexUtil.CheckedPatternSyntaxException. This exception is functionally the same as a PatternSyntax-
Exception except it is checked to guarantee that the error will be handled up the call stack. For more details, see the
Javadoc for RegexUtil.CheckedPatternSyntaxException.

To use the RegexUtil class, the checker-util.jar file must be on the classpath at run time.

14.2.5 Suppressing warnings
If you are positive that a particular string that is being used as a regular expression is syntactically valid, but the Regex
Checker cannot conclude this and issues a warning about possible use of an invalid regular expression, then you can use
the RegexUtil.asRegex method to suppress the warning.

You can think of this method as a cast: it returns its argument unchanged, but with the type @Regex String if it is
a valid regular expression. It throws an error if its argument is not a valid regular expression, but you should only use it
when you are sure it will not throw an error.

There is an additional RegexUtil.asRegex method that takes a capturing group parameter. This method works the
same as described above, but returns a @Regex String with the parameter on the annotation set to the value of the
capturing group parameter passed to the method.

The use case shown in Figure 14.3 should support most cases so the asRegex method should be used rarely.

115

../api/org/checkerframework/checker/regex/util/RegexUtil.html#isRegex(java.lang.String)
../api/org/checkerframework/checker/regex/util/RegexUtil.html#regexError(java.lang.String)
../api/org/checkerframework/checker/regex/util/RegexUtil.html#regexException(java.lang.String)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/PatternSyntaxException.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/Pattern.html#compile(java.lang.String)
../api/org/checkerframework/checker/regex/util/RegexUtil.html#isRegex(java.lang.String,int)
../api/org/checkerframework/checker/regex/util/RegexUtil.html#regexError(java.lang.String,int)
../api/org/checkerframework/checker/regex/util/RegexUtil.html#regexException(java.lang.String,int)
../api/org/checkerframework/checker/regex/util/RegexUtil.CheckedPatternSyntaxException.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/PatternSyntaxException.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/regex/PatternSyntaxException.html
../api/org/checkerframework/checker/regex/util/RegexUtil.CheckedPatternSyntaxException.html
../api/org/checkerframework/checker/regex/util/RegexUtil.html#asRegex(java.lang.String)
../api/org/checkerframework/checker/regex/util/RegexUtil.html#asRegex(java.lang.String,int)

Chapter 15

Format String Checker

The Format String Checker prevents use of incorrect format strings in format methods such as System.out.printf
and String.format.

The Format String Checker warns you if you write an invalid format string, and it warns you if the other arguments
are not consistent with the format string (in number of arguments or in their types). Here are examples of errors that the
Format String Checker detects at compile time. Section 15.3 provides more details.

String.format("%y", 7); // error: invalid format string

String.format("%d", "a string"); // error: invalid argument type for %d

String.format("%d %s", 7); // error: missing argument for %s
String.format("%d", 7, 3); // warning: unused argument 3
String.format("{0}", 7); // warning: unused argument 7, because {0} is wrong syntax

To run the Format String Checker, supply the -processor org.checkerframework.checker.formatter.FormatterChecker
command-line option to javac.

The paper “A type system for format strings” [WKSE14] (ISSTA 2014, https://homes.cs.washington.edu/
~mernst/pubs/format-string-issta2014-abstract.html) gives more details about the Format String Checker
and the Internationalization Format String Checker (Chapter 16, page 123);

15.1 Formatting terminology
Printf-style formatting takes as an argument a format string and a list of arguments. It produces a new string in which
each format specifier has been replaced by the corresponding argument. The format specifier determines how the format
argument is converted to a string. A format specifier is introduced by a % character. For example, String.format("The
%s is %d.","answer",42) yields "The answer is 42.". "The %s is %d." is the format string, "%s" and "%d"
are the format specifiers; "answer" and 42 are format arguments.

15.2 Format String Checker annotations
The @Format qualifier on a string type indicates a valid format string. A programmer rarely writes the @Format
annotation, as it is inferred for string literals. A programmer may need to write it on fields and on method signatures.

The @Format qualifier is parameterized with a list of conversion categories that impose restrictions on the format
arguments. Conversion categories are explained in more detail in Section 15.2.1. The type qualifier for "%d %f" is for
example @Format({INT, FLOAT}).

116

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/io/PrintStream.html#printf(java.lang.String,java.lang.Object...)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#format(java.lang.String,java.lang.Object...)
https://homes.cs.washington.edu/~mernst/pubs/format-string-issta2014-abstract.html
https://homes.cs.washington.edu/~mernst/pubs/format-string-issta2014-abstract.html
../api/org/checkerframework/checker/formatter/qual/Format.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Formatter.html#syntax
../api/org/checkerframework/checker/formatter/qual/Format.html

@InvalidFormat

@UnknownFormat

@FormatBottom

@Format(...,)

Figure 15.1: The Format String Checker type qualifier hierarchy. The type qualifiers are applicable to CharSequence
and its subtypes. The figure does not show the subtyping rules among different @Format(...) qualifiers; see
Section 15.2.2.

Consider the below printFloatAndInt method. Its parameter must be a format string that can be used in a format
method, where the first format argument is “float-like” and the second format argument is “integer-like”. The type of its
parameter, @Format({FLOAT, INT}) String, expresses that contract.

void printFloatAndInt(@Format({FLOAT, INT}) String fs) {
System.out.printf(fs, 3.1415, 42);

}

printFloatAndInt("Float %f, Number %d"); // OK
printFloatAndInt("Float %f"); // error

Figure 15.1 shows all the type qualifiers. The annotations other than @Format are only used internally and cannot
be written in your code. @InvalidFormat indicates an invalid format string — that is, a string that cannot be used
as a format string. For example, the type of "%y" is @InvalidFormat String. @FormatBottom is the type of the
null literal. @UnknownFormat is the default that is applied to strings that are not literals and on which the user has not
written a @Format annotation.

There is also a @FormatMethod annotation; see Section 15.5.

15.2.1 Conversion Categories
Given a format specifier, only certain format arguments are compatible with it, depending on its “conversion” — its last,
or last two, characters. For example, in the format specifier "%d", the conversion d restricts the corresponding format
argument to be “integer-like”:

String.format("%d", 5); // OK
String.format("%d", "hello"); // error

Many conversions enforce the same restrictions. A set of restrictions is represented as a conversion category. The
“integer like” restriction is for example the conversion category INT. The following conversion categories are defined in
the ConversionCategory enumeration:

GENERAL imposes no restrictions on a format argument’s type. Applicable for conversions b, B, h, H, s, S.
CHAR requires that a format argument represents a Unicode character. Specifically, char, Character, byte, Byte,

short, and Short are allowed. int or Integer are allowed if Character.isValidCodePoint(argument)
would return true for the format argument. (The Format String Checker permits any int or Integer without
issuing a warning or error — see Section 15.3.2.) Applicable for conversions c, C.

INT requires that a format argument represents an integral type. Specifically, byte, Byte, short, Short, int and
Integer, long, Long, and BigInteger are allowed. Applicable for conversions d, o, x, X.

FLOAT requires that a format argument represents a floating-point type. Specifically, float, Float, double, Double,
and BigDecimal are allowed. Surprisingly, integer values are not allowed. Applicable for conversions e, E, f, g,
G, a, A.

117

../api/org/checkerframework/checker/formatter/qual/InvalidFormat.html
../api/org/checkerframework/checker/formatter/qual/FormatBottom.html
../api/org/checkerframework/checker/formatter/qual/UnknownFormat.html
../api/org/checkerframework/checker/formatter/qual/FormatMethod.html
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#INT
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#GENERAL
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#CHAR
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#INT
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#FLOAT

TIME requires that a format argument represents a date or time. Specifically, long, Long, Calendar, and Date are
allowed. Applicable for conversions t, T.

UNUSED imposes no restrictions on a format argument. This is the case if a format argument is not used as replacement
for any format specifier. "%2$s" for example ignores the first format argument.

All conversion categories accept null. Furthermore, null is always a legal argument array, because it is treated as
supplying null to each format specifer. For example, String.format("%d %f %s", (Object[]) null) evaluates
to "null null null".

The same format argument may serve as a replacement for multiple format specifiers. Until now, we have assumed
that the format specifiers simply consume format arguments left to right. But there are two other ways for a format
specifier to select a format argument:

• n$ specifies a one-based index n. In the format string "%2$s", the format specifier selects the second format
argument.

• The < flag references the format argument that was used by the previous format specifier. In the format string "%d
%<d" for example, both format specifiers select the first format argument.

In the following example, the format argument must be compatible with both conversion categories, and can therefore
be neither a Character nor a long.

format("Char %1$c, Int %1$d", (int)42); // OK
format("Char %1$c, Int %1$d", new Character(42)); // error
format("Char %1$c, Int %1$d", (long)42); // error

Only three additional conversion categories are needed represent all possible intersections of previously-mentioned
conversion categories:

NULL is used if no object of any type can be passed as parameter. In this case, the only legal value is null. For
example, the format string "%1$f %1$c" requires that the first format argument be null. Passing either 4 or 4.2
would lead to an exception.

CHAR_AND_INT is used if a format argument is restricted by a CHAR and a INT conversion category (CHAR ∩ INT).
INT_AND_TIME is used if a format argument is restricted by an INT and a TIME conversion category (INT ∩ TIME).

All other intersections lead to already existing conversion categories. For example, GENERAL ∩ CHAR = CHAR and
UNUSED ∩ GENERAL = GENERAL.

Figure 15.2 summarizes the subset relationship among all conversion categories.

15.2.2 Subtyping rules for @Format
Here are the subtyping rules among different @Format qualifiers. It is legal to:

• use a format string with a weaker (less restrictive) conversion category than required.
• use a format string with fewer format specifiers than required. Although this is legal a warning is issued because

most occurrences of this are due to programmer error.

The following example shows the subtyping rules in action:

@Format({FLOAT, INT}) String f;

f = "%f %d"; // OK
f = "%s %d"; // OK, %s is weaker than %f
f = "%f"; // warning: last argument is ignored
f = "%f %d %s"; // error: too many arguments
f = "%d %d"; // error: %d is not weaker than %f

String.format(f, 0.8, 42);

118

../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#TIME
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#UNUSED
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#NULL
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#CHAR_AND_INT
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#CHAR
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#INT
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#INT_AND_TIME
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#INT
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#TIME
../api/org/checkerframework/checker/formatter/qual/Format.html

GENERAL

FLOAT

UNUSED

INT TIMECHAR

CHAR_AND_INT INT_AND_TIME

NULL

Figure 15.2: The subset relationship among conversion categories.

15.3 What the Format String Checker checks
If the Format String Checker issues no errors, it provides the following guarantees:

1. The following guarantees hold for every format method invocation:

(a) The format method’s first parameter (or second if a Locale is provided) is a valid format string (or null).
(b) A warning is issued if one of the format string’s conversion categories is UNUSED.
(c) None of the format string’s conversion categories is NULL.

2. If the format arguments are passed to the format method as varargs, the Format String Checker guarantees the
following additional properties:

(a) No fewer format arguments are passed than required by the format string.
(b) A warning is issued if more format arguments are passed than required by the format string.
(c) Every format argument’s type satisfies its conversion category’s restrictions.

3. If the format arguments are passed to the format method as an array, a warning is issued by the Format String
Checker.

Following are examples for every guarantee:

String.format("%d", 42); // OK
String.format(Locale.GERMAN, "%d", 42); // OK
String.format(new Object()); // error (1a)
String.format("%y"); // error (1a)
String.format("%2$s", "unused", "used"); // warning (1b)
String.format("%1$d %1$f", 5.5); // error (1c)
String.format("%1$d %1$f %d", null, 6); // error (1c)
String.format("%s"); // error (2a)
String.format("%s", "used", "ignored"); // warning (2b)
String.format("%c",4.2); // error (2c)
String.format("%c", (String)null); // error (2c)
String.format("%1$d %1$f", new Object[]{1}); // warning (3)
String.format("%s", new Object[]{"hello"}); // warning (3)

119

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Locale.html

15.3.1 Possible false alarms
There are three cases in which the Format String Checker may issue a warning or error, even though the code cannot
fail at run time. (These are in addition to the general conservatism of a type system: code may be correct because of
application invariants that are not captured by the type system.) In each of these cases, you can rewrite the code, or you
can manually check it and write a @SuppressWarnings annotation if you can reason that the code is correct.

Case 1b: Unused format arguments. It is legal to provide more arguments than are required by the format string;
Java ignores the extras. However, this is an uncommon case. In practice, a mismatch between the number of format
specifiers and the number of format arguments is usually an error.

Case 1c: Format arguments that can only be null. It is legal to write a format string that permits only null arguments
and throws an exception for any other argument. An example is String.format("%1$d %1$f", null). The Format
String Checker forbids such a format string. If you should ever need such a format string, simply replace the problematic
format specifier with "null". For example, you would replace the call above by String.format("null null").

Case 3: Array format arguments. The Format String Checker performs no analysis of arrays, only of varargs
invocations. It is better style to use varargs when possible.

15.3.2 Possible missed alarms
The Format String Checker helps prevent bugs by detecting, at compile time, which invocations of format methods will
fail. While the Format String Checker finds most of these invocations, there are cases in which a format method call
will fail even though the Format String Checker issued neither errors nor warnings. These cases are:

1. The format string is null. Use the Nullness Checker to prevent this.
2. A format argument’s toString method throws an exception.
3. A format argument implements the Formattable interface and throws an exception in the formatTo method.
4. A format argument’s conversion category is CHAR or CHAR_AND_INT, and the passed value is an int or Integer,

and Character.isValidCodePoint(argument) returns false.

The following examples illustrate these limitations:

class A {
public String toString() {

throw new Error();
}

}

class B implements Formattable {
public void formatTo(Formatter fmt, int f,

int width, int precision) {
throw new Error();

}
}

// The checker issues no errors or warnings for the
// following illegal invocations of format methods.
String.format(null); // NullPointerException (1)
String.format("%s", new A()); // Error (2)
String.format("%s", new B()); // Error (3)
String.format("%c", (int)-1); // IllegalFormatCodePointException (4)

120

15.4 Implicit qualifiers
The Format String Checker adds implicit qualifiers, reducing the number of annotations that must appear in your code
(see Section 32.4). The checker implicitly adds the @Format qualifier with the appropriate conversion categories to any
String literal that is a valid format string.

15.5 @FormatMethod
Your project may contain methods that forward their arguments to a format method. Consider for example the following
log method:

@FormatMethod
void log(String format, Object... args) {

if (enabled) {
logfile.print(indent_str);
logfile.printf(format , args);

}
}

You should annotate such a method with the @FormatMethod annotation, which indicates that the String argument
is a format string for the remaining arguments.

15.6 Testing whether a format string is valid
The Format String Checker automatically determines whether each String literal is a valid format string or not. When
a string is computed or is obtained from an external resource, then the string must be trusted or tested.

One way to test a string is to call the FormatUtil.asFormat method to check whether the format string is valid
and its format specifiers match certain conversion categories. If this is not the case, asFormat raises an exception. Your
code should catch this exception and handle it gracefully.

The following code examples may fail at run time, and therefore they do not type check. The type-checking errors
are indicated by comments.

Scanner s = new Scanner(System.in);
String fs = s.next();
System.out.printf(fs, "hello", 1337); // error: fs is not known to be a format string

Scanner s = new Scanner(System.in);
@Format({GENERAL, INT}) String fs = s.next(); // error: fs is not known to have the given type
System.out.printf(fs, "hello", 1337); // OK

The following variant does not throw a run-time error, and therefore passes the type-checker:

Scanner s = new Scanner(System.in);
String format = s.next()
try {

format = FormatUtil.asFormat(format, GENERAL, INT);
} catch (IllegalFormatException e) {

// Replace this by your own error handling.
System.err.println("The user entered the following invalid format string: " + format);
System.exit(2);

}
// fs is now known to be of type: @Format({GENERAL, INT}) String
System.out.printf(format, "hello", 1337);

121

../api/org/checkerframework/checker/formatter/qual/FormatMethod.html
../api/org/checkerframework/checker/formatter/util/FormatUtil.html#asFormat(java.lang.String,org.checkerframework.checker.formatter.qual.ConversionCategory...)

To use the FormatUtil class, the checker-util.jar file must be on the classpath at run time.

122

../api/org/checkerframework/checker/formatter/util/FormatUtil.html

Chapter 16

Internationalization Format String Checker
(I18n Format String Checker)

The Internationalization Format String Checker, or I18n Format String Checker, prevents use of incorrect i18n format
strings.

If the I18n Format String Checker issues no warnings or errors, then MessageFormat.format will raise no error at
run time. “I18n” is short for “internationalization” because there are 18 characters between the “i” and the “n”.

Here are the examples of errors that the I18n Format Checker detects at compile time.

// Warning: the second argument is missing.
MessageFormat.format("{0} {1}", 3.1415);
// String argument cannot be formatted as Time type.
MessageFormat.format("{0, time}", "my string");
// Invalid format string: unknown format type: thyme.
MessageFormat.format("{0, thyme}", new Date());
// Invalid format string: missing the right brace.
MessageFormat.format("{0", new Date());
// Invalid format string: the argument index is not an integer.
MessageFormat.format("{0.2, time}", new Date());
// Invalid format string: "#.#.#" subformat is invalid.
MessageFormat.format("{0, number, #.#.#}", 3.1415);

For instructions on how to run the Internationalization Format String Checker, see Section 16.6.
The Internationalization Checker or I18n Checker (Chapter 17.2, page 130) has a different purpose. It verifies that

your code is properly internationalized: any user-visible text should be obtained from a localization resource and all
keys exist in that resource.

The paper “A type system for format strings” [WKSE14] (ISSTA 2014, https://homes.cs.washington.edu/
~mernst/pubs/format-string-issta2014-abstract.html) gives more details about the Internationalization For-
mat String Checker and the Format String Checker (Chapter 15, page 116);

16.1 Internationalization Format String Checker annotations
The MessageFormat documentation specifies the syntax of the i18n format string.

These are the qualifiers that make up the I18n Format String type system. Figure 16.1 shows their subtyping
relationships.

@I18nFormat represents a valid i18n format string. For example, @I18nFormat({GENERAL, NUMBER, UNUSED,
DATE}) is a legal type for "{0}{1, number} {3, date}", indicating that when the format string is used, the

123

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/text/MessageFormat.html#format(java.lang.String,java.lang.Object...)
https://homes.cs.washington.edu/~mernst/pubs/format-string-issta2014-abstract.html
https://homes.cs.washington.edu/~mernst/pubs/format-string-issta2014-abstract.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/text/MessageFormat.html
../api/org/checkerframework/checker/i18nformatter/qual/I18nFormat.html

@I18nFormatBottom

@I18nUnknownFormat

@I18nInvalidFormat@I18nFormat(...,) @I18nFormatFor("#1") @I18nFormatFor("#n")...

Figure 16.1: The Internationalization Format String Checker type qualifier hierarchy. The type qualifiers are applicable
to CharSequence and its subtypes. The figure does not show the subtyping rules among different @I18nFormat(...)
qualifiers; see Section 16.2. All @I18nFormatFor annotations are unrelated by subtyping, unless they are identical.
The qualifiers in gray are used internally by the checker and should never be written by a programmer.

first argument should be of GENERAL conversion category, the second argument should be of NUMBER conversion
category, and so on. Conversion categories such as GENERAL are described in Section 16.2.

@I18nFormatFor indicates that the qualified type is a valid i18n format string for use with some array of values.
For example, @I18nFormatFor("#2") indicates that the string can be used to format the contents of the second
parameter array. The argument is a Java expression whose syntax is explained in Section 32.8. An example of its
use is:

static void method(@I18nFormatFor("#2") String format, Object... args) {
// the body may use the parameters like this:
MessageFormat.format(format, args);

}

method("{0, number} {1}", 3.1415, "A string"); // OK
// error: The string "hello" cannot be formatted as a Number.
method("{0, number} {1}", "hello", "goodbye");

@I18nInvalidFormat represents an invalid i18n format string. Programmers are not allowed to write this
annotation. It is only used internally by the type checker.

@I18nUnknownFormat represents any string. The string might or might not be a valid i18n format string. Program-
mers are not allowed to write this annotation.

@I18nFormatBottom indicates that the value is definitely null. Programmers are not allowed to write this
annotation.

16.2 Conversion categories
In a message string, the optional second element within the curly braces is called a format type and must be one of
number, date, time, and choice. These four format types correspond to different conversion categories. date and
time correspond to DATE in the conversion categories figure. choice corresponds to NUMBER. The format type
restricts what arguments are legal. For example, a date argument is not compatible with the number format type, i.e.,
MessageFormat.format("{0, number}", new Date()) will throw an exception.

The I18n Checker represents the possible arguments via conversion categories. A conversion category defines a set
of restrictions or a subtyping rule.

Figure 16.2 summarizes the subset relationship among all conversion categories.

16.3 Subtyping rules for @I18nFormat
Here are the subtyping rules among different @I18nFormat qualifiers. It is legal to:

• use a format string with a weaker (less restrictive) conversion category than required.

124

../api/org/checkerframework/checker/i18nformatter/qual/I18nFormat.html
../api/org/checkerframework/checker/i18nformatter/qual/I18nFormatFor.html
../api/org/checkerframework/checker/i18nformatter/qual/I18nFormatFor.html
../api/org/checkerframework/checker/i18nformatter/qual/I18nInvalidFormat.html
../api/org/checkerframework/checker/i18nformatter/qual/I18nUnknownFormat.html
../api/org/checkerframework/checker/i18nformatter/qual/I18nFormatBottom.html

UNUSED

GENERAL

DATE

NUMBER

Figure 16.2: The subset relationship among i18n conversion categories.

• use a format string with fewer format specifiers than required. Although this is legal a warning is issued because
most occurrences of this are due to programmer error.

The following example shows the subtyping rules in action:

@I18nFormat({NUMBER, DATE}) String f;

f = "{0, number, #.#} {1, date}"; // OK
f = "{0, number} {1}"; // OK, GENERAL is weaker (less restrictive) than DATE
f = "{0} {1, date}"; // OK, GENERAL is weaker (less restrictive) than NUMBER
f = "{0, number}"; // warning: last argument is ignored
f = "{0}"; // warning: last argument is ignored
f = "{0, number} {1, number}"; // error: NUMBER is stronger (more restrictive) than DATE
f = "{0} {1} {2}"; // error: too many arguments

The conversion categories are:

UNUSED indicates an unused argument. For example, in MessageFormat.format("{0, number} {2, number}",
3.14, "Hello", 2.718) , the second argument Hello is unused. Thus, the conversion categories for the
format, 0, number 2, number, is (NUMBER, UNUSED, NUMBER).

GENERAL means that any value can be supplied as an argument.
DATE is applicable for date, time, and number types. An argument needs to be of Date, Time, or Number type or a

subclass of them, including Timestamp and the classes listed immediately below.
NUMBER means that the argument needs to be of Number type or a subclass: Number, AtomicInteger, AtomicLong,

BigDecimal, BigInteger, Byte, Double, Float, Integer, Long, Short.

16.4 What the Internationalization Format String Checker checks
The Internationalization Format String Checker checks calls to the i18n formatting method MessageFormat.format
and guarantees the following:

1. The checker issues a warning for the following cases:

(a) There are missing arguments from what is required by the format string.
MessageFormat.format("{0, number} {1, number}", 3.14); // Output: 3.14 {1}

(b) More arguments are passed than what is required by the format string.
MessageFormat.format("{0, number}", 1, new Date());
MessageFormat.format("{0, number} {0, number}", 3.14, 3.14);

125

../api/org/checkerframework/checker/i18nformatter/qual/I18nConversionCategory.html#UNUSED
../api/org/checkerframework/checker/i18nformatter/qual/I18nConversionCategory.html#GENERAL
../api/org/checkerframework/checker/i18nformatter/qual/I18nConversionCategory.html#DATE
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Date.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Time.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Number.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.sql/java/sql/Timestamp.html
../api/org/checkerframework/checker/i18nformatter/qual/I18nConversionCategory.html#NUMBER
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Number.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/atomic/AtomicInteger.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/atomic/AtomicLong.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/math/BigDecimal.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/math/BigInteger.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Byte.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Double.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Float.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Integer.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Long.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Short.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/text/MessageFormat.html#format(java.lang.String,java.lang.Object...)

This does not cause an error at run time, but it often indicates a programmer mistake. If it is intentional,
then you should suppress the warning (see Chapter 33).

(c) Some argument is an array of objects.
MessageFormat.format("{0, number} {1}", array);
The checker cannot verify whether the format string is valid, so the checker conservatively issues a warning.
This is a limitation of the Internationalization Format String Checker.

2. The checker issues an error for the following cases:

(a) The format string is invalid.
• Unmatched braces.
MessageFormat.format("{0, time", new Date());

• The argument index is not an integer or is negative.
MessageFormat.format("{0.2, time}", new Date());
MessageFormat.format("{-1, time}", new Date());

• Unknown format type.
MessageFormat.format("{0, foo}", 3.14);

• Missing a format style required for choice format.
MessageFormat.format("{0, choice}", 3.14);

• Wrong format style.
MessageFormat.format("{0, time, number}", 3.14);

• Invalid subformats.
MessageFormat.format("{0, number, #.#.#}", 3.14)

(b) Some argument’s type doesn’t satisfy its conversion category.
MessageFormat.format("{0, number}", new Date());

The Checker also detects illegal assignments: assigning a non-format-string or an incompatible format string to a
variable declared as containing a specific type of format string. For example,

@I18nFormat({GENERAL, NUMBER}) String format;
// OK.
format = "{0} {1, number}";
// OK, GENERAL is weaker (less restrictive) than NUMBER.
format = "{0} {1}";
// OK, it is legal to have fewer arguments than required (less restrictive).
// But the warning will be issued instead.
format = "{0}";

// Error, the format string is stronger (more restrictive) than the specifiers.
format = "{0} {1} {2}";
// Error, the format string is more restrictive. NUMBER is a subtype of GENERAL.
format = "{0, number} {1, number}";

16.5 Resource files
A programmer rarely writes an i18n format string literally. (The examples in this chapter show that for simplicity.)
Rather, the i18n format strings are read from a resource file. The program chooses a resource file at run time depending
on the locale (for example, different resource files for English and Spanish users).
For example, suppose that the resource1.properties file contains

key1 = The number is {0, number}.

Then code such as the following:

126

String formatPattern = ResourceBundle.getBundle("resource1").getString("key1");
System.out.println(MessageFormat.format(formatPattern, 2.2361));

will output “The number is 2.2361.” A different resource file would contain key1 = El número es {0, number}.
When you run the I18n Format String Checker, you need to indicate which resource file it should check. If you

change the resource file or use a different resource file, you should re-run the checker to ensure that you did not make
an error. The I18n Format String Checker supports two types of resource files: ResourceBundles and property files. The
example above shows use of resource bundles. For more about checking property files, see Chapter 17, page 129.

16.6 Running the Internationalization Format Checker
The checker can be invoked by running one of the following commands (with the whole command on one line).

• Using ResourceBundles:
javac -processor org.checkerframework.checker.i18nformatter.I18nFormatterChecker -Abundlenames=MyResource MyFile.java

• Using property files:
javac -processor org.checkerframework.checker.i18nformatter.I18nFormatterChecker -Apropfiles=MyResource.properties

MyFile.java

• Not using a property file. Use this if the programmer hard-coded the format patterns without loading them from a
property file.
javac -processor org.checkerframework.checker.i18nformatter.I18nFormatterChecker MyFile.java

16.7 Testing whether a string has an i18n format type
In the case that the checker cannot infer the i18n format type of a string, you can use the I18nFormatUtil.hasFormat
method to define the type of the string in the scope of a conditional statement.

I18nFormatUtil.hasFormat returns true if the given string has the given i18n format type.

For an example, see Section 16.8.
To use the I18nFormatUtil class, the checker-util.jar file must be on the classpath at run time.

16.8 Examples of using the Internationalization Format Checker
• Using MessageFormat.format.

// suppose the bundle "MyResource" contains: key1={0, number} {1, date}
String value = ResourceBundle.getBundle("MyResource").getString("key1");
MessageFormat.format(value, 3.14, new Date()); // OK
// error: incompatible types in argument; found String, expected number
MessageFormat.format(value, "Text", new Date());

• Using the I18nFormatUtil.hasFormat method to check whether a format string has particular conversion
categories.

void test1(String format) {
if (I18nFormatUtil.hasFormat(format, I18nConversionCategory.GENERAL,

I18nConversionCategory.NUMBER)) {
MessageFormat.format(format, "Hello", 3.14); // OK
// error: incompatible types in argument; found String, expected number
MessageFormat.format(format, "Hello", "Bye");

127

../api/org/checkerframework/checker/i18nformatter/util/I18nFormatUtil.html#hasFormat(java.lang.String,org.checkerframework.checker.i18nformatter.qual.I18nConversionCategory...)
../api/org/checkerframework/checker/i18nformatter/util/I18nFormatUtil.html#hasFormat(java.lang.String,org.checkerframework.checker.i18nformatter.qual.I18nConversionCategory...)
../api/org/checkerframework/checker/i18nformatter/util/I18nFormatUtil.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/text/MessageFormat.html#format(java.lang.String,java.lang.Object...)
../api/org/checkerframework/checker/i18nformatter/util/I18nFormatUtil.html#hasFormat(java.lang.String,org.checkerframework.checker.i18nformatter.qual.I18nConversionCategory...)

// error: missing arguments; expected 2 but 1 given
MessageFormat.format(format, "Bye");
// error: too many arguments; expected 2 but 3 given
MessageFormat.format(format, "A String", 3.14, 3.14);

}
}

• Using @I18nFormatFor to ensure that an argument is a particular type of format string.

static void method(@I18nFormatFor("#2") String f, Object... args) {...}

// OK, MessageFormat.format(...) would return "3.14 Hello greater than one"
method("{0, number} {1} {2, choice,0#zero|1#one|1<greater than one}",

3.14, "Hello", 100);

// error: incompatible types in argument; found String, expected number
method("{0, number} {1}", "Bye", "Bye");

• Annotating a string with @I18nFormat.

@I18nFormat({I18nConversionCategory.DATE}) String;
s1 = "{0}";
s1 = "{0, number}"; // error: incompatible types in assignment

128

../api/org/checkerframework/checker/i18nformatter/qual/I18nFormatFor.html
../api/org/checkerframework/checker/i18nformatter/qual/I18nFormat.html

Chapter 17

Property File Checker

The Property File Checker ensures that a property file or resource bundle (both of which act like maps from keys to
values) is only accessed with valid keys. Accesses without a valid key either return null or a default value, which
can lead to a NullPointerException or hard-to-trace behavior. The Property File Checker (Section 17.1, page 129)
ensures that the used keys are found in the corresponding property file or resource bundle.

We also provide two specialized checkers. An Internationalization Checker (Section 17.2, page 130) verifies
that code is properly internationalized. A Compiler Message Key Checker (Section 17.3, page 130) verifies that
compiler message keys used in the Checker Framework are declared in a property file. This is an example of a simple
specialization of the property file checker, and the Checker Framework source code shows how it is used.

It is easy to customize the property key checker for other related purposes. Take a look at the source code of the
Compiler Message Key Checker and adapt it for your purposes.

17.1 General Property File Checker
The general Property File Checker ensures that a resource key is located in a specified property file or resource bundle.

The annotation @PropertyKey indicates that the qualified CharSequence is a valid key found in the property file
or resource bundle. You do not need to annotate String literals. The checker looks up every String literal in the
specified property file or resource bundle, and adds annotations as appropriate.

If you pass a CharSequence (including String) variable to be eventually used as a key, you also need to annotate
all these variables with @PropertyKey.

The checker can be invoked by running the following command:

javac -processor org.checkerframework.checker.propkey.PropertyKeyChecker
-Abundlenames=MyResource MyFile.java ...

You must specify the resources, which map keys to strings. The checker supports two types of resource: resource
bundles and property files. You can specify one or both of the following two command-line options:

1. -Abundlenames=resource_name
resource_name is the name of the resource to be used with ResourceBundle.getBundle(). The checker
uses the default Locale and ClassLoader in the compilation system. (For a tutorial about ResourceBundles,
see https://docs.oracle.com/javase/tutorial/i18n/resbundle/concept.html.) Multiple resource
bundle names are separated by colons ’:’.

2. -Apropfiles=prop_file
prop_file is the name of a properties file that maps keys to values. The file format is described in the Javadoc for
Properties.load(). Multiple files are separated by Java’s File.pathSeparator (semicolon “;” on Windows,
colon “:” on Linux and Mac).

129

../api/org/checkerframework/checker/propkey/qual/PropertyKey.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/ResourceBundle.html#getBundle(java.lang.String,java.util.Locale,java.lang.ClassLoader)
https://docs.oracle.com/javase/tutorial/i18n/resbundle/concept.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Properties.html#load(java.io.Reader)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/io/File.html#pathSeparator

17.2 Internationalization Checker (I18n Checker)
The Internationalization Checker, or I18n Checker, verifies that your code is properly internationalized. International-
ization is the process of designing software so that it can be adapted to different languages and locales without needing
to change the code. Localization is the process of adapting internationalized software to specific languages and locales.

Internationalization is sometimes called i18n, because the word starts with “i”, ends with “n”, and has 18 characters
in between. Localization is similarly sometimes abbreviated as l10n.

The checker focuses on one aspect of internationalization: user-visible text should be presented in the user’s own
language, such as English, French, or German. This is achieved by looking up keys in a localization resource, which
maps keys to user-visible text. For instance, one version of a resource might map "CANCEL_STRING" to "Cancel", and
another version of the same resource might map "CANCEL_STRING" to "Abbrechen".

There are other aspects to localization, such as formatting of dates (3/5 vs. 5/3 for March 5), that the checker does
not check.

The Internationalization Checker verifies these two properties:

1. Any user-visible text should be obtained from a localization resource. For example, String literals should not be
output to the user.

2. When looking up keys in a localization resource, the key should exist in that resource. This check catches
incorrect or misspelled localization keys.

If you use the Internationalization Checker, you may want to also use the Internationalization Format String Checker,
or I18n Format String Checker (Chapter 16). It verifies that internationalization format strings are well-formed and
used with arguments of the proper type, so that MessageFormat.format does not fail at run time.

17.2.1 Internationalization annotations
The Internationalization Checker supports two type systems:

@Localized indicates that the qualified CharSequence is a message that has been localized and/or formatted with
respect to the used locale. It is a subtype of @UnknownLocalized, which is the default and which programmers
do not need to write.

@LocalizableKey indicates that the qualified CharSequence or Object is a valid key found in the localization
resource. This annotation is a specialization of the @PropertyKey annotation, that gets checked by the general
Property Key Checker. It is a subtype of @UnknownLocalizableKey, which is the default and which programmers
do not need to write.

You may need to add the @Localized annotation to more methods in the JDK or other libraries, or in your own
code.

17.2.2 Running the Internationalization Checker
The Internationalization Checker can be invoked by running the following command:

javac -processor org.checkerframework.checker.i18n.I18nChecker -Abundlenames=MyResource MyFile.java ...

You must specify the localization resource, which maps keys to user-visible text. Like the general Property Key
Checker, the Internationalization Checker supports two types of localization resource: ResourceBundles using the
-Abundlenames=resource_name option or property files using the -Apropfiles=prop_file option.

17.3 Compiler Message Key Checker
The Checker Framework uses compiler message keys to output error messages. These keys are substituted by localized
strings for user-visible error messages. Using keys instead of the localized strings in the source code enables easier

130

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/text/MessageFormat.html#format(java.lang.String,java.lang.Object...)
../api/org/checkerframework/checker/i18n/qual/Localized.html
../api/org/checkerframework/checker/i18n/qual/UnknownLocalized.html
../api/org/checkerframework/checker/i18n/qual/LocalizableKey.html
../api/org/checkerframework/checker/i18n/qual/UnknownLocalizableKey.html

testing, as the expected message keys can stay unchanged while the localized strings can still be modified. We use the
Compiler Message Key Checker to ensure that all internal keys are correctly localized. Instead of using the Property
File Checker, we use a specialized checker, giving us more precise documentation of the intended use of Strings.

The single annotation used by this checker is @CompilerMessageKey. The Checker Framework is completely
annotated; for example, class org.checkerframework.framework.source.Result uses @CompilerMessageKey in
methods failure and warning. For most users of the Checker Framework there will be no need to annotate any
Strings, as the checker looks up all String literals and adds annotations as appropriate.

The Compiler Message Key Checker can be invoked by running the following command:

javac -processor org.checkerframework.checker.compilermsgs.CompilerMessagesChecker
-Apropfiles=messages.properties MyFile.java ...

You must specify the resource, which maps compiler message keys to user-visible text. The checker supports the
same options as the general property key checker. Within the Checker Framework we only use property files, so the
-Apropfiles=prop_file option should be used.

131

../api/org/checkerframework/checker/compilermsgs/qual/CompilerMessageKey.html

Chapter 18

Signature String Checker for string
representations of types

The Signature String Checker, or Signature Checker for short, verifies that string representations of types and signatures
are used correctly.

Java defines multiple different string representations for types (see Section 18.1), and it is easy to misuse them or to
miss bugs during testing. Using the wrong string format leads to a run-time exception or an incorrect result. This is a
particular problem for fully qualified and binary names, which are nearly the same — they differ only for nested classes
and arrays.

The paper “Building and using pluggable type-checkers” [DDE+11] (ICSE 2011, https://homes.cs.washington.
edu/~mernst/pubs/pluggable-checkers-icse2011.pdf) describes case studies of the Signature String Checker.

18.1 Signature annotations
Java defines six formats for the string representation of a type. There is an annotation for each of these representations.
Figure 18.1 shows how they are related; examples appear in a table below.

@FullyQualifiedName A fully qualified name (JLS §6.7), such as mypackage.Outer.Inner, is used in Java
code and in messages to the user.

@ClassGetName The type representation used by the Class.getName(), Class.forName(String), and
Class.forName(String, boolean, ClassLoader) methods. This format is: for any non-array type, the
binary name; and for any array type, a format like the FieldDescriptor field descriptor, but using “.” where the
field descriptor uses “/”. See examples below.

@FieldDescriptor A field descriptor (JVMS §4.3.2), such as Lmypackage/Outer$Inner;, is used in a .class
file’s constant pool, for example to refer to other types. It abbreviates primitive types and array types. It uses
internal form (binary names, but with / instead of .; see JVMS §4.2) for class names. See examples below.

@BinaryName A binary name (JLS §13.1), such as mypackage.Outer$Inner, is the conceptual name of a type in
its own .class file.

@InternalForm The internal form (JVMS §4.2), such as mypackage/Outer$Inner, is how a class name is actually
represented in its own .class file. It is also known as the “syntax of binary names that appear in class file
structures”. It is the same as the binary name, but with periods (.) replaced by slashes (/). Programmers more
often use the binary name, leaving the internal form as a JVM implementation detail.

@ClassGetSimpleName The type representation returned by the Class.getSimpleName() method. This format
is not required by any method in the JDK, so you will rarely write it in source code. The string can be empty.
This is not the same as the “simple name” defined in (JLS §6.2), which is the same as @Identifier.

@FqBinaryName An extension of binary name format to represent primitives and arrays. It is like @FullyQualifiedName,
but using “$” instead of “.” to separate nested classes from their enclosing classes. For example, "pkg.Outer$Inner"

132

https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-icse2011.pdf
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-icse2011.pdf
../api/org/checkerframework/checker/signature/qual/FullyQualifiedName.html
https://docs.oracle.com/javase/specs/jls/se17/html/jls-6.html#jls-6.7
../api/org/checkerframework/checker/signature/qual/ClassGetName.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Class.html#getName()
https://docs.oracle.com/javase/specs/jvms/se17/html/jvms-4.html#jvms-4.3.2
../api/org/checkerframework/checker/signature/qual/FieldDescriptor.html
https://docs.oracle.com/javase/specs/jvms/se17/html/jvms-4.html#jvms-4.3.2
https://docs.oracle.com/javase/specs/jvms/se17/html/jvms-4.html#jvms-4.2.1
../api/org/checkerframework/checker/signature/qual/BinaryName.html
https://docs.oracle.com/javase/specs/jls/se17/html/jls-13.html#jls-13.1
../api/org/checkerframework/checker/signature/qual/InternalForm.html
https://docs.oracle.com/javase/specs/jvms/se17/html/jvms-4.html#jvms-4.2
../api/org/checkerframework/checker/signature/qual/ClassGetSimpleName.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Class.html#getSimpleName()
https://docs.oracle.com/javase/specs/jls/se17/html/jls-6.html#jls-6.2
../api/org/checkerframework/checker/signature/qual/Identifier.html
../api/org/checkerframework/checker/signature/qual/FqBinaryName.html
../api/org/checkerframework/checker/signature/qual/FullyQualifiedName.html

@ClassGetSimpleName @InternalForm @FieldDescriptor@ClassGetName

@BinaryName@FullyQualifiedName

@SignatureUnknown

@ArrayWithoutPackage

@FieldDescriptorWithoutPackage

@Identifier

@FieldDescriptorForPrimitive

@DotSeparatedIdentifiers

@FqBinaryName

@PrimitiveType

@IdentifierOrPrimitiveType

Figure 18.1: Partial type hierarchy for the Signature type system, showing string representations of a Java type. The
type qualifiers are applicable to CharSequence and its subtypes. Programmers usually only need to write the boldfaced
qualifiers. The other qualifiers (and some not shown) are included to improve the internal handling of String literals.

or "pkg.Outer$Inner[][]" or "int[]".
@CanonicalName Syntactically identical to @FullyQualifiedName, but some classes have multiple fully-qualified

names, only one of which is canonical (see JLS §6.7).

Other type qualifiers are the intersection of two or more qualifiers listed above; for example, a @DotSeparatedIdentifiers
is a string that is a valid fully-qualified name and a valid binary name. A programmer should never or rarely use these
qualifiers, and you can ignore them as implementation details of the Signature Checker, though you might occasionally
see them in an error message. These qualifiers exist to give literals sufficiently precise types that they can be used in any
appropriate context.

Java also defines other string formats for a type, notably qualified names (JLS §6.2). The Signature Checker does
not include annotations for these.

Here are examples of the supported formats:

fully qualified name Class.getName field descriptor binary name internal form Class.getSimpleName
int int I n/a for primitive type n/a for primitive type int
int[][] [[I [[I n/a for array type n/a for array type int[][]
MyClass MyClass LMyClass; MyClass MyClass MyClass
MyClass[] [LMyClass; [LMyClass; n/a for array type n/a for array type MyClass[]
n/a for anonymous class MyClass$22 LMyClass$22; MyClass$22 MyClass$22 (empty string)
n/a for array of anon. class [LMyClass$22; [LMyClass$22; n/a for array type n/a for array type []
java.lang.Integer java.lang.Integer Ljava/lang/Integer; java.lang.Integer java/lang/Integer Integer
java.lang.Integer[] [Ljava.lang.Integer; [Ljava/lang/Integer; n/a for array type n/a for array type Integer[]
pkg.Outer.Inner pkg.Outer$Inner Lpkg/Outer$Inner; pkg.Outer$Inner pkg/Outer$Inner Inner
pkg.Outer.Inner[] [Lpkg.Outer$Inner; [Lpkg/Outer$Inner; n/a for array type n/a for array type Inner[]
n/a for anonymous class pkg.Outer$22 Lpkg/Outer$22; pkg.Outer$22 pkg/Outer$22 (empty string)
n/a for array of anon. class [Lpkg.Outer$22; [Lpkg/Outer$22; n/a for array type n/a for array type []

Java defines one format for the string representation of a method signature:

@MethodDescriptor A method descriptor (JVMS §4.3.3) identifies a method’s signature (its parameter and return
types), just as a field descriptor identifies a type. The method descriptor for the method

133

../api/org/checkerframework/checker/signature/qual/CanonicalName.html
../api/org/checkerframework/checker/signature/qual/FullyQualifiedName.html
https://docs.oracle.com/javase/specs/jls/se17/html/jls-6.html#jls-6.7
../api/org/checkerframework/checker/signature/qual/DotSeparatedIdentifiers.html
https://docs.oracle.com/javase/specs/jls/se17/html/jls-6.html#jls-6.2
../api/org/checkerframework/checker/signature/qual/MethodDescriptor.html
https://docs.oracle.com/javase/specs/jvms/se17/html/jvms-4.html#jvms-4.3.3

Object mymethod(int i, double d, Thread t)

is

(IDLjava/lang/Thread;)Ljava/lang/Object;

18.1.1 How to choose which annotation to use
Sometimes, there are multiple valid annotations for a value. As an example, a non-primitive non-array type is represented
identically by @BinaryName, @ClassGetName, and @FqBinaryName. Using the lowest type in the type hierarchy (in
this case, @BinaryName) has two advantages. First, it acts as documentation that the value is never a primitive or
array. Second, it permits the value to be used in any of the three contexts: as a @BinaryName, a @ClassGetName, or a
@FqBinaryName.

Casting to @BinaryName from one of the other types adds clutter if it is not necessary. Suppose that a method
returns a @ClassGetName and the value will only be used in contexts that require a @ClassGetName (say, it is passed
to a method that requires an argument of that type). Then there is no point in casting to @BinaryName in between, even
if you know the type being represented is not a primitive or an array.

18.2 What the Signature Checker checks
Certain methods in the JDK, such as Class.forName, are annotated indicating the type they require. The Signature
Checker ensures that clients call them with the proper arguments. The Signature Checker does not reason about string
operations such as concatenation, substring, parsing, etc.

To run the Signature Checker, supply the -processor org.checkerframework.checker.signature.SignatureChecker
command-line option to javac.

134

Chapter 19

GUI Effect Checker

One of the most prevalent GUI-related bugs is invalid UI update or invalid thread access: accessing the UI directly
from a background thread.

Most GUI frameworks (including Android, AWT, Swing, and SWT) create a single distinguished thread — the UI
event thread — that handles all GUI events and updates. To keep the interface responsive, any expensive computation
should be offloaded to background threads (also called worker threads). If a background thread accesses a UI element
such as a JPanel (by calling a JPanel method or reading/writing a field of JPanel), the GUI framework raises an exception
that terminates the program. To fix the bug, the background thread should send a request to the UI thread to perform the
access on its behalf.

It is difficult for a programmer to remember which methods may be called on which thread(s). The GUI Effect
Checker solves this problem. The programmer annotates each method to indicate whether:

• It accesses no UI elements (and may run on any thread); such a method is said to have the “safe effect”.
• It may access UI elements (and must run on the UI thread); such a method is said to have the “UI effect”.

The GUI Effect Checker verifies these effects and statically enforces that UI methods are only called from the
correct thread. A method with the safe effect is prohibited from calling a method with the UI effect.

For example, the effect system can reason about when method calls must be dispatched to the UI thread via a
message such as Display.syncExec.

@SafeEffect
public void calledFromBackgroundThreads(JLabel l) {

l.setText("Foo"); // Error: calling a @UIEffect method from a @SafeEffect method
Display.syncExec(new Runnable {

@UIEffect // inferred by default
public void run() {

l.setText("Bar"); // OK: accessing JLabel from code run on the UI thread
}

});

}

The GUI Effect Checker’s annotations fall into three categories:

• effect annotations on methods (Section 19.1),
• class or package annotations controlling the default effect (Section 19.4), and
• effect-polymorphism: code that works for both the safe effect and the UI effect (Section 19.5).

135

19.1 GUI effect annotations
There are two primary GUI effect annotations:

@SafeEffect is a method annotation marking code that must not access UI objects.
@UIEffect is a method annotation marking code that may access UI objects. Most UI object methods (e.g., methods

of JPanel) are annotated as @UIEffect.

@SafeEffect is a sub-effect of @UIEffect, in that it is always safe to call a @SafeEffect method anywhere it is
permitted to call a @UIEffect method. We write this relationship as

@SafeEffect ≺ @UIEffect

19.2 What the GUI Effect Checker checks
The GUI Effect Checker ensures that only the UI thread accesses UI objects. This prevents GUI errors such as invalid
UI update and invalid thread access.

The GUI Effect Checker issues errors in the following cases:

• A @UIEffect method is invoked by a @SafeEffect method.
• Method declarations violate subtyping restrictions: a supertype declares a @SafeEffect method, and a subtype

annotates an overriding version as @UIEffect.

Additionally, if a method implements or overrides a method in two supertypes (two interfaces, or an interface and
parent class), and those supertypes give different effects for the methods, the GUI Effect Checker issues a warning (not
an error).

19.3 Running the GUI Effect Checker
The GUI Effect Checker can be invoked by running the following command:

javac -processor org.checkerframework.checker.guieffect.GuiEffectChecker MyFile.java ...

19.4 Annotation defaults
The default method annotation is @SafeEffect, since most code in most programs is not related to the UI. This also
means that typically, code that is unrelated to the UI need not be annotated at all.

The GUI Effect Checker provides three primary ways to change the default method effect for a class or package:

@UIType is a class annotation that makes the effect for unannotated methods in that class default to @UIEffect. (See
also @UI in Section 19.5.2.)

@UIPackage is a package annotation, that makes the effect for unannotated methods in that package default to
@UIEffect. It is not transitive; a package nested inside a package marked @UIPackage does not inherit the
changed default.

@SafeType is a class annotation that makes the effect for unannotated methods in that class default to @SafeEffect.
Because @SafeEffect is already the default effect, @SafeType is only useful for class types inside a package
marked @UIPackage.

There is one other place where the default annotation is not automatically @SafeEffect: anonymous inner classes.
Since anonymous inner classes exist primarily for brevity, it would be unfortunate to spoil that brevity with extra
annotations. By default, an anonymous inner class method that overrides or implements a method of the parent type
inherits that method’s effect. For example, an anonymous inner class implementing an interface with method @UIEffect
void m() need not explicitly annotate its implementation of m(); the implementation will inherit the parent’s effect.
Methods of the anonymous inner class that are not inherited from a parent type follow the standard defaulting rules.

136

../api/org/checkerframework/checker/guieffect/qual/SafeEffect.html
../api/org/checkerframework/checker/guieffect/qual/UIEffect.html
../api/org/checkerframework/checker/guieffect/qual/UIType.html
../api/org/checkerframework/checker/guieffect/qual/UIPackage.html
../api/org/checkerframework/checker/guieffect/qual/SafeType.html

19.5 Polymorphic effects
Sometimes a type is reused for both UI-specific and background-thread work. A good example is the Runnable
interface, which is used both for creating new background threads (in which case the run() method must have the
@SafeEffect) and for sending code to the UI thread to execute (in which case the run() method may have the
@UIEffect). But the declaration of Runnable.run() may have only one effect annotation in the source code. How do
we reconcile these conflicting use cases?

Effect-polymorphism permits a type to be used for both UI and non-UI purposes. It is similar to Java’s generics in
that you define, then use, the effect-polymorphic type. Recall that to define a generic type, you write a type parameter
such as <T> and use it in the body of the type definition; for example, class List<T> { ... T get() {...} ...
}. To instantiate a generic type, you write its name along with a type argument; for example, List<Date> myDates;.

19.5.1 Defining an effect-polymorphic type
To declare that a class is effect-polymorphic, annotate its definition with @PolyUIType. To use the effect variable in
the class body, annotate a method with @PolyUIEffect. It is an error to use @PolyUIEffect in a class that is not
effect-polymorphic.

Consider the following example:

@PolyUIType
public interface Runnable {

@PolyUIEffect
void run();

}

This declares that class Runnable is parameterized over one generic effect, and that when Runnable is instantiated, the
effect argument will be used as the effect for the run method.

19.5.2 Using an effect-polymorphic type
To instantiate an effect-polymorphic type, write one of these three type qualifiers before a use of the type:

@AlwaysSafe instantiates the type’s effect to @SafeEffect.
@UI instantiates the type’s effect to @UIEffect. Additionally, it changes the default method effect for the class to

@UIEffect.
@PolyUI instantiates the type’s effect to @PolyUIEffect for the same instantiation as the current (containing) class.

For example, this is the qualifier of the receiver this inside a method of a @PolyUIType class, which is how one
method of an effect-polymorphic class may call an effect-polymorphic method of the same class.

As an example:

@AlwaysSafe Runnable s = ...; s.run(); // s.run() is @SafeEffect
@PolyUI Runnable p = ...; p.run(); // p.run() is @PolyUIEffect (context-dependent)
@UI Runnable u = ...; u.run(); // u.run() is @UIEffect

It is an error to apply an effect instantiation qualifier to a type that is not effect-polymorphic.
Note that no annotation is required on the anonymous class declaration itself (e.g. new Runnable(){...} does not

require a type use annotation, although the variable, field, or argument it ends up being assigned to might). Instead, the
GUI Effect Checker will infer the effect qualifier based on the method being called from within the members of that
specific anonymous class.

137

../api/org/checkerframework/checker/guieffect/qual/PolyUIType.html
../api/org/checkerframework/checker/guieffect/qual/PolyUIEffect.html
../api/org/checkerframework/checker/guieffect/qual/AlwaysSafe.html
../api/org/checkerframework/checker/guieffect/qual/UI.html
../api/org/checkerframework/checker/guieffect/qual/PolyUI.html

19.5.3 Subclassing a specific instantiation of an effect-polymorphic type
Sometimes you may wish to subclass a specific instantiation of an effect-polymorphic type, just as you may extend
List<String>.

To do this, simply place the effect instantiation qualifier by the name of the type you are defining, e.g.:

@UI
public class UIRunnable extends Runnable {...}
@AlwaysSafe
public class SafeRunnable extends Runnable {...}

The GUI Effect Checker will automatically apply the qualifier to all classes and interfaces the class being defined
extends or implements. (This means you cannot write a class that is a subtype of a @AlwaysSafe Foo and a @UI Bar,
but this has not been a problem in our experience.)

19.5.4 Subtyping with polymorphic effects
With three effect annotations, we must extend the static sub-effecting relationship:

@SafeEffect ≺ @PolyUIEffect ≺ @UIEffect
This is the correct sub-effecting relation because it is always safe to call a @SafeEffect method (whether from an
effect-polymorphic method or a UI method), and a @UIEffect method may safely call any other method.

This induces a subtyping hierarchy on type qualifiers:
@AlwaysSafe ≺ @PolyUI ≺ @UI

This is sound because a method instantiated according to any qualifier will always be safe to call in place of a method
instantiated according to one of its super-qualifiers. This allows clients to pass “safer” instances of some object type to
a given method.

Effect polymorphism and arguments

Sometimes it is useful to have @PolyUI parameters on a method. As a trivial example, this permits us to specify an
identity method that works for both @UI Runnable and @AlwaysSafe Runnable:

public @PolyUI Runnable id(@PolyUI Runnable r) {
return r;

}

This use of @PolyUI will be handled as is standard for polymorphic qualifiers in the Checker Framework (see Section
31.2).

@PolyUIEffect methods should generally not use @PolyUI arguments: it is permitted by the framework, but its
interaction with inheritance is subtle, and may not behave as you would hope.

The shortest explanation is this: @PolyUI arguments may only be overridden by @PolyUI arguments, even though
the implicitly @PolyUI receiver may be overridden with a @AlwaysSafe receiver.

As noted earlier (Section 31.1.6), Java’s generics are invariant — A<X> is a subtype of B<Y> only if X is identical
to Y. Class-level use of @PolyUI behaves slightly differently. Marking a type declaration @PolyUIType is conceptu-
ally equivalent to parameterizing the type by some E extends Effect. But in this view, Runnable<SafeEffect>
(really @AlwaysSafe Runnable) would be considered a subtype of Runnable<UIEffect> (really @UI Runnable), as
explained earlier in this section. Java’s generics do not permit this, which is called covariant subtyping in the effect
parameter. Permitting it for all generics leads to problems where a type system can miss errors. Java solves this by
making all generics invariant, which rejects more programs than strictly necessary, but leads to an easy-to-explain limi-
tation. For this checker, covariant subtyping of effect parameters is very important: being able to pass an @AlwaysSafe
Runnable in place of a @UI Runnable is extremely useful. Since we need to allow some cases for flexibility, but need
to reject other cases to avoid missing errors, the distinction is a bit more subtle for this checker.

Consider this small example (warning: the following is rejected by the GUI Effect Checker):

138

@PolyUIType
public interface Dispatcher {

@PolyUIEffect
void dispatch(@PolyUI Runnable toRun);

}
@SafeType
public class SafeDispatcher implements Dispatcher {

@Override
public void dispatch(@AlwaysSafe Runnable toRun) {

runOnBackgroundThread(toRun);
}

}

This may initially seem like harmless code to write, which simply specializes the implicit effect parameter from
Dispatcher in the SafeDispatcher implementation. However, the way method effect polymorphism is implemented
is by implicitly making the receiver of a @PolyUIEffect method — the object on which the method is invoked —
@PolyUI. So if the definitions above were permitted, the following client code would be possible:

@AlwaysSafe SafeDispatcher s = ...;
@UI Runnable uitask = ...;
s.dispatch(uitask);

At the call to dispatch, the Checker Framework is free to consider s as its supertype, @UI SafeDispatcher. This
permits the framework to choose the same qualifier for both the (implicit) receiver use of @PolyUI and the toRun
argument to Dispatcher.dispatch, passing the checker. But this code would then pass a UI-thread-only task to a
method which should only accept background thread tasks — exactly what the checker should prevent!

To resolve this, the GUI Effect Checker rejects the definitions above, specifically the @AlwaysSafe on SafeDispatcher.dispatch’s
parameter, which would need to remain @PolyUI.

A subtlety of the code above is that the receiver for SafeDispatcher.dispatch is also overridden, switching from
a @PolyUI receiver to a @Safe receiver. That change is permissible. But when that is done, the polymorphic arguments
may no longer be interchangeable with the receiver.

19.6 References
The ECOOP 2013 paper “JavaUI: Effects for controlling UI object access” [GDEG13] (ECOOP 2013, https://homes.
cs.washington.edu/~mernst/pubs/gui-thread-ecoop2013-abstract.html) includes some case studies on the
checker’s efficacy, including descriptions of the relatively few false warnings we encountered. It also contains a more
formal description of the effect system.

139

https://homes.cs.washington.edu/~mernst/pubs/gui-thread-ecoop2013-abstract.html
https://homes.cs.washington.edu/~mernst/pubs/gui-thread-ecoop2013-abstract.html

Chapter 20

Units Checker

For many applications, it is important to use the correct units of measurement for primitive types. For example, NASA’s
Mars Climate Orbiter (cost: $327 million) was lost because of a discrepancy between use of the metric unit Newtons
and the imperial measure Pound-force.

The Units Checker ensures consistent usage of units. For example, consider the following code:

@m int meters = 5 * UnitsTools.m;
@s int secs = 2 * UnitsTools.s;
@mPERs int speed = meters / secs;

Due to the annotations @m and @s, the variables meters and secs are guaranteed to contain only values with meters
and seconds as units of measurement. The assignment of an unqualified value to meters, as in meters = 99, will be
flagged as an error by the Units Checker. Utility class UnitsTools provides constants that you can multiply with unquali-
fied integer are multiplied to get values of the corresponding unit; for example, meters = 99 * UnitsTools.m is legal,
or just meters = 99 * m if the file contains import static org.checkerframework.checker.units.util.UnitsTools.*;.
To use the UnitsTools class, the checker-util.jar file must be on the classpath at run time.

The division meters/secs takes the types of the two operands into account and determines that the result is of
type meters per second, signified by the @mPERs qualifier. We provide an extensible framework to define the result of
operations on units.

20.1 Units annotations
The checker currently supports three varieties of units annotations: kind annotations (@Length, @Mass, . . .), the SI units
(@m, @kg, . . .), and polymorphic annotations (@PolyUnit).

Kind annotations can be used to declare what the expected unit of measurement is, without fixing the particular unit
used. For example, one could write a method taking a @Length value, without specifying whether it will take meters or
kilometers. The following kind annotations are defined:

@Acceleration
@Angle
@Area
@Current
@Force
@Length
@Luminance
@Mass
@Speed
@Substance

140

../api/org/checkerframework/checker/units/util/UnitsTools.html
../api/org/checkerframework/checker/units/util/UnitsTools.html
../api/org/checkerframework/checker/units/qual/Length.html
../api/org/checkerframework/checker/units/qual/Mass.html
../api/org/checkerframework/checker/units/qual/m.html
../api/org/checkerframework/checker/units/qual/kg.html
../api/org/checkerframework/checker/units/qual/PolyUnit.html
../api/org/checkerframework/checker/units/qual/Acceleration.html
../api/org/checkerframework/checker/units/qual/Angle.html
../api/org/checkerframework/checker/units/qual/Area.html
../api/org/checkerframework/checker/units/qual/Current.html
../api/org/checkerframework/checker/units/qual/Force.html
../api/org/checkerframework/checker/units/qual/Length.html
../api/org/checkerframework/checker/units/qual/Luminance.html
../api/org/checkerframework/checker/units/qual/Mass.html
../api/org/checkerframework/checker/units/qual/Speed.html
../api/org/checkerframework/checker/units/qual/Substance.html

@Temperature
@Time
@Volume

For each kind of unit, the corresponding SI unit of measurement is defined:

1. For @Acceleration: Meter Per Second Square @mPERs2
2. For @Angle: Radians @radians, and the derived unit Degrees @degrees
3. For @Area: the derived units square millimeters @mm2, square meters @m2, and square kilometers @km2
4. For @Current: Ampere @A
5. For @Force: Newton @N and the derived unit kilonewton @kN
6. For @Length: Meters @m and the derived units millimeters @mm and kilometers @km
7. For @Luminance: Candela @cd
8. For @Mass: kilograms @kg and the derived units grams @g and metric tons @t
9. For @Speed: meters per second @mPERs and kilometers per hour @kmPERh

10. For @Substance: Mole @mol
11. For @Temperature: Kelvin @K and the derived unit Celsius @C
12. For @Time: seconds @s and the derived units minutes @min and hours @h
13. For @Volume: the derived units cubic millimeters @mm3, cubic meters @m3, and cubic kilometers @km3

You may specify SI unit prefixes, using enumeration Prefix. The basic SI units (@s, @m, @g, @A, @K, @mol, @cd)
take an optional Prefix enum as argument. For example, to use nanoseconds as unit, you could use @s(Prefix.nano)
as a unit type. You can sometimes use a different annotation instead of a prefix; for example, @mm is equivalent to
@m(Prefix.milli).

Class UnitsTools contains a constant for each SI unit. To create a value of the particular unit, multiply an
unqualified value with one of these constants. By using static imports, this allows very natural notation; for example,
after statically importing UnitsTools.m, the expression 5 * m represents five meters. As all these unit constants are
public, static, and final with value one, the compiler will optimize away these multiplications. To use the UnitsTools
class, the checker-util.jar file must be on the classpath at run time.

The polymorphic annotation @PolyUnit enables you to write a method that takes an argument of any unit type and
returns a result of that same type. For more about polymorphic qualifiers, see Section 31.2. For an example of its use,
see the @PolyUnit Javadoc.

20.2 Extending the Units Checker
You can create new kind annotations and unit annotations that are specific to the particular needs of your project. An
easy way to do this is by copying and adapting an existing annotation. (In addition, search for all uses of the annotation’s
name throughout the Units Checker implementation, to find other code to adapt; read on for details.)

Here is an example of a new unit annotation.

@Documented
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
@SubtypeOf({Time.class})
@UnitsMultiple(quantity=s.class, prefix=Prefix.nano)
public @interface ns {}

The @SubtypeOf meta-annotation specifies that this annotation introduces an additional unit of time. The
@UnitsMultiple meta-annotation specifies that this annotation should be a nano multiple of the basic unit @s:
@ns and @s(Prefix.nano) behave equivalently and interchangeably. Most annotation definitions do not have a
@UnitsMultiple meta-annotation.

141

../api/org/checkerframework/checker/units/qual/Temperature.html
../api/org/checkerframework/checker/units/qual/Time.html
../api/org/checkerframework/checker/units/qual/Volume.html
../api/org/checkerframework/checker/units/qual/mPERs2.html
../api/org/checkerframework/checker/units/qual/radians.html
../api/org/checkerframework/checker/units/qual/degrees.html
../api/org/checkerframework/checker/units/qual/mm2.html
../api/org/checkerframework/checker/units/qual/m2.html
../api/org/checkerframework/checker/units/qual/km2.html
../api/org/checkerframework/checker/units/qual/A.html
../api/org/checkerframework/checker/units/qual/N.html
../api/org/checkerframework/checker/units/qual/kN.html
../api/org/checkerframework/checker/units/qual/m.html
../api/org/checkerframework/checker/units/qual/mm.html
../api/org/checkerframework/checker/units/qual/km.html
../api/org/checkerframework/checker/units/qual/cd.html
../api/org/checkerframework/checker/units/qual/kg.html
../api/org/checkerframework/checker/units/qual/g.html
../api/org/checkerframework/checker/units/qual/t.html
../api/org/checkerframework/checker/units/qual/mPERs.html
../api/org/checkerframework/checker/units/qual/kmPERh.html
../api/org/checkerframework/checker/units/qual/mol.html
../api/org/checkerframework/checker/units/qual/K.html
../api/org/checkerframework/checker/units/qual/C.html
../api/org/checkerframework/checker/units/qual/s.html
../api/org/checkerframework/checker/units/qual/min.html
../api/org/checkerframework/checker/units/qual/h.html
../api/org/checkerframework/checker/units/qual/mm3.html
../api/org/checkerframework/checker/units/qual/m3.html
../api/org/checkerframework/checker/units/qual/km3.html
../api/org/checkerframework/checker/units/qual/Prefix.html
../api/org/checkerframework/checker/units/util/UnitsTools.html
../api/org/checkerframework/checker/units/qual/PolyUnit.html
../api/org/checkerframework/checker/units/qual/PolyUnit.html

Note that all custom annotations must have the @Target(ElementType.TYPE_USE) meta-annotation. See section
36.5.1.

To take full advantage of the additional unit qualifier, you need to do two additional steps. (1) Provide constants that
convert from unqualified types to types that use the new unit. See class UnitsTools for examples (you will need to
suppress a checker warning in just those few locations). (2) Put the new unit in relation to existing units. Provide an
implementation of the UnitsRelations interface as a meta-annotation to one of the units.

See demonstration docs/examples/units-extension/ for an example extension that defines Hertz (hz) as scalar
per second, and defines an implementation of UnitsRelations to enforce it.

20.3 What the Units Checker checks
The Units Checker ensures that unrelated types are not mixed.

All types with a particular unit annotation are disjoint from all unannotated types, from all types with a different
unit annotation, and from all types with the same unit annotation but a different prefix.

Subtyping between the units and the unit kinds is taken into account, as is the @UnitsMultiple meta-annotation.
Multiplying a scalar with a unit type results in the same unit type.
The division of a unit type by the same unit type results in the unqualified type.
Multiplying or dividing different unit types, for which no unit relation is known to the system, will result in a

MixedUnits type, which is separate from all other units. If you encounter a MixedUnits annotation in an error message,
ensure that your operations are performed on correct units or refine your UnitsRelations implementation.

The Units Checker does not change units based on multiplication; for example, if variable mass has the type @kg
double, then mass * 1000 has that same type rather than the type @g double. (The Units Checker has no way of
knowing whether you intended a conversion, or you were computing the mass of 1000 items. You need to make all
conversions explicit in your code, and it’s good style to minimize the number of conversions.)

20.4 Running the Units Checker
The Units Checker can be invoked by running the following commands.

• If your code uses only the SI units that are provided by the framework, simply invoke the checker:

javac -processor org.checkerframework.checker.units.UnitsChecker MyFile.java ...

• If you define your own units, provide the fully-qualified class names of the annotations through the -Aunits
option, using a comma-no-space-separated notation:
javac -classpath /full/path/to/myProject/bin:/full/path/to/myLibrary/bin \

-processor org.checkerframework.checker.units.UnitsChecker \
-Aunits=myPackage.qual.MyUnit,myPackage.qual.MyOtherUnit MyFile.java ...

The annotations listed in -Aunits must be accessible to the compiler during compilation. Before you run the
Units Checker with javac, they must be compiled and on the same path (the classpath or processorpath) as the
Checker Framework. It is not sufficient to supply their source files on the command line.

• You can also provide the fully-qualified paths to a set of directories that contain units qualifiers through the
-AunitsDirs option, using a colon-no-space-separated notation. For example, if the Checker Framework is on
the classpath rather than the processorpath:
javac -classpath /full/path/to/myProject/bin:/full/path/to/myLibrary/bin \

-processor org.checkerframework.checker.units.UnitsChecker \
-AunitsDirs=/full/path/to/myProject/bin:/full/path/to/myLibrary/bin MyFile.java ...

Note that in these two examples, the compiled class file of the myPackage.qual.MyUnit and myPackage.qual.MyOtherUnit
annotations must exist in either the myProject/bin directory or the myLibrary/bin directory. The following
placement of the class files will work with the above commands:
.../myProject/bin/myPackage/qual/MyUnit.class
.../myProject/bin/myPackage/qual/MyOtherUnit.class

142

The two options can be used at the same time to provide groups of annotations from directories, and individually
named annotations.

Also, see the example project in the docs/examples/units-extension directory.

20.5 Suppressing warnings
One example of when you need to suppress warnings is when you initialize a variable with a unit type by a literal
value. To remove this warning message, it is best to introduce a constant that represents the unit and to add a
@SuppressWarnings annotation to that constant. For examples, see class UnitsTools.

20.6 References
• The GNU Units tool provides a comprehensive list of units:
https://www.gnu.org/software/units/

• The F# units of measurement system inspired some of our syntax:
https://en.wikibooks.org/wiki/F_Sharp_Programming/Units_of_Measure

143

https://www.gnu.org/software/units/
https://en.wikibooks.org/wiki/F_Sharp_Programming/Units_of_Measure

Chapter 21

Signedness Checker

The Signedness Checker guarantees that signed and unsigned integral values are not mixed together in a computation.
In addition, it prohibits meaningless operations, such as division on an unsigned value.

Recall that a computer represents a number as a sequence of bits. Signedness indicates how to interpret the most
significant bit. For example, the bits 10000010 ordinarily represent the value -126, but when interpreted as unsigned,
those bits represent the value 130. The bits 01111110 represent the value 126 in signed and in unsigned interpretation.
The range of signed byte values is -128 to 127. The range of unsigned byte values is 0 to 255.

Signedness is only applicable to the integral types byte, short, int, and long and their boxed variants Byte,
Short, Integer, and Long. char and Character are always unsigned. Floating-point types float, double, Float,
and Double are always signed.

Signedness is primarily about how the bits of the representation are interpreted, not about the values that it can
represent. An unsigned value is always non-negative, but just because a variable’s value is non-negative does not
mean that it should be marked as @Unsigned. If variable v will be compared to a signed value, or used in arithmetic
operations with a signed value, then v should have signed type. To indicate the range of possible values for a variable,
use the @NonNegative annotation of the Index Checker (see Chapter 11, page 98) or the @IntRange annotation of the
Constant Value Checker (see Chapter 23, page 150).

Additional details appear in the paper “Preventing signedness errors in numerical computations in Java” [Mac16]
(FSE 2016).

To run the Signedness Checker, run javac with -processor org.checkerframework.checker.signedness.SignednessChecker.

21.1 Annotations
The Signedness Checker uses type annotations to indicate the signedness that the programmer intends an expression to
have.

These are the qualifiers in the signedness type system:

@Unsigned @Signed

@UnknownSignedness

@SignednessGlb

@SignednessBottom

@SignedPositive

Figure 21.1: The type qualifier hierarchy of the signedness annotations. Qualifiers in gray are used internally by the
type system but should never be written by a programmer.

144

../api/org/checkerframework/checker/index/qual/NonNegative.html
../api/org/checkerframework/common/value/qual/IntRange.html

@Unsigned indicates that the programmer intends the value to be interpreted as unsigned. That is, if the most
significant bit in the bitwise representation is set, then the bits should be interpreted as a large positive value.

@Signed indicates that the programmer intends the value to be interpreted as signed. That is, if the most significant
bit in the bitwise representation is set, then the bits should be interpreted as a negative value. This is the default
annotation.

@SignedPositive indicates that a value is known at compile time to be in the non-negative signed range, so it has
the same interpretation as signed or unsigned and may be used with either interpretation. (Equivalently, the most
significant bit is guaranteed to be 0.) Programmers should usually write @Signed or @Unsigned instead.

@SignednessGlb indicates that a value may be interpreted as unsigned or signed. It covers the same cases as
@SignedPositive, plus manifest literals, to prevent the programmer from having to annotate them all explicitly.
Programmers should rarely write this annotation, except on fields whose value is a negative manifest literal.

@PolySigned indicates qualifier polymorphism. When two formal parameter types are annotated with @PolySigned,
the two arguments at a call site must have the same signedness type annotation. (This differs from the standard
rule for polymorphic qualifiers.) For a description of qualifier polymorphism, see Section 31.2.

@UnknownSignedness indicates that a value’s type is not relevant or known to this checker. This annotation is
used internally, and should not be written by the programmer.

@SignednessBottom indicates that the value is null. This annotation is used internally, and should not be written
by the programmer.

21.1.1 Default qualifiers
The only type qualifier that the programmer should need to write is @Unsigned. When a programmer leaves an
expression unannotated, the Signedness Checker treats it in one of the following ways:

• All byte, short, int, and long literals default to @SignednessGlb.
• All char and Character expressions are @Unsigned; this cannot be changed.
• All char and Character variables are @Unsigned; this cannot be changed.
• All other expressions default to @Signed.

21.2 Prohibited operations
The Signedness Checker prohibits the following uses of operators:

• Division (/) or modulus (%) with an @Unsigned operand.
• Signed right shift (>>) with an @Unsigned left operand.
• Unsigned right shift (>>>) with a @Signed left operand.
• Greater/less than (or equal) comparators (<, <=, >, >=) with an @Unsigned operand.
• Any other binary operator with one @Unsigned operand and one @Signed operand, with the exception of left

shift (<<).

There are some special cases where these operations are permitted; see Section 21.2.2.
Like every type-checker built with the Checker Framework, the Signedness Checker ensures that assignments

and pseudo-assignments have consistent types. For example, it is not permitted to assign a @Signed expression to an
@Unsigned variable or vice versa.

21.2.1 Rationale
The Signedness Checker prevents misuse of unsigned values in Java code. Most Java operations interpret operands as
signed. If applied to unsigned values, those operations would produce unexpected, incorrect results.

Consider the following Java code:

145

../api/org/checkerframework/checker/signedness/qual/Unsigned.html
../api/org/checkerframework/checker/signedness/qual/Signed.html
../api/org/checkerframework/checker/signedness/qual/SignedPositive.html
../api/org/checkerframework/checker/signedness/qual/Signed.html
../api/org/checkerframework/checker/signedness/qual/Unsigned.html
../api/org/checkerframework/checker/signedness/qual/SignednessGlb.html
../api/org/checkerframework/checker/signedness/qual/SignedPositive.html
../api/org/checkerframework/checker/signedness/qual/PolySigned.html
../api/org/checkerframework/checker/signedness/qual/PolySigned.html
../api/org/checkerframework/checker/signedness/qual/UnknownSignedness.html
../api/org/checkerframework/checker/signedness/qual/SignednessBottom.html
../api/org/checkerframework/checker/signedness/qual/Unsigned.html
../api/org/checkerframework/checker/signedness/qual/SignednessGlb.html
../api/org/checkerframework/checker/signedness/qual/Unsigned.html
../api/org/checkerframework/checker/signedness/qual/Unsigned.html
../api/org/checkerframework/checker/signedness/qual/Signed.html

public class SignednessManualExample {

int s1 = -2;
int s2 = -1;

@Unsigned int u1 = 2147483646; // unsigned: 2^32 - 2, signed: -2
@Unsigned int u2 = 2147483647; // unsigned: 2^32 - 1, signed: -1

void m() {
int w = s1 / s2; // OK: result is 2, which is correct for -2 / -1
int x = u1 / u2; // ERROR: result is 2, which is incorrect for (2^32 - 2) / (2^32 - 1)

}

int s3 = -1;
int s4 = 5;

@Unsigned int u3 = 2147483647; // unsigned: 2^32 - 1, signed: -1
@Unsigned int u4 = 5;

void m2() {
int y = s3 % s4; // OK: result is -1, which is correct for -1 % 5
int z = u3 % u4; // ERROR: result is -1, which is incorrect for (2^32 - 1) % 5 = 2

}
}

These examples illustrate why division and modulus with an unsigned operand are illegal. Other uses of operators
are prohibited for similar reasons.

21.2.2 Permitted shifts
As exceptions to the rules given above, the Signedness Checker permits certain right shifts which are immediately
followed by a cast or masking operation.

For example, right shift by 8 then mask by 0xFF evaluates to the same value whether the argument is interpreted as
signed or unsigned. Thus, the Signedness Checker permits both ((myInt >> 8) & 0xFF) and ((myInt >>> 8) & 0xFF),
regardless of the qualifier on the type of myInt.

Likewise, right shift by 8 then cast to byte evaluates to the same value whether the argument is interpreted as
signed or unsigned, so the Signedness Checker permits both (byte) (myInt >> 8) and (byte) (myInt >>> 8),
regardless of the type of myInt.

21.3 Utility routines for manipulating unsigned values
Class SignednessUtil provides static utility methods for working with unsigned values. They are properly annotated
with @Unsigned where appropriate, so using them may reduce the number of annotations that you need to write. To use
the SignednessUtil class, the checker-util.jar file must be on the classpath at run time.

Class SignednessUtilExtra contains more utility methods that reference packages not included in Android. This
class is not included in checker-util.jar, so you may want to copy the methods to your code.

21.4 Local type refinement
Local type refinement/inference (Section 32.7) may be surprising for the Signedness type system. Ordinarily, an
expression with unsigned type may not participate in a division, as shown in Sections 21.2 and 21.2.1. However, if a

146

../api/org/checkerframework/checker/signedness/util/SignednessUtil.html
../api/org/checkerframework/checker/signedness/qual/Unsigned.html
../api/org/checkerframework/checker/signedness/util/SignednessUtil.html
../api/org/checkerframework/checker/signedness/util/SignednessUtilExtra.html

jdk.jfr.Unsigned ⇒ org.checkerframework.checker.signedness.qual.Unsigned
Figure 21.2: Correspondence between other signedness annotations and the Checker Framework’s annotations.

constant is assigned to a variable that was declared with @Unsigned type, then — just like the constant — the variable
may be treated as either signed or unsigned, due to local type refinement (Section 32.7). For example, it can participate
in division.

void useLocalVariables() {

int s1 = -2;
int s2 = -1;

@Unsigned int u1 = 2147483646; // unsigned: 2^32 - 2, signed: -2
@Unsigned int u2 = 2147483647; // unsigned: 2^32 - 1, signed: -1

int w = s1 / s2; // OK: result is 2, which is correct for -2 / -1
int x = u1 / u2; // OK; computation over constants, interpreted as signed; result is signed

}

To prevent local type refinement, use a cast:

@Unsigned int u1 = (@Unsigned int) 2147483646;

Note that type-checking produces a different result for int x = u1 / u2; here than in the similar example in
Section 21.2.1. In Section 21.2.1, the method is reading fields, and all it knows is the declared type of the field. In 20.4,
the method is reading a local variable, and dataflow (that is, flow-sensitive type refinement) refines the types of local
variables.

21.5 Instantiating polymorphism
When calling a method with formal parameters annotated as @PolySigned, all arguments for @PolySigned formal
parameters must have comparable types. (One way to do this is for all types to be the same.) This is different than
the usual rules for polymorphic qualifiers. If you violate this rule, then the Signedness Checker’s error messages can
be obscure, because they are about @SignednessBottom. You can fix the signedness error messages by casting the
arguments.

21.6 Other signedness annotations
The Checker Framework’s signedness annotations are similar to annotations used elsewhere.

If your code is already annotated with a different annotation, the Checker Framework can type-check your code. It
treats annotations from other tools as if you had written the corresponding annotation from the Signedness Checker, as
described in Figure 21.2.

147

../api/org/checkerframework/checker/signedness/qual/PolySigned.html

Chapter 22

Purity Checker

The Purity Checker identifies methods that have no side effects, that return the same value each time they are called on
the same argument, or both.

Purity analysis aids type refinement (Section 32.7).
All checkers utilize purity annotations on called methods. You do not need to run the Purity Checker directly.

However you may run just the Purity Checker by supplying the following command-line options to javac: -processor
org.checkerframework.framework.util.PurityChecker.

The Checker Framework can infer purity annotations. If you supply the command-line option -AsuggestPureMethods,
then the Checker Framework will suggest methods that can be marked as @SideEffectFree, @Deterministic, or
@Pure. In addition, such suggestions are output by -Ainfer and when using whole-program inference.

22.1 Purity annotations
@SideEffectFree indicates that the method has no externally-visible side effects.
@Deterministic indicates that if the method is called multiple times with identical arguments, then it returns the

identical result according to == (not just according to equals()).
@Pure indicates that the method is both @SideEffectFree and @Deterministic.

22.2 Purity annotations are trusted
By default, purity annotations are trusted. Purity annotations on called methods affect type-checking of client code.
However, you can make a mistake by writing @SideEffectFree on the declaration of a method that is not actually
side-effect-free or by writing @Deterministic on the declaration of a method that is not actually deterministic.

To enable checking of the annotations, supply the command-line option -AcheckPurityAnnotations. It is
not enabled by default because of a high false positive rate. In the future, after a new purity-checking analysis is
implemented, the Checker Framework will default to checking purity annotations.

22.3 Overriding methods must respect specifications in superclasses
If a method in a superclass has a purity annotation, then every overriding definition must also have that purity annotation
(or a stronger one).

Here is an example error if this requirement is violated:
MyClass.java:1465: error: int hashCode() in MyClass cannot override int hashCode(Object this) in java.lang.Object;
attempting to use an incompatible purity declaration

public int hashCode() {
^

148

../api/org/checkerframework/dataflow/qual/SideEffectFree.html
../api/org/checkerframework/dataflow/qual/Deterministic.html
../api/org/checkerframework/dataflow/qual/Pure.html

found : []
required: [SIDE_EFFECT_FREE, DETERMINISTIC]

The reason for the error is that the Object class is annotated as:

class Object {
...
@Pure int hashCode() { ... }

}

(where @Pure means both @SideEffectFree and @Deterministic). Every overriding definition, including those
in your program, must use be at least as strong a specification. For hashCode, every overriding definition must be
annotated as @Pure.

You can fix the definition by adding @Pure to your method definition. Alternately, you can suppress the warning.
You can suppress each such warning individually using @SuppressWarnings("purity.overriding"), or you can
use the -AsuppressWarnings=purity.overriding command-line argument to suppress all such warnings. In the
future, the Checker Framework will support inheriting annotations from superclass definitions.

22.4 Suppressing warnings
The command-line options -AassumeSideEffectFree, -AassumeDeterministic, and -AassumePure make the
Checker Framework unsoundly assume that every called method is side-effect-free, is deterministic, or is both,
respectively.

The command-line option -AassumePureGetters makes the Checker Framework unsoundly assume that every
getter method is side-effect-free and deterministic. For the purposes of -AassumePureGetters, a getter method is
defined as an instance method with no formal parameters, whose name starts with “get”, “is”, “not”, or “has” followed
by an uppercase letter.

This can make flow-sensitive type refinement much more effective, since method calls will not cause the analysis to
discard information that it has learned. However, this option can mask real errors. It is most appropriate when one of
the following is true:

• You are starting out annotating a project.
• You are using the Checker Framework to find bugs but not to give a guarantee that no more errors exist of the

given type.
• You are working with an unannotated library that makes the given assumptions, in which case (say) using
-AassumePureGetters is easier than writing stub files for all the library’s getter methods.

149

../api/org/checkerframework/dataflow/qual/Pure.html
../api/org/checkerframework/dataflow/qual/SideEffectFree.html
../api/org/checkerframework/dataflow/qual/Deterministic.html

Chapter 23

Constant Value Checker

The Constant Value Checker is a constant propagation analysis: for each variable, it determines whether that variable’s
value can be known at compile time.

There are two ways to run the Constant Value Checker.

• Typically, it is automatically run by another type checker.
• Alternately, you can run just the Constant Value Checker, by supplying the following command-line options to

javac: -processor org.checkerframework.common.value.ValueChecker

23.1 Annotations
The Constant Value Checker uses type annotations to indicate the value of an expression (Section 23.1.1), and it uses
method annotations to indicate methods that the Constant Value Checker can execute at compile time (Section 23.2.2).

23.1.1 Type Annotations
Typically, the programmer does not write any type annotations. Rather, the type annotations are inferred by the Constant
Value Checker. The programmer is also permitted to write type annotations. This is only necessary in locations where
the Constant Value Checker does not infer annotations: on fields and method signatures.

The main type annotations are @BoolVal, @IntVal, @IntRange, @DoubleVal, @StringVal, @MatchesRegex,
@DoesNotMatchRegex, and @EnumVal. Additional type annotations for arrays and strings are @ArrayLen, @ArrayLenRange,
and @MinLen. A polymorphic qualifier (@PolyValue) is also supported (see Section 31.2). In addition, there are separate
checkers for @ClassVal and @MethodVal annotations (see Section 25.2).

Each *Val type annotation takes as an argument a set of values, and its meaning is that at run time, the expression
evaluates to one of the values. For example, an expression of type @StringVal("a", "b") evaluates to one of the
values "a", "b", or null. The set is limited to 10 entries; if a variable could be more than 10 different values, the
Constant Value Checker gives up and its type becomes @IntRange for integral types, @ArrayLenRange for array
types, @MatchesRegex, @DoesNotMatchRegex, @ArrayLen, or @ArrayLenRange for String, and @UnknownVal for
all other types. The @ArrayLen annotation means that at run time, the expression evaluates to an array or a string whose
length is one of the annotation’s arguments.

In the case of too many strings in @StringVal, the values are forgotten and just the lengths are used in @ArrayLen.
If this would result in too many lengths, only the minimum and maximum lengths are used in @ArrayLenRange, giving
a range of possible lengths of the string.

The @StringVal, @MatchesRegex, and @DoesNotMatchRegex annotations may be applied to char arrays. Al-
though byte arrays are often converted to/from strings, these annotations may not be applied to them. This is because
the conversion depends on the platform’s character set.

The @MatchesRegex and @DoesNotMatchRegex annotations use the standard Java regular expression syntax.
@MatchesRegex(A) is only a subtype of @MatchesRegex(B) if the set of regular expressions A is a subset of the set of

150

../api/org/checkerframework/common/value/qual/BoolVal.html
../api/org/checkerframework/common/value/qual/IntVal.html
../api/org/checkerframework/common/value/qual/IntRange.html
../api/org/checkerframework/common/value/qual/DoubleVal.html
../api/org/checkerframework/common/value/qual/StringVal.html
../api/org/checkerframework/common/value/qual/MatchesRegex.html
../api/org/checkerframework/common/value/qual/DoesNotMatchRegex.html
../api/org/checkerframework/common/value/qual/EnumVal.html
../api/org/checkerframework/common/value/qual/ArrayLen.html
../api/org/checkerframework/common/value/qual/ArrayLenRange.html
../api/org/checkerframework/common/value/qual/MinLen.html
../api/org/checkerframework/common/value/qual/PolyValue.html
../api/org/checkerframework/common/reflection/qual/ClassVal.html
../api/org/checkerframework/common/reflection/qual/MethodVal.html
../api/org/checkerframework/common/value/qual/StringVal.html
../api/org/checkerframework/common/value/qual/IntRange.html
../api/org/checkerframework/common/value/qual/ArrayLenRange.html
../api/org/checkerframework/common/value/qual/MatchesRegex.html
../api/org/checkerframework/common/value/qual/DoesNotMatchRegex.html
../api/org/checkerframework/common/value/qual/ArrayLen.html
../api/org/checkerframework/common/value/qual/ArrayLenRange.html
../api/org/checkerframework/common/value/qual/UnknownVal.html

@UnknownVal

@IntVal(long[])@IntRange(long,long) @DoubleVal(double[])@BoolVal(boolean[]) @StringVal(String[]) @ArrayLen(int[]) @ArrayLenRange(int,int)

@BottomVal

@IntRange(from=0,to=200)

@IntVal(1)

@IntVal({1,2})@IntRange(from=0,to=1) @DoubleVal(1.0)

@DoubleVal({0.0,1.0,2.0})

@StringVal("a")

@StringVal({"a","aa"}) @StringVal({"a","b"})

@StringVal({"a","aa","b"})

@MatchesRegex("a*")

@MatchesRegex({"a*", "b*"})

@ArrayLen(1)

@ArrayLen({1,2})

@ArrayLenRange(0,200)

@StringVal({"c","cc"})

@DoesNotMatchRegex({"a*","b*"}))

@DoesNotMatchRegex({"b*"})

Figure 23.1: At the top, the type qualifier hierarchy of the Constant Value Checker annotations. The first four qualifiers
are applicable to primitives and their wrappers; the next to Strings (it can also be written as @EnumVal for enumeration
constants), and the final two to arrays. Qualifiers in gray are used internally by the type system but should never
be written by a programmer. At the bottom are examples of additional subtyping relationships that depend on the
annotations’ arguments.

regular expressions B. An @StringVal annotation is a subtype of an @MatchesRegex annotation if each string matches
at least one of the regular expressions. @DoesNotMatchRegex(A) is only a subtype of @MatchesRegex(B) if the set of
regular expressions A is a superset of the set of regular expressions B. Matching is done via the java.lang.String#matches
method, which matches against the entire string (it does not look for a matching substring).

The @EnumVal annotation’s argument is the names of the enum constants that the type might evaluate to. (Java
syntax does not allow the enum constants themselves to be arguments.) @EnumVal is treated identically to @StringVal
by the checker internally, so @StringVal may appear in error messages related to enums.

@IntRange takes two arguments — a lower bound and an upper bound. Its meaning is that at run time, the expression
evaluates to a value between the bounds (inclusive). For example, an expression of type @IntRange(from=0, to=255)
evaluates to 0, 1, 2, . . . , 254, or 255. An @IntVal and @IntRange annotation that represent the same set of values
are semantically identical and interchangeable: they have exactly the same meaning, and using either one has the
same effect. @ArrayLenRange has the same relationship to @ArrayLen that @IntRange has to @IntVal. The @MinLen
annotation is an alias for @ArrayLenRange (meaning that every @MinLen annotation is automatically converted to an
@ArrayLenRange annotation) that only takes one argument, which is the lower bound of the range. The upper bound of
the range is the maximum integer value.

Figure 23.1 shows the subtyping relationship among the type annotations. For two annotations of the same type,
subtypes have a smaller set of possible values, as also shown in the figure. Because int can be casted to double, an
@IntVal annotation is a subtype of a @DoubleVal annotation with the same values.

Figure 23.2 illustrates how the Constant Value Checker infers type annotations (using flow-sensitive type qualifier
refinement, Section 32.7).

23.2 Other constant value annotations
The Checker Framework’s constant value annotations are similar to annotations used elsewhere.

If your code is already annotated with a different constant value or range annotation, the Checker Framework can

151

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#matches(java.lang.String)
../api/org/checkerframework/common/value/qual/IntRange.html
../api/org/checkerframework/common/value/qual/IntVal.html
../api/org/checkerframework/common/value/qual/IntRange.html
../api/org/checkerframework/common/value/qual/ArrayLenRange.html
../api/org/checkerframework/common/value/qual/ArrayLen.html
../api/org/checkerframework/common/value/qual/IntRange.html
../api/org/checkerframework/common/value/qual/IntVal.html

public void flowSensitivityExample(boolean b) {
int i = 1; // i has type: @IntVal({1}) int
if (b) {

i = 2; // i now has type: @IntVal({2}) int
}

// i now has type: @IntVal({1,2}) int
i = i + 1; // i now has type: @IntVal({2,3}) int

}

Figure 23.2: The Constant Value Checker infers different types for a variable on different lines of the program.

android.support.annotation.IntRange ⇒ org.checkerframework.checker.common.value.qual.IntRange
Figure 23.3: Correspondence between other constant value and range annotations and the Checker Framework’s
annotations.

type-check your code. It treats annotations from other tools as if you had written the corresponding annotation from
the Constant Value Checker, as described in Figure 23.3. If the other annotation is a declaration annotation, it may be
moved; see Section 39.6.10.

The Constant Value Checker trusts the @Positive, @NonNegative, and @GTENegativeOne annotations. If your
code contains any of these annotations, then in order to guarantee soundness, you must run the Index Checker whenever
you run the Constant Value Checker.

23.2.1 Compile-time execution of expressions
Whenever all the operands of an expression are compile-time constants (that is, their types have constant-value type
annotations), the Constant Value Checker attempts to execute the expression. This is independent of any optimizations
performed by the compiler and does not affect the code that is generated.

The Constant Value Checker statically executes (at compile time) operators that do not throw exceptions (e.g., +, -,
<<, !=).

23.2.2 @StaticallyExecutable methods and the classpath
The Constant Value Checker statically executes (at compile time) methods annotated with @StaticallyExecutable.

The static execution feature has some requirements:

• A @StaticallyExecutable method must be @Pure (side-effect-free and deterministic).

@StaticallyExecutable @Pure
public static int myAdd(int a, int b) {

return a + b;
}

public void bar() {
int a = 5; // a has type: @IntVal({5}) int
int b = 4; // b has type: @IntVal({4}) int
int c = myAdd(a, b); // c has type: @IntVal({9}) int

}

Figure 23.4: The @StaticallyExecutable annotation enables constant propagation through method calls.

152

../api/org/checkerframework/checker/index/qual/Positive.html
../api/org/checkerframework/checker/index/qual/NonNegative.html
../api/org/checkerframework/checker/index/qual/GTENegativeOne.html
../api/org/checkerframework/common/value/qual/StaticallyExecutable.html
../api/org/checkerframework/dataflow/qual/Pure.html
../api/org/checkerframework/common/value/qual/StaticallyExecutable.html

• The Constant Value Checker must have an estimate for all the arguments at a call site.
This means that @StaticallyExecutable is not applicable to user-written instance methods. It is only applicable
to instance methods whose receiver is a compile-time constant, such as a primitive wrapper or an array.

• The @StaticallyExecutable method and any method it calls must be on the same path (the classpath or the
processorpath) as the Checker Framework. This is because the Constant Value Checker reflectively calls these
methods at compile time.
To use @StaticallyExecutable on methods in your own code, you should first compile the code without the
Constant Value Checker and then add the location of the resulting .class files to the classpath or processorpath,
whichever is appropriate. For example, the command-line arguments to the Checker Framework might include:

-processor org.checkerframework.common.value.ValueChecker
-classpath $CLASSPATH:MY_PROJECT/build/

or

-processor org.checkerframework.common.value.ValueChecker
-processorpath ${CHECKERFRAMEWORK}/checker/build/libs/checker-3.6.1-SNAPSHOT.jar:MY_PROJECT/build/

23.3 Warnings
If the option -AreportEvalWarns options is used, the Constant Value Checker issues a warning if it cannot load and
run, at compile time, a method marked as @StaticallyExecutable. If it issues such a warning, then the return value
of the method will be @UnknownVal instead of being able to be resolved to a specific value annotation. Some examples
of these:

• [class.find.failed] Failed to find class named Test.
The checker could not find the class specified for resolving a @StaticallyExecutable method. Typically this
means that the path that contains the Checker Framework (the classpath or the processorpath) lacks the given
classfile.

• [method.find.failed] Failed to find a method named foo with argument types [@IntVal(3)
int].
The checker could not find the method foo(int) specified for resolving a @StaticallyExecutable method,
but could find the class. This is usually due to providing an outdated version of the classfile that does not contain
the method that was annotated as @StaticallyExecutable.

• [method.evaluation.exception] Failed to evaluate method public static int Test.foo(int)
because it threw an exception: java.lang.ArithmeticException: / by zero.
An exception was thrown when trying to statically execute (at compile time) the method. In this case it was a
divide-by-zero exception. If the arguments to the method each only had one value in their annotations then this
exception will always occur when the program is actually run as well. If there are multiple possible values then
the exception might not be thrown on every execution, depending on the run-time values.

There are some other situations in which the Constant Value Checker produces a warning message:

• [too.many.values.given] The maximum number of arguments permitted is 10.
The Constant Value Checker only tracks up to 10 possible values for an expression. If you write an annotation
with more values than will be tracked, the annotation is replaced with @IntRange, @ArrayLen, @ArrayLenRange,
or @UnknownVal.

23.4 Unsoundly ignoring overflow
The Constant Value Checker takes Java’s overflow rules into account when computing the possible values of expres-
sions. The -AignoreRangeOverflow command-line option makes it ignore the possibility of overflow for range

153

...
if (i > 5) {

// i now has type: @IntRange(from=5, to=Integer.MAX_VALUE)
i = i + 1;
// If i started out as Integer.MAX_VALUE, then i is now Integer.MIN_VALUE.
// i’s type is now @IntRange(from=Integer.MIN_VALUE, to=Integer.MAX_VALUE).
// When ignoring overflow, i’s type is now @IntRange(from=6, to=Integer.MAX_VALUE).

}

Figure 23.5: With the -AignoreRangeOverflow command-line option, the Constant Value Checker ignores overflow
for range types, which gives smaller ranges to range types.

annotations @IntRange and @ArrayLenRange. Figure 23.5 gives an example of behavior with and without the
-AignoreRangeOverflow command-line option.

As with any unsound behavior in the Checker Framework, this option reduces the number of warnings and errors
produced, and may reduce the number of @IntRange qualifiers that you need to write in the source code. However, it
is possible that at run time, an expression might evaluate to a value that is not in its @IntRange qualifier. You should
either accept that possibility, or verify the lack of overflow using some other tool or manual analysis.

23.5 Strings can be null in concatenations
By default, the Constant Value Checker is sound with respect to string concatenation and nullness. It assumes that, in a
string concatenation, every non-primitive argument might be null, except for String literals and compile-time constants.
It ignores Nullness Checker annotations. (This behavior is conservative but sound.)

Consider a variable declared as @StringVal("a", "b") String x;. At run time, x evaluates to one of the values
"a", "b", or null. Therefore, the type of “x + "c"” is @StringVal("ac", "bc", "nullc") String.

The -AnonNullStringsConcatenation command-line option makes the Constant Value Checker unsoundly
assume that no arguments in a string concatenation are null. With the command-line argument, the type of “x + "c"”
is @StringVal("ac", "bc") String.

154

../api/org/checkerframework/common/value/qual/IntRange.html
../api/org/checkerframework/common/value/qual/ArrayLenRange.html
../api/org/checkerframework/common/value/qual/StringVal.html

Chapter 24

Returns Receiver Checker

The Returns Receiver Checker enables documenting and checking that a method returns its receiver (i.e., the this
parameter).

There are two ways to run the Returns Receiver Checker.

• Typically, it is automatically run by another checker.
If the code being checked does not use fluent APIs, you can pass the -AdisableReturnsReceiver command-line
option. This disables the Returns Receiver Checker and makes the other checker run faster.

• Alternately, you can run just the Returns Receiver Checker, by supplying the following command-line options to
javac: -processor org.checkerframework.common.returnsreceiver.ReturnsReceiverChecker

24.1 Annotations
The qualifier @This on the return type of a method indicates that the method returns its receiver. Methods that return
their receiver are common in so-called “fluent” APIs. Here is an example:

class MyBuilder {
@This MyBuilder setName(String name) {

this.name = name;
return this;

}
}

An @This annotation can only be written on a return type, a receiver type, or in a downcast.
As is standard, the Returns Receiver Checker has a top qualifier, @UnknownThis, and a bottom qualifier, @BottomThis.

Programmers rarely need to write these annotations.
Here are additional details. @This is a polymorphic qualifier rather than a regular type qualifier (see Section 31.2).

Conceptually, a receiver type always has an @This qualifier. When a method return type also has an @This qualifier,
the presence of the polymorphic annotation on both the method’s return and receiver type forces their type qualifiers to
be equal. Hence, the method will only pass the type checker if it returns its receiver argument, achieving the desired
checking.

24.2 AutoValue and Lombok Support
The AutoValue and Lombok projects both support automatic generation of builder classes, which enable flexible

object construction. For code using these two frameworks, the Returns Receiver Checker automatically adds @This
annotations to setter methods in builder classes. All the @This annotations in Figures 24.1 and 24.2 are automatically
added by the Returns Receiver Checker.

155

../api/org/checkerframework/common/returnsreceiver/qual/This.html
../api/org/checkerframework/common/returnsreceiver/qual/This.html
../api/org/checkerframework/common/returnsreceiver/qual/UnknownThis.html
../api/org/checkerframework/common/returnsreceiver/qual/BottomThis.html
../api/org/checkerframework/common/returnsreceiver/qual/This.html
../api/org/checkerframework/common/returnsreceiver/qual/This.html
../api/org/checkerframework/common/returnsreceiver/qual/This.html
https://github.com/google/auto/tree/master/value
https://projectlombok.org/

@AutoValue
abstract class Animal {

abstract String name();
abstract int numberOfLegs();
static Builder builder() {

return new AutoValue_Animal.Builder();
}
@AutoValue.Builder
abstract static class Builder {

abstract Builder setName(String value); // @This is automatically added here
abstract Builder setNumberOfLegs(int value); // @This is automatically added here
abstract Animal build();

}
}

Figure 24.1: User-written code that uses the @AutoValue.Builder annotation. Given this code, (1) AutoValue
automatically generates a concrete subclass of Animal.Builder, see Figure 24.2, and (2) the Returns Receiver Checker
automatically adds @This annotations on setters in both user-written and automatically-generated code.

class AutoValue_Animal {
static final class Builder extends Animal.Builder {
private String name;
private Integer numberOfLegs;
@This Animal.Builder setName(String name) {

this.name = name;
return this;

}
@This Animal.Builder setNumberOfLegs(int numberOfLegs) {

this.numberOfLegs = numberOfLegs;
return this;

}
@Override
Animal build() {

return new AutoValue_Animal(this.name, this.numberOfLegs);
}

}
}

Figure 24.2: Code generated by AutoValue for the example of Figure 24.1, including the @This annotations added by
the Returns Receiver Checker.

156

Chapter 25

Reflection resolution

A call to Method.invoke might reflectively invoke any method. That method might place requirements on its formal
parameters, and it might return any value. To reflect these facts, the annotated JDK contains conservative annotations
for Method.invoke. These conservative library annotations often cause a checker to issue false positive warnings when
type-checking code that uses reflection.

If you supply the -AresolveReflection command-line option, the Checker Framework attempts to resolve
reflection. At each call to Method.invoke or Constructor.newInstance, the Checker Framework first soundly
estimates which methods might be invoked at run time. When type-checking the call, the Checker Framework uses the
library annotations for the possibly-invoked methods, rather than the imprecise one for Method.invoke.

If the estimate of invoked methods is small, the checker issues fewer false positive warnings. If the estimate of
invoked methods is large, these types may be no better than the conservative library annotations.

Reflection resolution is disabled by default, because it increases the time to type-check a program. You should enable
reflection resolution with the -AresolveReflection command-line option if, for some call site of Method.invoke or
Constructor.newInstance in your program:

1. the conservative library annotations on Method.invoke or Constructor.newInstance cause false positive
warnings,

2. the set of possibly-invoked methods or constructors can be known at compile time, and
3. the reflectively invoked methods/constructors are on the class path at compile time.

Reflection resolution does not change your source code or generated code. In particular, it does not replace the
Method.invoke or Constructor.newInstance calls.

The command-line option -AresolveReflection=debug outputs verbose information about the reflection resolu-
tion process, which may be useful for debugging.

Section 25.1 gives an example of reflection resolution. Then, Section 25.2 describes the MethodVal and ClassVal
Checkers, which reflection resolution uses internally. The paper “Static analysis of implicit control flow: Resolving
Java reflection and Android intents” [BJM+15] (ASE 2015, https://homes.cs.washington.edu/~mernst/pubs/
implicit-control-flow-ase2015-abstract.html) gives further details.

25.1 Reflection resolution example
Consider the following example, in which the Nullness Checker employs reflection resolution to avoid issuing a false
positive warning.

public class LocationInfo {
@NonNull Location getCurrentLocation() { ... }

}

157

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/reflect/Method.html#invoke(java.lang.Object,java.lang.Object...)
https://homes.cs.washington.edu/~mernst/pubs/implicit-control-flow-ase2015-abstract.html
https://homes.cs.washington.edu/~mernst/pubs/implicit-control-flow-ase2015-abstract.html

public class Example {
LocationInfo privateLocation = ... ;
String getCurrentCity() throws Exception {

Method getCurrentLocationObj = LocationInfo.class.getMethod("getCurrentLocation");
Location currentLocation = (Location) getCurrentLocationObj.invoke(privateLocation);
return currentLocation.nameOfCity();

}
}

When reflection resolution is not enabled, the Nullness Checker uses conservative annotations on the Method.invoke
method signature:

@Nullable Object invoke(@NonNull Object recv, @NonNull Object ... args)
This causes the Nullness Checker to issue the following warning even though currentLocation cannot be null.

error: [dereference.of.nullable] dereference of possibly-null reference currentLocation
return currentLocation.nameOfCity();

^
1 error

When reflection resolution is enabled, the MethodVal Checker infers that the @MethodVal annotation for
getCurrentLocationObj is:

@MethodVal(className="LocationInfo", methodName="getCurrentLocation", params=0)
Based on this @MethodVal annotation, the reflection resolver determines that the reflective method call represents

a call to getCurrentLocation in class LocationInfo. The reflection resolver uses this information to provide the
following precise procedure summary to the Nullness Checker, for this call site only:

@NonNull Object invoke(@NonNull Object recv, @Nullable Object ... args)
Using this more precise signature, the Nullness Checker does not issue the false positive warning shown above.

25.2 MethodVal and ClassVal Checkers
The implementation of reflection resolution internally uses the ClassVal Checker (Section 25.2.1) and the MethodVal
Checker (Section 25.2.2). They are similar to the Constant Value Checker (Section 23) in that their annotations estimate
the run-time value of an expression.

In some cases, you may need to write annotations such as @ClassVal, @MethodVal, @StringVal, and @ArrayLen
to aid in reflection resolution. Often, though, these annotations can be inferred (Section 25.2.3).

25.2.1 ClassVal Checker
The ClassVal Checker defines the following annotations:

@ClassVal(String[] value) If an expression has @ClassVal type with a single argument, then its exact
run-time value is known at compile time. For example, @ClassVal("java.util.HashMap") indicates that the
Class object represents the java.util.HashMap class.
If multiple arguments are given, then the expression’s run-time value is known to be in that set.
Each argument is a “fully-qualified binary name” (@FqBinaryName): a primitive or binary name (JLS §13.1),
possibly followed by array brackets.

@ClassBound(String[] value) If an expression has @ClassBound type, then its run-time value is known to
be upper-bounded by that type. For example, @ClassBound("java.util.HashMap") indicates that the Class
object represents java.util.HashMap or a subclass of it.
If multiple arguments are given, then the run-time value is equal to or a subclass of some class in that set.
Each argument is a “fully-qualified binary name” (@FqBinaryName): a primitive or binary name (JLS §13.1),
possibly followed by array brackets.

158

../api/org/checkerframework/common/reflection/qual/ClassVal.html
../api/org/checkerframework/common/reflection/qual/MethodVal.html
../api/org/checkerframework/common/value/qual/StringVal.html
../api/org/checkerframework/common/value/qual/ArrayLen.html
../api/org/checkerframework/common/reflection/qual/ClassVal.html
../api/org/checkerframework/checker/signature/qual/FqBinaryName.html
https://docs.oracle.com/javase/specs/jls/se17/html/jls-13.html#jls-13.1
../api/org/checkerframework/common/reflection/qual/ClassBound.html
../api/org/checkerframework/checker/signature/qual/FqBinaryName.html
https://docs.oracle.com/javase/specs/jls/se17/html/jls-13.html#jls-13.1

@UnknownClass

@ClassValBottom

@ClassVal("java.lang.String")

@ClassBound({"java.lang.String","com.example.MyClass"})

@ClassBound("java.lang.String")@ClassVal({"java.lang.String","com.example.MyClass"})

Figure 25.1: Partial type hierarchy for the ClassVal type system. The type qualifiers in gray (@UnknownClass and
@ClassValBottom) should never be written in source code; they are used internally by the type system.

@UnknownClass Indicates that there is no compile-time information about the run-time value of the class — or that
the Java type is not Class. This is the default qualifier, and it may not be written in source code.

@ClassValBottom Type given to the null literal. It may not be written in source code.

Subtyping rules

Figure 25.1 shows part of the type hierarchy of the ClassVal type system. @ClassVal(A) is a subtype of @ClassVal(B)
if A is a subset of B. @ClassBound(A) is a subtype of @ClassBound(B) if A is a subset of B. @ClassVal(A) is a
subtype of @ClassBound(B) if A is a subset of B.

25.2.2 MethodVal Checker
The MethodVal Checker defines the following annotations:

@MethodVal(String[] className, String[] methodName, int[] params) Indicates that an ex-
pression of type Method or Constructor has a run-time value in a given set. If the set has size n, then each of
@MethodVal’s arguments is an array of size n, and the ith method in the set is represented by { className[i],
methodName[i], params[i] }. For a constructor, the method name is “<init>”.
Consider the following example:

@MethodVal(className={"java.util.HashMap", "java.util.HashMap"},
methodName={"containsKey", "containsValue"},
params={1, 1})

This @MethodVal annotation indicates that the Method is either HashMap.containsKey with 1 formal parameter
or HashMap.containsValue with 1 formal parameter.
The @MethodVal type qualifier indicates the number of parameters that the method takes, but not their type. This
means that the Checker Framework’s reflection resolution cannot distinguish among overloaded methods.

@UnknownMethod Indicates that there is no compile-time information about the run-time value of the method — or
that the Java type is not Method or Constructor. This is the default qualifier, and it may not be written in source
code.

@MethodValBottom Type given to the null literal. It may not be written in source code.

159

../api/org/checkerframework/common/reflection/qual/UnknownClass.html
../api/org/checkerframework/common/reflection/qual/ClassValBottom.html
../api/org/checkerframework/common/reflection/qual/MethodVal.html
../api/org/checkerframework/common/reflection/qual/UnknownMethod.html
../api/org/checkerframework/common/reflection/qual/MethodValBottom.html

@UnknownMethod

@MethodValBottom

@MethodVal(className={"java.lang.String", "java.lang.String"},methodName={"toString","equals"},params={0,1})

@MethodVal(className="java.lang.String",methodName="equals",params=1)

Figure 25.2: Partial type hierarchy for the MethodVal type system. The type qualifiers in gray (@UnknownMethod and
@MethodValBottom) should never be written in source code; they are used internally by the type system.

bn is the binary name of C
C.class : @ClassVal(bn)

s : @StringVal(ν)
Class.forName(s) : @ClassVal(ν)

e : τ bn is the binary name of τ

e.getClass() : @ClassBound(bn)

(e : @ClassBound(ν) ∨ e : @ClassVal(ν))
s : @StringVal(µ) p : @ArrayLen(π)

e.getMethod(s,p) : @MethodVal(cn=ν,mn=µ,np=π)

e : @ClassVal(ν) p : @ArrayLen(π)

e.getConstructor(p) : @MethodVal(cn=ν,mn = "<init>",np = π)

Figure 25.3: Example inference rules for @ClassVal, @ClassBound, and @MethodVal. Additional rules exist for
expressions with similar semantics but that call methods with different names or signatures.

Subtyping rules

Figure 25.2 shows part of the type hierarchy of the MethodVal type system. @MethodVal(classname=CA, methodname=MA,
params=PA) is a subtype of @MethodVal(classname=CB, methodname=MB, params=PB) if

∀indexesi∃an index j : CA[i] =CB[j],MA[i] = MA[j],andPA[i] = PB[j]

where CA, MA, and PA are lists of equal size and CB, MB, and PB are lists of equal size.

25.2.3 MethodVal and ClassVal inference
The developer rarely has to write @ClassVal or @MethodVal annotations, because the Checker Framework infers them
according to Figure 25.3. Most readers can skip this section, which explains the inference rules.

The ClassVal Checker infers the exact class name (@ClassVal) for a Class literal (C.class), and for a static method
call (e.g., Class.forName(arg), ClassLoader.loadClass(arg), ...) if the argument is a statically computable
expression. In contrast, it infers an upper bound (@ClassBound) for instance method calls (e.g., obj.getClass()).

The MethodVal Checker infers @MethodVal annotations for Method and Constructor types that have been created
using a method call to Java’s Reflection API:

• Class.getMethod(String name, Class<?>... paramTypes)
• Class.getConstructor(Class<?>... paramTypes)

160

Note that an exact class name is necessary to precisely resolve reflectively-invoked constructors since a constructor
in a subclass does not override a constructor in its superclass. This means that the MethodVal Checker does not infer a
@MethodVal annotation for Class.getConstructor if the type of that class is @ClassBound. In contrast, either an
exact class name or a bound is adequate to resolve reflectively-invoked methods because of the subtyping rules for
overridden methods.

161

Chapter 26

Initialized Fields Checker

The Initialized Fields Checker warns if a constructor does not initialize a field.

26.1 Running the Initialized Fields Checker
An example invocation is

javac -processor org.checkerframework.common.initializedfields.InitializedFieldsChecker MyFile.java

If you run it together with other checkers, then it issues warnings only if the default value assigned by Java (0, false,
or null) is not consistent with the field’s annotation, for the other checkers. An example invocation is

javac -processor ValueChecker,InitializedFieldsChecker MyFile.java

26.2 Motivation: uninitialized fields
Without the Initialized Fields Checker, every type system is unsound with respect to fields that are never set. (Exception:
The Nullness Checker (Chapter 3, page 31) is sound. Also, a type system is sound if every annotation is consistent with
0, false, and null.) Consider the following code:

import org.checkerframework.checker.index.qual.Positive;

class MyClass {
@Positive int x;
MyClass() {

// empty body
}

@Positive int getX() {
return x;

}
}

Method getX is incorrect because it returns 0, which is not positive. However, the code type-checks because there is
never an assignment to x whose right-hand side is not positive. If you run the Index Checker together with the Initialized
Fields Checker, then the code correctly does not type-check.

162

Remaining unsoundness

Even with the Initialized Fields Checker, every type system (except the Nullness Checker, Chapter 3, page 31) is
unsound with respect to partially-initialized fields. Consider the following code:

import org.checkerframework.checker.index.qual.Positive;

class MyClass {
@Positive int x;
MyClass() {

foo(this);
x = 1;

}

@Positive int foo() {
// ... use x, expecting it to be positive ...

}
}

Within method foo, x can have the value 0 even though the type of x is @Positive int.

26.3 Example
As an example, consider the following code:

import org.checkerframework.checker.index.qual.Positive;

class MyClass {

@Positive int x;
@Positive int y;
int z;

// Warning: field y is not initialized
MyClass() {

x = 1;
}

}

When run by itself, the Initialized Fields Checker warns that fields y and field z are not set.
When run together with the Index Checker, the Initialized Fields Checker warns that field y is not set. It does not

warn about field z, because its default value (0) is consistent with its annotations.

26.4 Annotations
The Initialized Fields type system uses the following type annotations:

@InitializedFields indicates which fields have definitely been initialized so far.
@InitializedFieldsBottom is the type of null. Programmers rarely write this type.
@PolyInitializedFields is a qualifier that is polymorphic over field initialization. For a description of qualifier

polymorphism, see Section 31.2.

163

../api/org/checkerframework/common/initializedfields/qual/InitializedFields.html
../api/org/checkerframework/common/initializedfields/qual/InitializedFieldsBottom.html
../api/org/checkerframework/common/initializedfields/qual/PolyInitializedFields.html

@InitializedfieldsBottom

@InitializedFields("a") @Initializedfields("b")

@Initializedfields({"a", "b"})

@InitializedFields()

Figure 26.1: The type qualifier hierarchy of the Initialized Fields Checker. @InitializedFieldsBottom is rarely
written by a programmer.

Figure 26.1 shows the subtyping relationships among the type qualifiers.
There is also a method declaration annotation:

@EnsuresInitializedFields indicates which fields the method sets. Use this for helper methods that are
called from a constructor.

26.5 Comparison to the Initialization Checker
The Initialized Fields Checker is a lightweight version of the Initialization Checker (Section 3.8). Here is a comparison
between them.

Initialization Checker Initialized Fields Checker
superclasses tracks initialization of supertype fields checks one class at a time
partial initialization changes the types of fields that are not initialized unsound treatment of partially-initialized objects (*)
type systems works only with the Nullness Checker (**) works for any type system
disabling always runs with the Nullness Checker can be enabled/disabled per run

* See Section 26.2 for an example.
** The Initialization Checker could be made to work with any type system, but doing so would require changing the implementation
of both the type system and the Initialization Checker.

164

../api/org/checkerframework/common/initializedfields/qual/EnsuresInitializedFields.html

Chapter 27

Aliasing Checker

The Aliasing Checker identifies expressions that definitely have no aliases.
Two expressions are aliased when they have the same non-primitive value; that is, they are references to the identical

Java object in the heap. Another way of saying this is that two expressions, exprA and exprB, are aliases of each other
when exprA==exprB at the same program point.

Assigning to a variable or field typically creates an alias. For example, after the statement a = b;, the variables a
and b are aliased.

Knowing that an expression is not aliased permits more accurate reasoning about how side effects modify the
expression’s value.

To run the Aliasing Checker, supply the -processor org.checkerframework.common.aliasing.AliasingChecker
command-line option to javac. However, a user rarely runs the Aliasing Checker directly. This type system is mainly
intended to be used together with other type systems. For example, the SPARTA information flow type-checker
(Section 30.20) uses the Aliasing Checker to improve its type refinement — if an expression has no aliases, a more
refined type can often be inferred, otherwise the type-checker makes conservative assumptions.

27.1 Aliasing annotations
There are two possible types for an expression:

@MaybeAliased is the type of an expression that might have an alias. This is the default, so every unannotated type
is @MaybeAliased. (This includes the type of null.)

@Unique is the type of an expression that has no aliases.
The @Unique annotation is only allowed at local variables, method parameters, constructor results, and method
returns. A constructor’s result should be annotated with @Unique only if the constructor’s body does not creates
an alias to the constructed object.

There are also two annotations, which are currently trusted instead of verified, that can be used on formal parameters
(including the receiver parameter, this):

@MaybeAliased

@Unique

Figure 27.1: Type hierarchy for the Aliasing type system. These qualifiers are applicable to any reference (non-primitive)
type.

165

../api/org/checkerframework/common/aliasing/qual/MaybeAliased.html
../api/org/checkerframework/common/aliasing/qual/Unique.html

@NonLeaked identifies a formal parameter that is not leaked nor returned by the method body. For example, the
formal parameter of the String copy constructor, String(String s), is @NonLeaked because the body of the
method only makes a copy of the parameter.

@LeakedToResult is used when the parameter may be returned, but it is not otherwise leaked. For example,
the receiver parameter of StringBuffer.append(StringBuffer this, String s) is @LeakedToResult,
because the method returns the updated receiver.

27.2 Leaking contexts
This section lists the expressions that create aliases. These are also called “leaking contexts”.

Assignments After an assignment, the left-hand side and the right-hand side are typically aliased. (The only coun-
terexample is when the right-hand side is a fresh expression; see Section 27.4.)

@Unique Object u = ...;
Object o = u; // (not.unique) type-checking error!

If this example type-checked, then u and o would be aliased. For this example to type-check, either the @Unique
annotation on the type of u, or the o = u; assignment, must be removed.

Method calls and returns (pseudo-assignments) Passing an argument to a method is a “pseudo-assignment” because
it effectively assigns the argument to the formal parameter. Return statements are also pseudo-assignments. As
with assignments, the left-hand side and right-hand side of pseudo-assignments are typically aliased.
Here is an example for argument-passing:

void mightDoAnything(Object o) { ... }

@Unique Object u = ...;
mightDoAnything(u); // type-checking error, because the callee may create an alias of the passed argument

Passing a non-aliased reference to a method does not necessarily create an alias. However, the body of the
method might create an alias or leak the reference. Thus, the Aliasing Checker always treats a method call as
creating aliases for each argument unless the corresponding formal parameter is marked as @@NonLeaked or
@@LeakedToResult.
Here is an example for a return statement:

Object id(@Unique Object p) {
return p; // (not.unique) type-checking error!

}

If this code type-checked, then it would be possible for clients to write code like this:

@Unique Object u = ...;
Object o = id(u);

after which there is an alias to u even though it is declared as @Unique.
However, it is permitted to write

Object id(@LeakedToResult Object p) {
return p;

}

after which the following code type-checks:

@Unique Object u = ...;
id(u); // method call result is not used
Object o1 = ...;
Object o2 = id(o1); // argument is not @Unique

Throws A thrown exception can be captured by a catch block, which creates an alias of the thrown exception.

166

../api/org/checkerframework/common/aliasing/qual/NonLeaked.html
../api/org/checkerframework/common/aliasing/qual/LeakedToResult.html
../api/org/checkerframework/common/aliasing/qual/NonLeaked.html
../api/org/checkerframework/common/aliasing/qual/LeakedToResult.html

void aliasInCatchBlock() {
@Unique Exception uex = new Exception();
try {

throw uex; // (not.unique) type-checking error!
} catch (Exception ex) {

// uex and ex refer to the same object here.
}

}

Array initializers Array initializers assign the elements in the initializers to corresponding indexes in the array,
therefore expressions in an array initializer are leaked.

void aliasInArrayInitializer() {
@Unique Object o = new Object();
Object[] ar = new Object[] { o }; // (not.unique) type-checking error!
// The expressions o and ar[0] are now aliased.

}

27.3 Restrictions on where @Unique may be written
The @Unique qualifier may not be written on locations such as fields, array elements, and type parameters.

As an example of why @Unique may not be written on a field’s type, consider the following code:

class MyClass {
@Unique Object field;
void makesAlias() {

MyClass myClass2 = this;
// this.field is now an alias of myClass2.field

}
}

That code must not type-check, because field is declared as @Unique but has an alias. The Aliasing Checker
solves the problem by forbidding the @Unique qualifier on subcomponents of a structure, such as fields. Other solutions
might be possible; they would be more complicated but would permit more code to type-check.

@Unique may not be written on a type parameter for similar reasons. The assignment

List<@Unique Object> l1 = ...;
List<@Unique Object> l2 = l1;

must be forbidden because it would alias l1.get(0) with l2.get(0) even though both have type @Unique. The
Aliasing Checker forbids this code by rejecting the type List<@Unique Object>.

27.4 Aliasing type refinement
Type refinement enables a type checker to treat an expression as a subtype of its declared type. For example, even if you
declare a local variable as @MaybeAliased (or don’t write anything, since @MaybeAliased is the default), sometimes
the Aliasing Checker can determine that it is actually @Unique. For more details, see Section 32.7.

The Aliasing Checker treats type refinement in the usual way, except that at (pseudo-)assignments the right-hand-
side (RHS) may lose its type refinement, before the left-hand-side (LHS) is type-refined. The RHS always loses its
type refinement (it is widened to @MaybeAliased, and its declared type must have been @MaybeAliased) except in the
following cases:

167

// Annotations on the StringBuffer class, used in the examples below.
// class StringBuffer {
// @Unique StringBuffer();
// StringBuffer append(@LeakedToResult StringBuffer this, @NonLeaked String s);
// }

void foo() {
StringBuffer sb = new StringBuffer(); // sb is refined to @Unique.

StringBuffer sb2 = sb; // sb loses its refinement.
// Both sb and sb2 have aliases and because of that have type @MaybeAliased.

}

void bar() {
StringBuffer sb = new StringBuffer(); // sb is refined to @Unique.

sb.append("someString");
// sb stays @Unique, as no aliases are created.

StringBuffer sb2 = sb.append("someString");
// sb is leaked and becomes @MaybeAliased.

// Both sb and sb2 have aliases and because of that have type @MaybeAliased.
}

Figure 27.2: Example of the Aliasing Checker’s type refinement rules.

• The RHS is a fresh expression — an expression that returns a different value each time it is evaluated. In practice,
this is only method/constructor calls with @Unique return type. A variable/field is not fresh because it can return
the same value when evaluated twice.

• The LHS is a @NonLeaked formal parameter and the RHS is an argument in a method call or constructor
invocation.

• The LHS is a @LeakedToResult formal parameter, the RHS is an argument in a method call or constructor
invocation, and the method’s return value is discarded — that is, the method call or constructor invocation is
written syntactically as a statement rather than as a part of a larger expression or statement.

A consequence of the above rules is that most method calls are treated conservatively. If a variable with declared
type @MaybeAliased has been refined to @Unique and is used as an argument of a method call, it usually loses its
@Unique refined type.

Figure 27.2 gives an example of the Aliasing Checker’s type refinement rules.

168

Chapter 28

Must Call Checker

The Must Call Checker conservatively over-approximates the set of methods that an object should call before it is
de-allocated. The checker does not enforce any rules other than subtyping; in particular, it does not enforce that the
methods are called before objects are de-allocated. The Must Call Checker is intended to be run as a subchecker of
another checker. The primary client of the Must Call Checker is the Resource Leak Checker (Section 8), which enforces
that every method in a must-call obligation for an expression is called before that expression is de-allocated.

For example, consider a java.io.OutputStream. This OutputStream might have an obligation to call the
close() method, to release an underlying file resource. The type of this OutputStream is @MustCall({"close"}).
Or, the OutputStream might not have such an obligation, if the underlying resource is a byte array. The type of this
OutputStream is @MustCall({}). For an arbitrary OutputStream, the Must Call Checker over-approximates the
methods that it should call by assigning it the type @MustCall({"close"}) OutputStream, which can be read as “an
OutputStream that might need to call close() (but no other methods) before it is de-allocated”.

If you are running the Resource Leak Checker (Chapter 8, page 74), then there is no need to run the Must Call
Checker, because the Resource Leak Checker does so automatically. Running both may lead to warning suppressions
for the Must Call Checker not working.

28.1 Must Call annotations
The Must Call Checker supports these type qualifiers:

@MustCall(String[] value) gives a superset of the methods that must be called before the expression’s value
is de-allocated. The annotation is not refined after a method is called; an expression of type @MustCall("foo")
might or might not have already had foo() called on it. The default type qualifier for an unannotated type is
@MustCall({}).

@MustCallUnknown represents a value with an unknown or infinite set of must-call obligations. It is used internally
by the type system but should never be written by a programmer.

@PolyMustCall is the polymorphic annotation for the Must Call type system. For a description of polymorphic
qualifiers, see Section 31.2.

@InheritableMustCall(String[] value) is an alias of @MustCall that can only be written on a class
declaration. It applies both to the class declaration on which it is written and also to all subclasses. This frees the
user of the need to write the @MustCall annotation on every subclass. See Section 28.2 for details.

Here are some facts about the type qualifier hierarchy, which is shown in Figure 28.1. Any expression of type
@MustCall({}) Object also has type @MustCall({"foo"}) Object. The type @MustCall({"foo"}) Object
contains objects that need to call foo and objects that need to call nothing, but the type does not contain an object that
needs to call bar (or both foo and bar). @MustCall({"foo", "bar"}) Object represents all objects that need to
call foo, bar, both, or neither; it cannot not represent an object that needs to call some other method.

169

../api/org/checkerframework/checker/mustcall/qual/MustCall.html
../api/org/checkerframework/checker/mustcall/qual/MustCallUnknown.html
../api/org/checkerframework/checker/mustcall/qual/PolyMustCall.html
../api/org/checkerframework/checker/mustcall/qual/InheritableMustCall.html

@MustCallUnknown

@MustCall({})

@MustCall("foo") @MustCall("bar")

@MustCall({"foo", "bar"})

Figure 28.1: Part of the Must Call Checker’s type qualifier hierarchy. The full hierarchy contains one @MustCall
annotation for every combination of methods. Qualifiers in gray are used internally by the type system but should never
be written by a programmer.

28.2 Writing @MustCall/@InheritableMustCall on a class
As explained in Section 32.3, a type annotation on a type declaration means that every use of the type has that annotation
by default. If a class A’s declaration has a @MustCall annotation, then A’s subclasses usually should too. To do so, a
programmer can either write a @MustCall annotation on every subclass, or can write @InheritableMustCall on only
A, which will cause the checker to treat every subclass as if it has an identical @MustCall annotation. The latter is the
preferred style.

For example, given the following class annotation:

package java.net;

import org.checkerframework.checker.mustcall.qual.InheritableMustCall;

@InheritableMustCall({"close"}) class Socket { }

any use of Socket or a subclass of Socket defaults to @MustCall({"close"}) Socket.
The @InheritableMustCall annotation is necessary because type annotations cannot be made inheritable.

@InheritableMustCall is a declaration annotation.

28.3 Relationship to lightweight ownership
The Must Call Checker interacts with the @Owning and @NotOwning annotations of the Resource Leak Checker
(Section 8). In particular, any location that the Resource Leak Checker would consider “non-owning” (e.g., unannotated
parameters, @NotOwning returns, etc.) is treated as @MustCall() by the Must Call Checker. This can lead to surprising
results when running the Must Call Checker alone (which is not recommended). For example, consider the following
program:

@MustCall({"toString"}) String foo(@MustCall({"hashCode"}) String arg) {
return arg;

}

The Must Call Checker will not issue a warning about this code, because arg is non-owning (and therefore treated
as @MustCall()).

170

28.4 Assumptions about reflection
The Must Call Checker is unsound with respect to reflection: it assumes that objects instantiated reflectively do not
have must-call obligations (i.e., that their type is @MustCall({}). If the checker is run with -AresolveReflection,
then this assumption applies only to types that cannot be resolved.

28.5 Type parameter bounds often need to be annotated
In an unannotated program, there may be mismatches between defaulted type qualifiers that lead to type-checking
errors. That is, the defaulted annotations at two different locations may be different and in conflict. A specific example
is in code that contains a mix of explicit upper bounds with an extends clause and implicit upper bounds without an
extends clause.

For example, consider the following example (from plume-util) of an interface with explicit upper bounds and a
client with implicit upper bounds:

interface Partition<ELEMENT extends @Nullable Object, CLASS extends @Nullable Object> {}

class MultiRandSelector<T> {
private Partition<T, T> eq;

}

The code contains no @MustCall annotations. Running the Must Call Checker on this code produces an error at
each use of T in MultiRandSelector:
error: [type.argument] incompatible type argument for type parameter ELEMENT of Partitioner.

private Partitioner<T, T> eq;
^

found : T extends @MustCallUnknown Object
required: @MustCall Object

error: [type.argument] incompatible type argument for type parameter CLASS of Partitioner.
private Partitioner<T, T> eq;

^
found : T extends @MustCallUnknown Object
required: @MustCall Object

The defaulted Must Call annotations differ. Partitioner has an explicit bound, which uses the usual default of
@MustCall({}). MultiRandSelector has an implicit bound, which defaults to top (that is, @MustCallUnknown), as
explained in Section 32.5.3.

In many cases, including this one, you can eliminate the false positive warning without writing any @MustCall
annotations. You can either:

• add an explicit bound to MultiRandSelector, changing its declaration to class MultiRandSelector<T
extends Object>, or

• remove the explicit bound from Partition, changing its declaration to interface Partition<ELEMENT,
CLASS>.

171

https://github.com/plume-lib/plume-util

Chapter 29

Subtyping Checker

The Subtyping Checker enforces only subtyping rules. It operates over annotations specified by a user on the command
line. Thus, users can create a simple type-checker without writing any code beyond definitions of the type qualifier
annotations.

The Subtyping Checker can accommodate all of the type system enhancements that can be declaratively specified
(see Chapter 36). This includes type introduction rules via the @QualifierForLiterals meta-annotation, and other
features such as type refinement (Section 32.7) and qualifier polymorphism (Section 31.2).

The Subtyping Checker is also useful to type system designers who wish to experiment with a checker before writing
code; the Subtyping Checker demonstrates the functionality that a checker inherits from the Checker Framework.

If you need typestate analysis, then you can extend a typestate checker. For more details (including a definition of
“typestate”), see Chapter 30.30. See Section 39.7.1 for a simpler alternative.

For type systems that require special checks (e.g., warning about dereferences of possibly-null values), you will
need to write code and extend the framework as discussed in Chapter 36.

29.1 Using the Subtyping Checker
The Subtyping Checker is used in the same way as other checkers (using the -processor
org.checkerframework.common.subtyping.SubtypingChecker option; see Chapter 2), except that it re-
quires an additional annotation processor argument via the standard “-A” switch. You must provide one or both of the
two following command-line arguments:

• Provide the fully-qualified class name(s) of the annotation(s) in the custom type system through the -Aquals
option, using a comma-no-space-separated notation:
javac -classpath /full/path/to/myProject/bin:/full/path/to/myLibrary/bin \

-processor org.checkerframework.common.subtyping.SubtypingChecker \
-Aquals=myPackage.qual.MyQual,myPackage.qual.OtherQual MyFile.java ...

• Provide the fully-qualified paths to a set of directories that contain the annotations in the custom type system
through the -AqualDirs option, using a colon-no-space-separated notation. For example, if the Checker
Framework is on the classpath rather than the processorpath:
javac -classpath /full/path/to/myProject/bin:/full/path/to/myLibrary/bin \

-processor org.checkerframework.common.subtyping.SubtypingChecker \
-AqualDirs=/full/path/to/myProject/bin:/full/path/to/myLibrary/bin MyFile.java

If the Checker Framework is on the processorpath, place the annotations on the processorpath instead of on the
classpath.

172

../api/org/checkerframework/framework/qual/QualifierForLiterals.html

29.1.1 Compiling your qualifiers and your project
The annotations listed in -Aquals or -AqualDirs must be accessible to the compiler during compilation. Before you
run the Subtyping Checker with javac, they must be compiled and on the same path (the classpath or processorpath) as
the Checker Framework. It is not sufficient to supply their source files on the command line.

29.1.2 Suppressing warnings from the Subtyping Checker
When suppressing a warning issued by the Subtyping Checker, as the “checker name” you may use the unquali-
fied, uncapitalized name of any of the annotations passed to -Aquals. (See Section 33.1.1 for details about the
@SuppressWarnings syntax.) As a matter of style, you should choose one of the annotations as the “checker name”
part of the @SuppressWarnings string and use it consistently; this avoids confusion and makes it easier to search for
uses.

29.2 Subtyping Checker example
Consider a hypothetical Encrypted type qualifier, which denotes that the representation of an object (such as a String,
CharSequence, or byte[]) is encrypted. To use the Subtyping Checker for the Encrypted type system, follow three
steps.

(This example also appears in the Checker Framework Tutorial, in more detail.)

1. Define two annotations for the Encrypted and PossiblyUnencrypted qualifiers:
package myPackage.qual;

import org.checkerframework.framework.qual.DefaultFor;
import org.checkerframework.framework.qual.SubtypeOf;
import java.lang.annotation.ElementType;
import java.lang.annotation.Target;

/**
* Denotes that the representation of an object is encrypted.
*/

@SubtypeOf(PossiblyUnencrypted.class)
@DefaultFor({TypeUseLocation.LOWER_BOUND})
@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
public @interface Encrypted {}

package myPackage.qual;

import org.checkerframework.framework.qual.DefaultQualifierInHierarchy;
import org.checkerframework.framework.qual.SubtypeOf;
import java.lang.annotation.ElementType;
import java.lang.annotation.Target;

/**
* Denotes that the representation of an object might not be encrypted.
*/

@DefaultQualifierInHierarchy
@SubtypeOf({})
@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
public @interface PossiblyUnencrypted {}

173

https://checkerframework.org/tutorial/webpages/encryption-checker-cmd.html

Note that all custom annotations must have the @Target(ElementType.TYPE_USE) meta-annotation. See
Section 36.5.1.
Don’t forget to compile these classes:

$ javac myPackage/qual/Encrypted.java myPackage/qual/PossiblyUnencrypted.java

The resulting .class files should either be on the same path (the classpath or processor path) as the Checker
Framework.

2. Write @Encrypted annotations in your program (say, in file YourProgram.java):
import myPackage.qual.Encrypted;

...

public @Encrypted String encrypt(String text) {
// ...

}

// Only send encrypted data!
public void sendOverInternet(@Encrypted String msg) {

// ...
}

void sendText() {
// ...
@Encrypted String ciphertext = encrypt(plaintext);
sendOverInternet(ciphertext);
// ...

}

void sendPassword() {
String password = getUserPassword();
sendOverInternet(password);

}
You may also need to add @SuppressWarnings annotations to the encrypt and decrypt methods. Analyzing
them is beyond the capability of any realistic type system.

3. Invoke the compiler with the Subtyping Checker, specifying the @Encrypted annotation using the -Aquals
option. You should add the Encrypted classfile to the processor classpath:

javac -processorpath myqualpath -processor org.checkerframework.common.subtyping.SubtypingChecker -Aquals=myPackage.qual.Encrypted,myPackage.qual.PossiblyUnencrypted YourProgram.java

YourProgram.java:42: incompatible types.
found : @myPackage.qual.PossiblyUnencrypted java.lang.String
required: @myPackage.qual.Encrypted java.lang.String

sendOverInternet(password);
^

4. You can also provide the fully-qualified paths to a set of directories that contain the qualifiers using the
-AqualDirs option, and add the directories to the boot classpath, for example:

javac -classpath /full/path/to/myProject/bin:/full/path/to/myLibrary/bin \
-processor org.checkerframework.common.subtyping.SubtypingChecker \
-AqualDirs=/full/path/to/myProject/bin:/full/path/to/myLibrary/bin YourProgram.java

Note that in these two examples, the compiled class file of the myPackage.qual.Encrypted and
myPackage.qual.PossiblyUnencrypted annotations must exist in either the myProject/bin directory or
the myLibrary/bin directory. The following placement of the class files will work with the above commands:
.../myProject/bin/myPackage/qual/Encrypted.class

174

@MyType @NotMyType

@MyTypeUnknown

@MyTypeBottom

Figure 29.1: Type system for a type alias or typedef type system. The type system designer may choose to omit some
of these types, but this is the general case. The type system designer’s choice of defaults affects the interpretation of
unannotated code, which affects the guarantees given for unannotated code.

.../myProject/bin/myPackage/qual/PossiblyUnencrypted.class

Also, see the example project in the docs/examples/subtyping-extension directory.

29.3 Type aliases and typedefs
A type alias or typedef is a type that shares the same representation as another type but is conceptually distinct from it.
For example, some strings in your program may be street addresses; others may be passwords; and so on. You wish to
indicate, for each string, which one it is, and to avoid mixing up the different types of strings. Likewise, you could
distinguish integers that are offsets from those that are absolute values.

Creating a new type makes your code easier to understand by conveying the intended use of each variable. It also
prevents errors that come from using the wrong type or from mixing incompatible types in an operation.

If you want to create a type alias or typedef, you have multiple options: a regular Java subtype, the Units Checker
(Chapter 20, page 140), the Fake Enum Checker (Chapter 9, page 83), or the Subtyping Checker.

A Java subtype is easy to create and does not require a tool such as the Checker Framework; for instance,
you would declare class Address extends String. There are a number of limitations to this “pseudo-typedef”,
however [Goe06]. Primitive types and final types (including String) cannot be extended. Equality and identity tests
can return incorrect results when a wrapper object is used. Existing return types in code would need to be changed,
which is easy with an annotation but disruptive to change the Java type. Therefore, it is best to avoid the pseudo-typedef
antipattern.

The Units Checker (Chapter 20, page 140) is useful for the particular case of units of measurement, such as
kilometers verses miles.

The Fake Enum Checker (Chapter 9, page 83) builds in a set of assumptions. If those fit your use case, then
it’s easiest to use the Fake Enum Checker (though you can achieve them using the Subtyping Checker). The Fake
Enum Checker forbids mixing of fenums of different types, or fenums and unannotated types. For instance, binary
operations other than string concatenations are forbidden, such as NORTH+1, NORTH+MONDAY, and NORTH==MONDAY.
However, NORTH+SOUTH is permitted.

By default, the Subtyping Checker does not forbid any operations.
If you choose to use the Subtyping Checker, then you have an additional design choice to make about the type

system. In the general case, your type system will look something like Figure 29.1.
References whose type is @MyType are known to store only values from your new type. There is no such guarantee

for @MyTypeUnknown and @NotMyType, but those types mean different things. An expression of type @NotMyType is
guaranteed never to evaluate to a value of your new type. An expression of type @MyTypeUnknown may evaluate to any
value — including values of your new type and values not of your new type. (@MyTypeBottom is the type of null and
is also used for dead code and erroneous situations; it can be ignored for this discussion.)

A key choice for the type system designer is which type is the default. That is, if a programmer does not write
@MyType on a given type use, should that type use be interpreted as @MyTypeUnknown or as @NotMyType?

175

• If unannotated types are interpreted as @NotMyType, then the type system enforces very strong separation between
your new type and all other types. Values of your type will never mix with values of other types. If you don’t see
@MyType written explicitly on a type, you will know that it does not contain values of your type.

• If unannotated types are interpreted as @MyTypeUnknown, then a generic, unannotated type may contain a value
of your new type. In this case, @NotMyType does not need to exist, and @MyTypeBottom may or may not exist in
your type system.

A downside of the stronger guarantee that comes from using @NotMyType as the default is the need to write
additional annotations. For example, if @NotMyType is the default, this code does not typecheck:

void method(Object o) { ... }
<U> void use(List<U> list) {

method(list.get(0));
}

Because (implicit) upper bounds are interpreted as the top type (see Section 31.1.2), this is interpreted as

void method(@NotMyType Object o) { ... }
<@U extends @MyTypeUnknown Object> void use(List<U> list) {

// type error: list.get(0) has type @MyTypeUnknown, method expects @NotMyType
method(list.get(0));

}

To make the code type-check, it is necessary to write an explicit annotation, either to restrict use’s argument or to
expand method’s parameter type.

176

Chapter 30

Third-party checkers

The Checker Framework has been used to build other checkers that are not distributed together with the framework. This
chapter gives an incomplete list of them. (If you know of others, or if you want this chapter to reference your checker,
please send us a link and a short description.) Many of the publications in Section 40.7 provide implementations, which
are not necessarily listed here yet.

These tools are externally-maintained, so if you have problems or questions, you should contact their maintainers
rather than the Checker Framework maintainers.

This list is in reverse chronological order; newer tools appear first and older ones appear last.

30.1 Determinism checker
The Determinism Checker (https://github.com/t-rasmud/checker-framework/tree/nondet-checker) en-
sures that a program is deterministic across executions. A determinismic program is easier to test, and it is easier to
debug (such as comparing executions).

The Determinism Checker focuses on sequential programs. It detects determinism due to the iteration order of a
hash table (or on any other property of hash codes), default formatting (such as Java’s Object.toString(), which
includes a memory address), random, date-and-time functions, and accessing system properties such as the file system
or environment variables.

The paper “Verifying determinism in sequential programs” [MWME21] describes the Determinism Checker.

30.2 Constant Value Inference (Interval Inference)
Interval analysis estimates the run-time values of numerical expressions in the source code by computing a lower
bound and an upper bound. The Constant Value Inference (https://github.com/d367wang/value-inference/
tree/artifact) project is a whole-program inference approach for integral range analysis (interval analysis).

The thesis “Interval Type Inference: Improvements and Evaluations” [Wan21] describes Constant Value Inference.

30.3 Crypto Checker
The Crypto Checker (https://github.com/vehiloco/crypto-checker) can help you find whether there are any
weak or unsupported crypto algorithms and the unsupported algorithm providers being used in your program. If the
Crypto Checker issues no warnings for a given program, then you have a guarantee that your program at runtime will
never have these issues. This is similar to the earlier AWS Crypto Policy Compliance Checker (Section 30.4).

The paper “Ensuring correct cryptographic algorithm and provider usage at compile time” [XCD21] (FTFjP 2021)
and the thesis “Light-weight verification of cryptographic API usage” [Xin20] describe the Crypto Checker.

177

https://github.com/t-rasmud/checker-framework/tree/nondet-checker
https://homes.cs.washington.edu/~mernst/pubs/determinism-icse2021-abstract.html
https://github.com/d367wang/value-inference/tree/artifact
https://github.com/d367wang/value-inference/tree/artifact
https://uwspace.uwaterloo.ca/bitstream/handle/10012/17788/Wang_Di.pdf
https://github.com/vehiloco/crypto-checker
https://vehiloco.github.io/crypto-checker/2021-06-04-Crypto-Checker-FTfJP-2021-preprint.pdf
https://uwspace.uwaterloo.ca/bitstream/handle/10012/16555/Xing_Weitian.pdf

30.4 AWS crypto policy compliance checker
The AWS crypto policy compliance checker (https://github.com/awslabs/aws-crypto-policy-compliance-checker)
checks that no weak cipher algorithms are used with the Java crypto API.

The paper “Continuous Compliance” [KSTE20] (ASE 2020) describes several custom Checker Framework checkers
in the context of a compliance regime at Amazon Web Services.

30.5 AWS KMS compliance checker
The AWS KMS compliance checker (https://github.com/awslabs/aws-kms-compliance-checker) extends the
Constant Value Checker (see Chapter 23, page 150) to enforce that calls to Amazon Web Services’ Key Management
System only request 256-bit (or longer) data keys. This checker can be used to help enforce a compliance requirement
(such as from SOC or PCI-DSS) that customer data is always encrypted with 256-bit keys.

The KMS compliance checker is available in Maven Central. To use it in build.gradle, add the following
dependency:

compile group: ’software.amazon.checkerframework’, name: ’aws-kms-compliance-checker’, version: ’1.0.2’

Other build systems are similar.
The paper “Continuous Compliance” [KSTE20] (ASE 2020) describes several custom Checker Framework checkers

in the context of a compliance regime at Amazon Web Services.

30.6 PUnits units of measurement
The PUnits system (https://github.com/opprop/units-inference) can check the correctness of a program or
annotate a program with units of measurement. It is described in the paper “Precise inference of expressive units of
measurement types” (OOPSLA 2020) [XLD20].

30.7 JaTyC typestate checker
JaTyC, Java Typestate Checker (https://github.com/jdmota/java-typestate-checker), ensures that methods
are called in the correct order. The sequences of method calls allowed are specified in a protocol file which is associated
with a Java class by adding a @Typestate annotation to the class. It is described in “Behavioural Types for Memory
and Method Safety in a Core Object-Oriented Language” [BFG+20], and the implementation is an extension of Mungo
(https://www.dcs.gla.ac.uk/research/mungo/index.html).

30.8 NullAway
NullAway (https://github.com/uber/NullAway) is a fast type-checker for only nullness properties. It is built on
top of Error Prone and the Checker Framework’s Dataflow Framework. See Section 39.10.3 for a comparison between
NullAway and the Nullness Checker. NullAway is described in the paper “NullAway: Practical type-based null safety
for Java” [BCS19].

30.9 Nullness Rawness Checker
The Nullness Rawness Checker is a variant of the Nullness Checker that uses a different type system for initialization.
It was distributed with the Checker Framework through release 2.9.0 (dated 3 July 2019). If you wish to use it, install
Checker Framework version 2.9.0.

The paper “Inference of field initialization” [SE11] describes inference for the Rawness Initialization Checker.

178

https://github.com/awslabs/aws-crypto-policy-compliance-checker
https://homes.cs.washington.edu/~mernst/pubs/continuous-compliance-ase2020-abstract.html
https://github.com/awslabs/aws-kms-compliance-checker
https://repo1.maven.org/maven2/software/amazon/checkerframework/aws-kms-compliance-checker/1.0.2/aws-kms-compliance-checker-1.0.2.jar
https://homes.cs.washington.edu/~mernst/pubs/continuous-compliance-ase2020-abstract.html
https://github.com/opprop/units-inference
https://github.com/jdmota/java-typestate-checker
https://arxiv.org/pdf/2002.12793.pdf
https://arxiv.org/pdf/2002.12793.pdf
https://www.dcs.gla.ac.uk/research/mungo/index.html
https://github.com/uber/NullAway
https://lazaroclapp.com/preprints/fse19-nullaway.pdf
https://lazaroclapp.com/preprints/fse19-nullaway.pdf
https://checkerframework.org/releases/2.9.0/
https://homes.cs.washington.edu/~mernst/pubs/initialization-icse2011-abstract.html

30.10 UI Thread Checker for ReactiveX
The Rx Thread & Effect Checker (https://github.com/uber-research/RxThreadEffectChecker) enforces UI
Thread safety properties for stream-based Android applications. The paper “Safe Stream-Based Programming with
Refinement Types” [SCSC18] describes the Rx Thread & Effect Checker.

30.11 Practical Immutability For Classes And Objects (PICO)
Practical Immutability For Classes And Objects (PICO) is a type system that supports class level and object level
immutability based on Checker Framework. The implementation is available at https://github.com/opprop/
immutability, and a docker image is available at https://hub.docker.com/repository/docker/lnsun/pico.

The theses “Context Sensitive Typechecking And Inference: Ownership And Immutability” [Ta18] and “An
Immutability Type System for Classes and Objects: Improvements, Experiments, and Comparisons” [Sun21] describe
PICO.

30.12 Read Checker and Cast Checker for ensuring that EOF is recognized
The InputStream.read() and Reader.read() methods read a byte (or character) from a stream. The methods return
an int, using -1 to indicate the end of the stream. It is an error to cast the value to a byte (or character) without
first checking the value against -1. This is rule CERT-FIO08-J. The Read Checker (https://github.com/opprop/
ReadChecker) and/or Cast Checker (https://github.com/opprop/cast-checker) enforces it.

The paper “Don’t miss the end: Preventing unsafe end-of-file comparisons” [CD18] and the thesis “Pluggable
Properties for Program Understanding: Ontic Type Checking and Inference” [Che18] describes the Read Checker.

30.13 Ontology type system
The Ontology type system (https://github.com/opprop/ontology) groups related types into coarser concepts. For
example, the SEQUENCE concept includes Java’s Array, List, and their subtypes. Other examples are VELOCITY
and FORCE.

The thesis “Pluggable Properties for Program Understanding: Ontic Type Checking and Inference” [Che18]
describes the Ontic type system.

30.14 Glacier: Class immutability
Glacier (http://glacier.coblenz.us/) enforces transitive class immutability in Java. According to its webpage:

• Transitive: if a class is immutable, then every field must be immutable. This means that all reachable state from
an immutable object’s fields is immutable.

• Class: the immutability of an object depends only on its class’s immutability declaration.
• Immutability: state in an object is not changable through any reference to the object.

Glacier is described by the paper “Glacier: Transitive class immutability for Java” (ICSE 2017) [CNA+17] and the
PhD thesis “User-Centered Design of Principled Programming Languages” [Cob20].

30.15 SQL checker that supports multiple dialects
jOOQ is a database API that lets you build typesafe SQL queries. jOOQ version 3.0.9 and later ships with a SQL checker
that provides even more safety: it ensures that you don’t use SQL features that are not supported by your database imple-
mentation. You can learn about the SQL checker at https://blog.jooq.org/jsr-308-and-the-checker-framework-add-even-more-typesafety-to-jooq-3-9/.

179

https://github.com/uber-research/RxThreadEffectChecker
https://www.bennostein.org/ase18.pdf
https://www.bennostein.org/ase18.pdf
https://github.com/opprop/immutability
https://github.com/opprop/immutability
https://hub.docker.com/repository/docker/lnsun/pico
https://uwspace.uwaterloo.ca/bitstream/handle/10012/13185/Ta_Mier.pdf
https://uwspace.uwaterloo.ca/bitstream/handle/10012/16882/Lian_Sun.pdf
https://uwspace.uwaterloo.ca/bitstream/handle/10012/16882/Lian_Sun.pdf
https://wiki.sei.cmu.edu/confluence/display/java/FIO08-J.+Distinguish+between+characters+or+bytes+read+from+a+stream+and+-1
https://github.com/opprop/ReadChecker
https://github.com/opprop/ReadChecker
https://github.com/opprop/cast-checker
https://uwspace.uwaterloo.ca/bitstream/handle/10012/13181/zhuo_chen.pdf
https://uwspace.uwaterloo.ca/bitstream/handle/10012/13181/zhuo_chen.pdf
https://github.com/opprop/ontology
https://uwspace.uwaterloo.ca/bitstream/handle/10012/13181/zhuo_chen.pdf
http://glacier.coblenz.us/
http://reports-archive.adm.cs.cmu.edu/anon/2020/CMU-CS-20-127.pdf
http://www.jooq.org/
https://blog.jooq.org/jsr-308-and-the-checker-framework-add-even-more-typesafety-to-jooq-3-9/

30.16 Immutability checkers: IGJ, OIGJ, and Javari
Javari [TE05], IGJ [ZPA+07], and OIGJ [ZPL+10] are type systems that enforce immutability constraints. Type-
checkers for all three type systems were distributed with the Checker Framework through release 1.9.13 (dated 1 April
2016). If you wish to use them, install Checker Framework version 1.9.13.

They were removed from the main distribution on June 1, 2016 because the implementations were not being
maintained as the Checker Framework evolved. The type systems are valuable, and some people found the type-
checkers useful. However, we wanted to focus on distributing checkers that are currently being maintained.

IGJ and OIGJ are described in the papers “Object and reference immutability using Java generics” [ZPA+07]
(ESEC/FSE 2007) and “Ownership and immutability in generic Java” [ZPL+10] (OOPSLA 2010). The Javari type
system is described in “Javari: Adding reference immutability to Java” [TE05] (OOPSLA 2005); for inference,
see “Inference of reference immutability” [QTE08] (ECOOP 2008) and “Parameter reference immutability: Formal
definition, inference tool, and comparison” [AQKE09] (J.ASE 2009). The paper “Practical pluggable types for
Java” [PAC+08] (ISSTA 2008) describes case studies in which the Javari and IGJ Checkers found previously-unknown
errors in real software.

30.17 JCrypt: computation over encrypted data
JCrypt (https://github.com/proganalysis/type-inference) is a static program analysis which transforms
a Java program into an equivalent one, so that it performs computation over encrypted data and preserves data
confidentiality. It is described in the paper “JCrypt: Towards computation over encrypted data” [DMD16a].

30.18 DroidInfer: information flow
DroidInfer (https://github.com/proganalysis/type-inference) determines the Android library sources (e.g.,
location access, phone state) and sinks (e.g., Internet access) used by a program, and determines whether there is
impermissible information flow between them. It is described in the paper “Scalable and Precise Taint Analysis for
Android” (ISSTA 2015) [HDMD15].

30.19 Error Prone linter
Error Prone (https://errorprone.info/) is a linter or bug detector for Java. It reports violations of style rules. It is
built on top of the Checker Framework’s Dataflow Framework. See Section 39.10.1 for a comparison between Error
Prone and the Nullness Checker.

30.20 SPARTA information flow type-checker for Android
SPARTA (https://checkerframework.org/sparta/) is a security toolset aimed at preventing malware from ap-
pearing in an app store. SPARTA provides an information-flow type-checker that is customized to Android but can
also be applied to other domains. The paper “Collaborative verification of information flow for a high-assurance app
store” [EJM+14] (CCS 2014) describes the SPARTA toolset and information flow type-checker.

30.21 SFlow type system for information flow
SFlow (https://github.com/proganalysis/type-inference) is a context-sensitive type system for secure infor-
mation flow. It contains two variants, SFlow/Integrity and SFlow/Confidentiality. SFlowInfer is its worst-case-cubic
inference analysis.

The paper “Type-based taint analysis for Java web applications” (FASE 2014) and the thesis “An Inference And
Checking Framework For Context-Sensitive Pluggable Types” (PhD thesis, 2014) describe SFlow and SFlowInfer.

180

https://checkerframework.org/releases/1.9.13/
https://homes.cs.washington.edu/~mernst/pubs/immutability-generics-fse2007-abstract.html
https://homes.cs.washington.edu/~mernst/pubs/ownership-immutability-oopsla2010-abstract.html
https://homes.cs.washington.edu/~mernst/pubs/ref-immutability-oopsla2005-abstract.html
https://homes.cs.washington.edu/~mernst/pubs/infer-refimmutability-ecoop2008-abstract.html
https://homes.cs.washington.edu/~mernst/pubs/mutability-jase2009-abstract.html
https://homes.cs.washington.edu/~mernst/pubs/mutability-jase2009-abstract.html
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-issta2008.pdf
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-issta2008.pdf
https://github.com/proganalysis/type-inference
http://cs.rpi.edu/~dongy6/docs/pppj16-jcrypt.pdf
https://github.com/proganalysis/type-inference
https://www.cs.rpi.edu/~milanova/docs/DroidInfer.pdf
https://www.cs.rpi.edu/~milanova/docs/DroidInfer.pdf
https://errorprone.info/
https://checkerframework.org/sparta/
https://homes.cs.washington.edu/~mernst/pubs/infoflow-ccs2014.pdf
https://homes.cs.washington.edu/~mernst/pubs/infoflow-ccs2014.pdf
https://github.com/proganalysis/type-inference
https://www.cs.rpi.edu/~milanova/docs/FASE14.pdf

30.22 CheckLT taint checker
CheckLT (http://checklt.github.io/) uses taint tracking to detect illegal information flows, such as unsanitized
data that could result in a SQL injection attack.

30.23 EnerJ checker
EnerJ (http://sampa.cs.washington.edu/research/approximation/enerj.html) is an extension to Java that
exposes hardware faults in a safe, principled manner to save energy with only slight sacrifices to the quality of
service. More details appear in the paper “EnerJ: Approximate Data Types for Safe and General Low-Power Computa-
tion” [SDF+11] (PLDI 2011).

30.24 ReIm immutability
A checker and inference tool for ReIm [HMDE12, Hua14], an immutability type system, is available at https:
//github.com/proganalysis/type-inference.

30.25 SFlow x ReIm for information flow and reference immutability
The “SFlow × ReIm” (https://github.com/proganalysis/type-inference) system combines information flow
and reference immutability. It is described in the paper “Composing polymorphic information flow systems with
reference immutability” [MH13].

30.26 Generic Universe Types checker
A checker for Generic Universe Types [DEM11], a lightweight ownership type system, is available from https:
//ece.uwaterloo.ca/~wdietl/ownership/ and https://github.com/opprop/universe.

The paper “Tunable static inference for Generic Universe Types” [DEM11] (ECOOP 2011) describes inference for
the Generic Universe Types type system. Another implementation of Universe Types and ownership types is described
in “Inference and checking of object ownership” [HDME12] (ECOOP 2012).

30.27 Safety-Critical Java checker
A checker for Safety-Critical Java (SCJ, JSR 302) [TPV10, TPNV11] is available at https://sss.cs.purdue.edu/
projects/oscj/checker/checker.html. Developer resources are available at the project page https://code.
google.com/archive/p/scj-jsr302/.

30.28 Thread locality checker
Loci (http://www.it.uu.se/research/upmarc/loci/) is a checker for thread locality. For more details, see the
paper “Loci: Simple thread-locality for Java” [WPM+09] (ECOOP 2009) and the thesis “The Design, Implementation
and Evaluation of a Pluggable Type Checker for Thread-Locality in Java” [She11].

30.29 Units and dimensions checker
A checker for units and dimensions is available at https://www.lexspoon.org/expannots/.

181

http://checklt.github.io/
http://sampa.cs.washington.edu/research/approximation/enerj.html
https://homes.cs.washington.edu/~luisceze/publications/Enerj-pldi2011.pdf
https://homes.cs.washington.edu/~luisceze/publications/Enerj-pldi2011.pdf
https://github.com/proganalysis/type-inference
https://github.com/proganalysis/type-inference
https://github.com/proganalysis/type-inference
https://www.cs.rpi.edu/~milanova/docs/FTFJP13.pdf
https://www.cs.rpi.edu/~milanova/docs/FTFJP13.pdf
https://ece.uwaterloo.ca/~wdietl/ownership/
https://ece.uwaterloo.ca/~wdietl/ownership/
https://github.com/opprop/universe
https://homes.cs.washington.edu/~mernst/pubs/tunable-typeinf-ecoop2011-abstract.html
https://github.com/proganalysis/type-inference
https://homes.cs.washington.edu/~mernst/pubs/infer-ownership-ecoop2012-abstract.html
https://sss.cs.purdue.edu/projects/oscj/checker/checker.html
https://sss.cs.purdue.edu/projects/oscj/checker/checker.html
https://code.google.com/archive/p/scj-jsr302/
https://code.google.com/archive/p/scj-jsr302/
http://www.it.uu.se/research/upmarc/loci/
http://janvitek.org/pubs/ecoop09.pdf
http://uu.diva-portal.org/smash/get/diva2:428159/FULLTEXT01.pdf
http://uu.diva-portal.org/smash/get/diva2:428159/FULLTEXT01.pdf
https://www.lexspoon.org/expannots/

Unlike the Units Checker that is distributed with the Checker Framework (see Section 20), this checker includes
dynamic checks and permits annotation arguments that are Java expressions. This added flexibility, however, requires
that you use a special version both of the Checker Framework and of the javac compiler.

30.30 Typestate checkers
In a regular type system, a variable has the same type throughout its scope. In a typestate system, a variable’s type can
change as operations are performed on it.

The most common example of typestate is for a File object. Assume a file can be in two states, @Open and @Closed.
Calling the close() method changes the file’s state. Any subsequent attempt to read, write, or close the file will lead to
a run-time error. It would be better for the type system to warn about such problems, or guarantee their absence, at
compile time.

Accumulation analysis (Chapter 37, page 264) is a special case of typestate analysis. One instantiation of it is the
Called Methods Checker (Chapter 7, page 69), which can check any property of the form “call method A before method
B”. It also ensures that builders are used correctly.

JaTyC (Section 30.7) is a Java typestate checker.

30.30.1 Comparison to flow-sensitive type refinement
The Checker Framework’s flow-sensitive type refinement (Section 32.7) implements a form of typestate analysis. For
example, after code that tests a variable against null, the Nullness Checker (Chapter 3) treats the variable’s type as
@NonNull T, for some T.

For many type systems, flow-sensitive type refinement is sufficient. But sometimes, you need full typestate analysis.
This section compares the two. (Unused variables (Section 32.10) also have similarities with typestate analysis and can
occasionally substitute for it. For brevity, this discussion omits them.)

A typestate analysis is easier for a user to create or extend. Flow-sensitive type refinement is built into the Checker
Framework and is optionally extended by each checker. Modifying the rules requires writing Java code in your checker.
By contrast, it is possible to write a simple typestate checker declaratively, by writing annotations on the methods (such
as close()) that change a reference’s typestate.

A typestate analysis can change a reference’s type to something that is not consistent with its original definition.
For example, suppose that a programmer decides that the @Open and @Closed qualifiers are incomparable — neither
is a subtype of the other. A typestate analysis can specify that the close() operation converts an @Open File into a
@Closed File. By contrast, flow-sensitive type refinement can only give a new type that is a subtype of the declared
type — for flow-sensitive type refinement to be effective, @Closed would need to be a child of @Open in the qualifier
hierarchy (and close() would need to be treated specially by the checker).

182

Chapter 31

Generics and polymorphism

Section 31.1 describes support for Java generics (also known as “parametric polymorphism”). Section 31.2 describes
polymorphism over type qualifiers for methods. Section 31.3 describes polymorphism over type qualifiers for classes.

31.1 Generics (parametric polymorphism or type polymorphism)
The Checker Framework fully supports type-qualified Java generic types and methods (also known as “parametric
polymorphism”). When instantiating a generic type, clients supply the qualifier along with the type argument, as in
List<@NonNull String>. When using a type variable T within the implementation of a generic type, typically no type
qualifier is written (see Section 31.1.3); rather, the instantiation of the type parameter is restricted (see Section 31.1.2).

31.1.1 Raw types
Before running any pluggable type-checker, we recommend that you eliminate raw types from your code (e.g., your code
should use List<...> as opposed to List). Your code should compile without warnings when using the standard Java
compiler and the -Xlint:unchecked -Xlint:rawtypes command-line options. Using generics helps prevent type
errors just as using a pluggable type-checker does, and makes the Checker Framework’s warnings easier to understand.

If your code uses raw types, then the Checker Framework will do its best to infer the Java type arguments and the
type qualifiers. By default these inferred types are ignored in subtyping checks. If you supply the command-line option
-AignoreRawTypeArguments=false you will see errors from raw types.

31.1.2 Restricting instantiation of a generic class
When you define a generic class in Java, the extends clause of the generic type parameter (known as the “upper bound”)
requires that the corresponding type argument must be a subtype of the bound. For example, given the definition
class G<T extends Number> {...}, the upper bound is Number and a client can instantiate it as G<Number> or
G<Integer> but not G<Date>.

You can write a type qualifier on the extends clause to make the upper bound a qualified type. For example, you
can declare that a generic list class can hold only non-null values:

class MyList<T extends @NonNull Object> {...}

MyList<@NonNull String> m1; // OK
MyList<@Nullable String> m2; // error

That is, in the above example, all arguments that replace T in MyList<T> must be subtypes of @NonNull Object.

183

Syntax for upper and lower bounds

Conceptually, each generic type parameter has two bounds — a lower bound and an upper bound — and at instantiation,
the type argument must be within the bounds. Java only allows you to specify the upper bound; the lower bound is
implicitly the bottom type void. The Checker Framework gives you more power: you can specify both an upper and
lower bound for type parameters. Write the upper bound on the extends clause, and write the lower bound on the type
variable.

class MyList<@LowerBound T extends @UpperBound Object> { ... }

You may omit either the upper or the lower bound, and the Checker Framework will use a default.
For a discussion of wildcards, see Section 31.1.4.
For a concrete example, consider the type system of the Regex Checker (see Figure 14.1, page 114) in which

@Regex(0) :> @Regex(1) :> @Regex(2) :> @Regex(3) :>

class MyRegexes<@Regex(5) T extends @Regex(1) String> { ... }

MyRegexes<@Regex(0) String> mu; // error - @Regex(0) is not a subtype of @Regex(1)
MyRegexes<@Regex(1) String> m1; // OK
MyRegexes<@Regex(3) String> m3; // OK
MyRegexes<@Regex(5) String> m5; // OK
MyRegexes<@Regex(6) String> m6; // error - @Regex(6) is not a supertype of @Regex(5)

The above declaration states that the upper bound of the type variable is @Regex(1) String and the lower bound
is @Regex(5) void. That is, arguments that replace T in MyList<T> must be subtypes of @Regex(1) String and
supertypes of @Regex(5) void. Since void cannot be used to instantiate a generic class, MyList may be instantiated
with @Regex(1) String through @Regex(5) String.

To specify an exact bound, place the same annotation on both bounds. For example:

class MyListOfNonNulls<@NonNull T extends @NonNull Object> { ... }
class MyListOfNullables<@Nullable T extends @Nullable Object> { ... }

MyListOfNonNulls<@NonNull Number> v1; // OK
MyListOfNonNulls<@Nullable Number> v2; // error
MyListOfNullables<@NonNull Number> v4; // error
MyListOfNullables<@Nullable Number> v3; // OK

It is an error if the lower bound is not a subtype of the upper bound.
class MyClass<@Nullable T extends @NonNull Object> // error: @Nullable is not a subtype of @NonNull

Defaults

A generic type parameter or wildcard is written as class MyClass<@LowerBound T extends @UpperBound
JavaUpperBound> or as MyClass<@UpperBound ? super @LowerBound JavaLowerBound>, where “@LowerBound”
and “@UpperBound” are type qualifiers.

For lower bounds: If no type annotation is written in front of ?, then the lower bound defaults to @BottomType
void.

For upper bounds:

• If the extends clause is omitted, then the upper bound defaults to @TopType Object.
• If the extends clause is written but contains no type qualifier, then the normal defaulting rules apply to the type

in the extends clause (see Section 32.5.3).

The upper-bound rules mean that even though in Java the following two declarations are equivalent:

184

class MyClass<T>
class MyClass<T extends Object>

they specify different type qualifiers on the upper bound, if the type system’s default annotation is not its top annotation.
The Nullness type system is an example.

class MyClass<T> == class MyClass<T extends @Nullable Object>
class MyClass<T extends Object> == class MyClass<T extends @NonNull Object>

The rationale for this choice is:

• The “<T>” in MyClass<T> means “fully unconstrained”, and the rules maintain that, without the need for a
programmer to change existing code.

• The “Object” in MyClass<T extends Object> is treated exactly like every other occurrence of Object in the
program — it would be confusing for different occurrences of Object to mean different annotated types.

Here are some style guidelines:

• Use “<T>” when there are no constraints on the type qualifiers. This is short and is what already appears in source
code.

• Whenever you write an extends clause, write an explicit type annotation on it. For example, for the Nullness
Checker, write class MyClass<T> rather than class MyClass<T extends @Nullable Object>, and write
class MyClass<T extends @NonNull Object> rather than class MyClass<T extends Object>.

For further discussion, see Section 39.7.2.

31.1.3 Type annotations on a use of a generic type variable
A type annotation on a use of a generic type variable overrides/ignores any type qualifier (in the same type hierarchy)
on the corresponding actual type argument. For example, suppose that T is a formal type parameter. Then using
@Nullable T within the scope of T applies the type qualifier @Nullable to the (unqualified) Java type of T. This
feature is sometimes useful, but more often the implementation of a generic type just uses the type variable T, whose
instantiation is restricted (see Section 31.1.2).

Here is an example of applying a type annotation to a generic type variable:

class MyClass2<T> {
...
@Nullable T myField = null;
...

}

The type annotation does not restrict how MyClass2 may be instantiated. In other words, both MyClass2<@NonNull
String> and MyClass2<@Nullable String> are legal, and in both cases @Nullable T means @Nullable String.
In MyClass2<@Interned String>, @Nullable T means @Nullable @Interned String.

Defaulting never affects a use of a type variable, even if the type variable use has no explicit annotation. Defaulting
helps to choose a single type qualifier for a concrete Java class or interface. By contrast, a type variable use represents a
set of possible types.

31.1.4 Annotations on wildcards
At an instantiation of a generic type, a Java wildcard indicates that some constraints are known on the type argument,
but the type argument is not known exactly. For example, you can indicate that the type parameter for variable ls is
some unknown subtype of CharSequence:

185

List<? extends CharSequence> ls;
ls = new ArrayList<String>(); // OK
ls = new ArrayList<Integer>(); // error: Integer is not a subtype of CharSequence

For more details about wildcards, see the Java tutorial on wildcards or JLS §4.5.1.
You can write a type annotation on the bound of a wildcard:

List<? extends @NonNull CharSequence> ls;
ls = new ArrayList<@NonNull String>(); // OK
ls = new ArrayList<@Nullable String>(); // error: @Nullable is not a subtype of @NonNull

Conceptually, every wildcard has two bounds — an upper bound and a lower bound. Java only permits you to
write one bound. You can specify the upper bound with <? extends SomeType>, in which case the lower bound is
implicitly the bottom type void. You can specify the lower bound (with <? super OtherType>), in which case the
upper bound is implicitly the top type Object. The Checker Framework is more flexible: it lets you similarly write
annotations on both the upper and lower bound.

To annotate the implicit bound, write the type annotation before the ?. For example:

List<@LowerBound ? extends @UpperBound CharSequence> lo;
List<@UpperBound ? super @NonNull Number> ls;

For an unbounded wildcard (<?>, with neither bound specified), the annotation in front of a wildcard applies to both
bounds. The following three declarations are equivalent (except that you cannot write the bottom type void; note that
Void does not denote the bottom type):

List<@NonNull ?> lnn;
List<@NonNull ? extends @NonNull Object> lnn;
List<@NonNull ? super @NonNull void> lnn;

Note that the annotation in front of a type parameter always applies to its lower bound, because type parameters can
only be written with extends and never super.

The defaulting rules for wildcards also differ from those of type parameters (see Section 32.5.5).

31.1.5 Examples of qualifiers on a type parameter
Recall that @Nullable X is a supertype of @NonNull X , for any X. Most of the following types mean different things:

class MyList1<@Nullable T> { ... }
class MyList1a<@Nullable T extends @Nullable Object> { ... } // same as MyList1
class MyList2<@NonNull T extends @NonNull Object> { ... }
class MyList2a<T extends @NonNull Object> { ... } // same as MyList2
class MyList3<T extends @Nullable Object> { ... }

MyList1 and MyList1a must be instantiated with a nullable type. The implementation of MyList1 must be able to
consume (store) a null value and produce (retrieve) a null value.

MyList2 and MyList2a must be instantiated with non-null type. The implementation of MyList2 has to account
for only non-null values — it does not have to account for consuming or producing null.

MyList3 may be instantiated either way: with a nullable type or a non-null type. The implementation of MyList3
must consider that it may be instantiated either way — flexible enough to support either instantiation, yet rigorous
enough to impose the correct constraints of the specific instantiation. It must also itself comply with the constraints of
the potential instantiations.

One way to express the difference among MyList1, MyList2, and MyList3 is by comparing what expressions are
legal in the implementation of the list — that is, what expressions may appear in the ellipsis in the declarations above,
such as inside a method’s body. Suppose each class has, in the ellipsis, these declarations:

186

https://docs.oracle.com/javase/tutorial/java/generics/wildcards.html
https://docs.oracle.com/javase/specs/jls/se17/html/jls-4.html#jls-4.5.1
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Void.html

T t;
@Nullable T nble; // Section "Type annotations on a use of a generic type variable", below,
@NonNull T nn; // further explains the meaning of "@Nullable T" and "@NonNull T".
void add(T arg) {}
T get(int i) {}

Then the following expressions would be legal, inside a given implementation — that is, also within the ellipses. (Compil-
able source code appears as file checker-framework/checker/tests/nullness/generics/GenericsExample.java.)

MyList1 MyList2 MyList3
t = null; OK error error
t = nble; OK error error
nble = null; OK OK OK
nn = null; error error error
t = this.get(0); OK OK OK
nble = this.get(0); OK OK OK
nn = this.get(0); error OK error
this.add(t); OK OK OK
this.add(nble); OK error error
this.add(nn); OK OK OK

The differences are more significant when the qualifier hierarchy is more complicated than just @Nullable and
@NonNull.

31.1.6 Covariant type parameters
Java types are invariant in their type parameter. This means that A<X> is a subtype of B<Y> only if X is identical to Y. For
example, ArrayList<Number> is a subtype of List<Number>, but neither ArrayList<Integer> nor List<Integer>
is a subtype of List<Number>. (If they were, there would be a loophole in the Java type system.) For the same
reason, type parameter annotations are treated invariantly. For example, List<@Nullable String> is not a subtype of
List<String>.

When a type parameter is used in a read-only way — that is, when clients read values of that type from the class
but never pass values of that type to the class — then it is safe for the type to be covariant in the type parameter. Use
the @Covariant annotation to indicate this. When a type parameter is covariant, two instantiations of the class with
different type arguments have the same subtyping relationship as the type arguments do.

For example, consider Iterator. A client can read elements but not write them, so Iterator<@Nullable
String> can be a subtype of Iterator<String> without introducing a hole in the type system. Therefore, its type
parameter is annotated with @Covariant. The first type parameter of Map.Entry is also covariant. Another example
would be the type parameter of a hypothetical class ImmutableList.

The @Covariant annotation is trusted but not checked. If you incorrectly specify as covariant a type parameter
that can be written (say, the class supports a set operation or some other mutation on an object of that type), then you
have created an unsoundness in the type system. For example, it would be incorrect to annotate the type parameter of
ListIterator as covariant, because ListIterator supports a set operation.

31.1.7 Method type argument inference and type qualifiers
Sometimes method type argument inference does not interact well with type qualifiers. In such situations, you might
need to provide explicit method type arguments, for which the syntax is as follows:

Collections.<@MyTypeAnnotation Object>sort(l, c);

This uses Java’s existing syntax for specifying a method call’s type arguments.

187

../api/org/checkerframework/framework/qual/Covariant.html
../api/org/checkerframework/framework/qual/Covariant.html

31.1.8 The Bottom type
Many type systems have a *Bottom type that is used only for the null value, dead code, and some erroneous situations.
A programmer should rarely write the bottom type.

One use is on a lower bound, to indicate that any type qualifier is permitted. A lower-bounded wildcard indicates
that a consumer method can accept a collection containing any Java type above some Java type, and you can add the
bottom type qualifier as well:

public static void addNumbers(List<? super @SignednessBottom Integer> list) { ... }

31.2 Qualifier polymorphism for methods
Type qualifier polymorphism permits a single method to have multiple different qualified type signatures.

Here is where a polymorphic qualifier (e.g., @PolyNull) can be used:

• Polymorphic qualifiers are most often used in method signatures. See the examples below in Section 31.2.1.
• Polymorphic qualifiers can also be written in method bodies (implementations).
• If you can use generics, you typically do not need to use a polymorphic qualifier. Do not write a polymorphic

qualifier on a type variable declaration.
• Polymorphic qualifiers may not be used on a class declaration. To apply qualifier polymorphism to classes, use a

class qualifier parameter; see Section 31.3.
• A polymorphic qualifier may be used on a field declaration only in a class with a class qualifier parameter; see

Section 31.3.2.
• If a class has a class qualifier parameter, then a polymorphic qualifier written on a method in the class has a

slightly different meaning, see Section 31.3.1.

Section 36.5.2 explains how to define a polymorphic qualifier.

31.2.1 Using polymorphic qualifiers in a method signature
A method whose signature has a polymorphic qualifier (such as @PolyNull) conceptually has multiple versions,
somewhat like the generics feature of Java or a template in C++. In each version, each instance of the polymorphic
qualifier has been replaced by the same other qualifier from the hierarchy.

The method body must type-check with all signatures. A method call is type-correct if it type-checks under any one
of the signatures. If a call matches multiple signatures, then the compiler uses the most specific matching signature for
the purpose of type-checking. This is the same as Java’s rule for resolving overloaded methods.

As an example of the use of @PolyNull, method Class.cast returns null if and only if its argument is null:

@PolyNull T cast(@PolyNull Object obj) { ... }

This is like writing:

@NonNull T cast(@NonNull Object obj) { ... }
@Nullable T cast(@Nullable Object obj) { ... }

except that the latter is not legal Java, since it defines two methods with the same Java signature.
As another example, consider

// Returns null if either argument is null.
@PolyNull T max(@PolyNull T x, @PolyNull T y);

which is like writing

@NonNull T max(@NonNull T x, @NonNull T y);
@Nullable T max(@Nullable T x, @Nullable T y);

188

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Class.html#cast(java.lang.Object)

At a call site, the most specific applicable signature is selected.
Another way of thinking about which one of the two max variants is selected is that the nullness annotations of (the

declared types of) both arguments are unified to a type that is a supertype of both, also known as the least upper bound
or lub. If both arguments are @NonNull, their unification (lub) is @NonNull, and the method return type is @NonNull.
But if even one of the arguments is @Nullable, then the unification (lub) is @Nullable, and so is the return type.

31.2.2 Relationship to subtyping and generics
Qualifier polymorphism has the same purpose and plays the same role as Java’s generics. You use them for the similar
reasons, such as:

• A method operates on collections with different types of elements.
• Two different arguments have the same type, without constraining them to be one specific type.
• A method returns a value of the same type as its argument.

If a method is written using Java generics, it usually does not need qualifier polymorphism. If you can use Java’s
generics, then that is often better. On the other hand, if you have legacy code that is not written generically, and you
cannot change it to use generics, then you can use qualifier polymorphism to achieve a similar effect, with respect to
type qualifiers only. The Java compiler still treats the base Java types non-generically.

In some cases, you don’t need qualifier polymorphism because subtyping already provides the needed functionality.
String is a supertype of @Interned String, so a method toUpperCase that is declared to take a String parameter
can also be called on an @Interned String argument.

31.2.3 Using multiple polymorphic qualifiers in a method signature
Usually, it does not make sense to write only a single instance of a polymorphic qualifier in a method definition:
if you write one instance of (say) @PolyNull, then you should use at least two. The main benefit of polymorphic
qualifiers comes when one is used multiple times in a method, since then each instance turns into the same type qualifier.
(Section 31.2.4 describes some exceptions to this rule: times when it makes sense to write a single polymorphic qualifier
in a signature.)

Most frequently, the polymorphic qualifier appears on at least one formal parameter and also on the return type.
It can also be useful to have polymorphic qualifiers on (only) multiple formal parameters, especially if the method

side-effects one of its arguments. For example, consider

void moveBetweenStacks(Stack<@PolyNull Object> s1, Stack<@PolyNull Object> s2) {
s1.push(s2.pop());

}

In this particular example, it would be cleaner to rewrite your code to use Java generics, if you can do so:

<T> void moveBetweenStacks(Stack<T> s1, Stack<T> s2) {
s1.push(s2.pop());

}

31.2.4 Using a single polymorphic qualifier in a method signature
As explained in Section 31.2.3, you will usually use a polymorphic qualifier multiple times in a signature. This section
describes situations when it makes sense to write just one polymorphic qualifier in a method signature. Some of these
situations can be avoided by writing a generic method, but in legacy code it may not be possible for you to change a
method to be generic.

189

Using a single polymorphic qualifier on a return type

It is unusual, but permitted, to write just one polymorphic qualifier, on a return type.
This is just like it is unusual, but permitted, to write just one occurrence of a generic type parameter, on a return

type. An example of such a method is Collections.emptyList().

Using a single polymorphic qualifier on an element type

It can make sense to use a polymorphic qualifier just once, on an array or generic element type.
For example, consider a routine that returns the index, in an array, of a given element:

public static int indexOf(@PolyNull Object[] a, @Nullable Object elt) { ... }

If @PolyNull were replaced with either @Nullable or @NonNull, then one of these safe client calls would be
rejected:

@Nullable Object[] a1;
@NonNull Object[] a2;

indexOf(a1, someObject);
indexOf(a2, someObject);

Of course, it would be better style to use a generic method, as in either of these signatures:

public static <T extends @Nullable Object> int indexOf(T[] a, @Nullable Object elt) { ... }
public static <T extends @Nullable Object> int indexOf(T[] a, T elt) { ... }

Another example is a method that writes bytes to a file. It accepts an array of signed or unsigned bytes, and it
behaves identically for both:

void write(@PolySigned byte[] b) { ... }

These examples use arrays, but there are similar examples that use collections.

Don’t use a single polymorphic qualifier on a formal parameter type

There is no point to writing just one polymorphic qualifier in a method signature, as the main type qualifier on a formal
parameter type. Consider this signature:

void m(@PolyNull Object obj)

which expands to

void m(@NonNull Object obj)
void m(@Nullable Object obj)

This is no different (in terms of which calls to the method will type-check) than writing just

void m(@Nullable Object obj)

However, it does make sense to write a single polymorphic qualifier within a formal parameter type, as in

void m2a(List<@PolyNull MySubClass> strings)

which is similar to

void m2b(List<? extends @Nullable MySubClass> strings)

Method m2b() can be called on (for example) List<@Nullable MySubClass> and List<@NonNull MySubClass>,
which are not legal arguments to method m2a().

190

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Collections.html#emptyList()

31.3 Class qualifier parameters
Class qualifier parameters permit you to supply a type qualifier (only, without a Java basetype) to any class (generic or
not).

When a generic class represents a collection, a user can write a type qualifier on the type argument, as in
List<@Tainted Character> versus List<@Untainted Character>. When a non-generic class represents a collec-
tion with a hard-coded type (as StringBuffer hard-codes Character), you can use a class qualifier parameter to
distinguish StringBuffers that contain different types of characters.

To add a qualifier parameter to a class, annotate its declaration with @HasQualifierParameter and write the class
of the top qualifier as its element.

@HasQualifierParameter(Tainted.class)
class StringBuffer { ... }

A qualifier on a use of StringBuffer is treated as appearing both on the StringBuffer and on its conceptual type
argument. That is:
@Tainted StringBuffer ≈ @Tainted Collection<@Tainted Character>
@Untainted StringBuffer ≈ @Untainted Collection<@Untainted Character>

If two types have different qualifier arguments, they have no subtyping relationship. (This is “invariant subtyping”,
also used by Java for generic classes.) In particular, @Untainted StringBuffer is not a subtype of @Tainted
StringBuffer; an attempt to cast between them, in either direction, will yield an invariant.cast.unsafe error.

@HasQualifierParameter is inherited. If type T has a @HasQualifierParameter annotation, then its subtypes
are automatically treated as having the same annotation.

Within a class with a qualifier parameter, the default qualifier for uses of that class is the polymorphic qualifier.

31.3.1 Resolving polymorphism when the receiver type has a polymorphic qualifier
Qualifier polymorphism changes the rules for instantiating polymorphic qualifiers (Section 31.2). If the receiver type
has a qualifier parameter and is annotated with a polymorphic qualifier, then at a call site all polymorphic annotations
are instantiated to the same qualifier as the type of the receiver expression of the method call. Otherwise, use the rules
of Section 31.2

For example, consider

@HasQualifierParameter(Tainted.class)
class Buffer {

void append(@PolyTainted Buffer this, @PolyTainted String s) { ... }
}

Because @PolyTainted applies to a type (Buffer) with a qualifier parameter, all uses of @PolyTainted are instantiated
to the qualifiers on the type of the receiver expression at call sites to append. For example,

@Untainted Buffer untaintedBuffer = ...;
@Tainted String taintedString = ...;
untaintedBuffer.append(taintedString); // error: (argument)

The above append call is illegal because the @PolyTainted is instantiated to @Untainted and the type of the argument
is @Tainted which is a supertype of @Untainted. If the type of untaintedBuffer were @Tainted then the call would
be legal.

31.3.2 Using class qualifier parameters in the type of a field
To express that the type of a field should have the same qualifier as the class qualifier parameter, annotate the field type
with the polymorphic qualifier for the type system.

191

../api/org/checkerframework/framework/qual/HasQualifierParameter.html

@HasQualifierParameter(Tainted.class)
class Buffer {

@PolyTainted String field;
}

At a field access where the declared type of the field has a polymorphic qualifier, that polymorphic qualifier is
instantiated to the qualifier on the type of the receiver of the field access (or in the case of type variables, the qualifier
on the upper bound). That is, the qualifier on myBuffer.field is that same as that on myBuffer.

31.3.3 Local variable defaults for types with qualifier parameters
Local variables default to the top type (see Section 32.5.3). Type refinement determines if a variable can be treated as a
suitable subtype, and annotations on local variables are rarely needed as a result. However, since qualifier parameters add
invariant subtyping, type refinement is no longer valid. For example, suppose in the following code that StringBuffer
is annotated with @HasQualifierParameter(Tainted.class).

void method(@Untainted StringBuffer buffer) {
StringBuffer local = buffer;
executeSql(local.toString());

}

void executeSql(@Untainted String code) {
// ...

}

Normally, the framework would determine that local has type @Untainted StringBuffer and the call to
executeSql would be valid. However, since by default local has type @Tainted StringBuffer, and @Untainted
StringBuffer is not a subtype, no type refinement would be performed, leading to an error. Fixing this would require
manually annotating local as an @Untainted StringBuffer, increasing the annotation burden on programmers.

For this reason, local variables with types that have a qualifier parameter use different defaulting rules. When a local
variable has an initializer, the type of that initializer is used as the default type of that variable if no other annotations
are written. For example, in the above code, the type of local would be @Untainted StringBuffer. This eliminates
the need for type refinement.

31.3.4 Qualifier parameters by default
If many classes in a project should have @HasQualifierParameter, it’s possible to enable it on all classes in a package
by default. Writing @HasQualifierParameter on a package is equivalent to writing @HasQualifierParameter on
each class in that package and all subpackages with the same arguments.

For example, writing this annotation enables @HasQualifierParameter for all classes in mypackage.

@HasQualifierParameter(Tainted.class)
package mypackage;

When using @HasQualifierParameter on a package, it’s possible to disable it for a specific class using @NoQualifierParameter.
Writing this on a class indicates it has no class qualifier parameter and @HasQualifierParameter will not be enabled
by default. Like @HasQualifierParameter, it takes one or more top annotations. It is illegal to explicitly write both
@HasQualifierParameter and @NoQualifierParameter on the same class for the same hierarchy.

31.3.5 Types with qualifier parameters as type arguments
Types with qualifier parameters are only allowed as type arguments to type parameters whose upper bound have a
qualifier parameter. If they were allowed for as type arguments for any type parameter, then unsound casts would be
permitted. For example:

192

../api/org/checkerframework/framework/qual/NoQualifierParameter.html

@HasQualifierParameter(Tainted.class)
interface Buffer {

void append(@PolyTainted String s);
}

public class ClassQPTypeVarTest {
<T> @Tainted T cast(T param) {

return param;
}

void bug(@Untainted Buffer b, @Tainted String s) {
cast(b).append(s); // error

}
}

193

Chapter 32

Advanced type system features

This chapter describes features that are automatically supported by every checker written with the Checker Framework.
You may wish to skim or skip this chapter on first reading. After you have used a checker for a little while and want
to be able to express more sophisticated and useful types, or to understand more about how the Checker Framework
works, you can return to it.

32.1 Invariant array types
Java’s type system is unsound with respect to arrays. That is, the Java type-checker approves code that is unsafe and
will cause a run-time crash. Technically, the problem is that Java has “covariant array types”, such as treating String[]
as a subtype of Object[]. Consider the following example:

String[] strings = new String[] {"hello"};
Object[] objects = strings;
objects[0] = new Object();
String myString = strs[0];

The above code puts an Object in the array strings and thence in myString, even though myString = new
Object() should be, and is, rejected by the Java type system. Java prevents corruption of the JVM by doing a
costly run-time check at every array assignment; nonetheless, it is undesirable to learn about a type error only via a
run-time crash rather than at compile time.

When you pass the -AinvariantArrays command-line option, the Checker Framework is stricter than Java, in
the sense that it treats arrays invariantly rather than covariantly. This means that a type system built upon the Checker
Framework is sound: you get a compile-time guarantee without the need for any run-time checks. But it also means that
the Checker Framework rejects code that is similar to what Java unsoundly accepts. The guarantee and the compile-time
checks are about your extended type system. The Checker Framework does not reject the example code above, which
contains no type annotations.

Java’s covariant array typing is sound if the array is used in a read-only fashion: that is, if the array’s elements are
accessed but the array is not modified. However, facts about read-only usage are not built into any of the type-checkers.
Therefore, when using type systems along with -AinvariantArrays, you will need to suppress any warnings that are
false positives because the array is treated in a read-only way.

32.2 Context-sensitive type inference for array constructors
When you write an expression, the Checker Framework gives it the most precise possible type, depending on the
particular expression or value. For example, when using the Regex Checker (Chapter 14, page 113), the string "hello"

194

is given type @Regex String because it is a legal regular expression (whether it is meant to be used as one or not) and
the string "(foo" is given the type @RegexBottom String because it is not a legal regular expression.

Array constructors work differently. When you create an array with the array constructor syntax, such as the
right-hand side of this assignment:

String[] myStrings = {"hello"};

then the expression does not get the most precise possible type, because doing so could cause inconvenience. Rather, its
type is determined by the context in which it is used: the left-hand side if it is in an assignment, the declared formal
parameter type if it is in a method call, etc.

In particular, if the expression {"hello"} were given the type @Regex String[], then the assignment would be
illegal! But the Checker Framework gives the type String[] based on the assignment context, so the code type-checks.

If you prefer a specific type for a constructed array, you can indicate that either in the context (change the declaration
of myStrings) or in a new construct (change the expression to new @Regex String[] {"hello"}).

32.3 Upper bound of qualifiers on uses of a given type (annotations on a class
declaration)

The examples in this section use the type qualifier hierarchy @A :> @B :> @C.
A qualifier on a use of a certain type must be a subtype or equal to the upper bound for that type. The upper bound

of qualifiers used on a given type is specified by annotating the type declaration with some qualifier — that is, by
writing an annotation on a class declaration.

@C class MyClass {}

This means that @B MyClass is an invalid type. (Annotations on class declarations may also specify default
annotations for uses of the type; see Section 32.5.1)

If it is not possible to annotate the class’s definition (e.g., for primitives and some library classes), the type-system
designer can specify an upper bound by using the meta-annotation @UpperBoundFor.

If no annotation is present on a type declaration and if no @UpperBoundFor mentions the type, then the bound is
top. This can be changed by overriding AnnotatedTypeFactory#getTypeDeclarationBounds.

There are two exceptions.

• An expression can have a supertype of the upper bound; that is, some expression could have type @B MyClass.
This type is not written explicitly, but results from viewpoint adaptation.

• Using usual CLIMB-to-top rules (Section 32.5.3), local variables of type MyClass default to @A MyClass. It is
legal for @A MyClass to be the type of a local variable. For consistency, users are allowed to write such a type on
a local variable declaration.

Due to existing type rules, an expression of type @A MyClass can only be used in limited ways.

• Since every field, formal parameter, and return type of type MyClass (or lower) is annotated as @B (or lower), it
cannot be assigned to a field, passed to a method, or returned from a method.

• It can be used in a context that requires @A Object (or whatever the least supertype is of MyClass for which the
@A qualifier is permitted). Examples include being tested against null or (for most type systems) being passed to
polymorphic routines such as System.out.println or System.identityHashCode.

These operations might refine its type. If a user wishes to annotate a method that does type refinement, its formal
parameter must be of illegal type @A MyClass, which requires a warning suppression.

If the framework were to forbid expressions and local variables from having types inconsistent with the class
annotation, then important APIs and common coding paradigms would no longer type-check.

Consider the annotation

@NonNull class Optional { ... }

195

../api/org/checkerframework/framework/qual/UpperBoundFor.html
../api/org/checkerframework/framework/type/AnnotatedTypeFactory.html#getTypeDeclarationBounds(javax.lang.model.type.TypeMirror)

and the client code

Map<String, Optional> m;
String key = ...;
Optional value = m.get(key);
if (value != null) {

...
}

The type of m.get(key) is @Nullable Optional, which is an illegal type. However, this is a very common
paradigm. Programmers should not need to rewrite the code to test m.containsKey(key) nor suppress a warning in
this safe code.

32.4 The effective qualifier on a type (defaults and inference)
A checker sometimes treats a type as having a slightly different qualifier than what is written on the type — especially if
the programmer wrote no qualifier at all. Most readers can skip this section on first reading, because you will probably
find the system simply “does what you mean”, without forcing you to write too many qualifiers in your program.
particular, programmers rarely write qualifiers in method bodies (except on type arguments and array component types).

The following steps determine the effective qualifier on a type — the qualifier that the checkers treat as being
present.

1. If a type qualifier is present in the source code, that qualifier is used.
2. If there is no explicit qualifier on a type, then a default qualifier is applied; see Section 32.5. Defaulted qualifiers

are treated by checkers exactly as if the programmer had written them explicitly.
3. The type system may refine a qualified type on a local variable — that is, treat it as a subtype of how it was

declared or defaulted. This refinement is always sound and has the effect of eliminating false positive error
messages. See Section 32.7.

32.5 Default qualifier for unannotated types
An unannotated Java type is treated as if it had a default annotation. Both the type system designer and an end-user
programmer can control the defaulting. Defaulting never applies to uses of type variables, even if they do not have an
explicit type annotation. Most of this section is about defaults for source code that is read by the compiler. When the
compiler reads a .class file, different defaulting rules apply. See Section 32.5.6 for these rules.

There are several defaulting mechanisms, for convenience and flexibility. When determining the default qualifier for
a use of an unannotated type, MyClass, the following rules are used in order, until one applies.

1. The qualifier specified via @DefaultQualifierForUse on the declaration of MyClass. (Section 32.5.1)
2. If no @NoDefaultQualifierForUse is written on the declaration of MyClass, the qualifier explicitly written on

the declaration of MyClass. (Section 32.5.1)
3. The qualifier with a meta-annotation @DefaultFor(types = MyClass.class). (Section 32.5.1)
4. The qualifier with a meta-annotation @DefaultFor(typeKinds = KIND), where KIND is the TypeKind of

MyClass. (Section 32.5.1)
5. The qualifier with a meta-annotation @DefaultFor(names = REGEX), where REGEX matches the name of the

variable being defined (if any). For return types, the name of the method is used. (Section 32.5.1)
6. The qualifier in the innermost user-written @DefaultQualifier for the location of the use of MyClass. (Sec-

tion 32.5.2)
7. The qualifier in the meta-annotation @DefaultFor for the location of the use of MyClass. These are defaults

specified by the type system designer (Section 36.5.4); this is usually CLIMB-to-top (Section 32.5.3).
8. The qualifier with the meta-annotation @DefaultQualifierInHierarchy.

196

../api/org/checkerframework/framework/qual/DefaultQualifierInHierarchy.html

If the unannotated type is the type of a local variable, then the first 5 rules are skipped and only rules 6 and 7 apply.
If rule 6 applies, it makes the type of local variables top so they can be refined.

32.5.1 Default for use of a type
The type declaration annotation @DefaultQualifierForUse indicates that the specified qualifier should be added to
all unannotated uses of the type.

For example:

@DefaultQualifierForUse(B.class)
class MyClass {}

This means any unannotated use of MyClass is treated as @B MyClass by the checker. (Except for locals, which
can be refined.)

Similarly, the meta-annotation @DefaultFor can be used to specify defaults for uses of types, using the types
element, or type kinds, using the typeKinds elements.

Interaction between qualifier bounds and DefaultQualifierForUse:

• If a type declaration is annotated with a qualifier bound, but not a @DefaultQualifierForUse, then the qualifier
bound is added to all unannotated uses of that type (except locals). For example, @C class MyClass is
equivalent to

@DefaultQualifierForUse(C.class)
@C class MyClass {}

• If the qualifier bound should not be added to all unannotated uses, then @NoDefaultQualifierForUse should
be written on the declaration:

@NoDefaultQualifierForUse
@C class MyClass {}

This means that unannotated uses of MyClass are defaulted normally.
• If neither @DefaultQualifierForUse nor a qualifier bound is present on a type declaration, that is equivalent

to writing @NoDefaultQualifierForUse.

32.5.2 Controlling defaults in source code
The end-user programmer specifies a default qualifier by writing the @DefaultQualifier(ClassName, [locations])
annotation on a package, class, method, or variable declaration. The argument to @DefaultQualifier is the Class
name of an annotation. The optional second argument indicates where the default applies. If the second argument is
omitted, the specified annotation is the default in all locations. See the Javadoc of DefaultQualifier for details.

For example, using the Nullness type system (Chapter 3):

import org.checkerframework.framework.qual.DefaultQualifier;
import org.checkerframework.checker.nullness.qual.NonNull;

@DefaultQualifier(NonNull.class)
class MyClass {

public boolean compile(File myFile) { // myFile has type "@NonNull File"
if (!myFile.exists()) // no warning: myFile is non-null

...
@Nullable File srcPath = ...; // must annotate to specify "@Nullable File"
if (srcPath.exists()) // warning: srcPath might be null

...
}

197

../api/org/checkerframework/framework/qual/DefaultQualifierForUse.html
../api/org/checkerframework/framework/qual/DefaultFor.html
../api/org/checkerframework/framework/qual/NoDefaultQualifierForUse.html
../api/org/checkerframework/framework/qual/DefaultQualifier.html
../api/org/checkerframework/framework/qual/DefaultQualifier.html
../api/org/checkerframework/framework/qual/DefaultQualifier.html

@DefaultQualifier(Tainted.class)
public boolean isJavaFile(File myfile) { // myFile has type "@Tainted File"

...
}

}

You may write multiple @DefaultQualifier annotations at a single location.
If @DefaultQualifier[s] is placed on a package (via the package-info.java file), then it applies to the given

package and all subpackages.

32.5.3 Defaulting rules and CLIMB-to-top
Each type system defines a default qualifier (see Section 36.5.4). For example, the default qualifier for the Nullness
Checker is @NonNull. When a user writes an unqualified type such as Date, the Nullness Checker interprets it as
@NonNull Date.

The type system applies that default qualifier to most but not all type uses. In particular, unless otherwise stated,
every type system uses the CLIMB-to-top rule. This rule states that the top qualifier in the hierarchy is the default for
the CLIMB locations: Casts, Locals, and (some) Implicit Bounds. For example, when the user writes an unqualified
type such as Date in such a location, the Nullness Checker interprets it as @Nullable Date (because @Nullable is
the top qualifier in the hierarchy, see Figure 3.1). (Casts are treated a bit specially; see below.)

The CLIMB-to-top rule is used only for unannotated source code that is being processed by a checker. For
unannotated libraries (code read by the compiler in .class or .jar form), see Section 32.5.6.

The rest of this section explains the rationale and implementation of CLIMB-to-top.
Here is the rationale for CLIMB-to-top:

• Local variables are defaulted to top because type refinement (Section 32.7) is applied to local variables. If a
local variable starts as the top type, then the Checker Framework refines it to the best (most specific) possible
type based on assignments to it. As a result, a programmer rarely writes an explicit annotation on any of those
locations.
Variables defaulted to top include local variables, resource variables in the try-with-resources construct, variables
in for statements, and catch arguments (known as exception parameters in the Java Language Specification).
Exception parameters default to the top type because they might catch an exception thrown anywhere in the
program.
An alternate design for exception parameters would be to default exception parameters some other type T (instead
of the top type); then the Checker Framework would need to issue a warning at every throw statement whose
argument might not be a subtype of T. A checker can implement this alternate design by overriding a few methods.
The alternative is not appropriate for all type systems. The alternative is unsound for deep type systems because
the JDK’s annotations are trusted rather than checked. A deep type system is one where the type of a field can
determine the type of its containing instance, such as tainting, Example: a user passes a secret regex to the JDK,
and the JDK throws a format exception that includes the regex. This could be caught by a catch clause in the
program whose exception parameter is not annotated as secret. As another example, the user passes a secret
integer and the JDK throws a DivideByZeroException that reveals the value.

• Cast types are defaulted to the same type as their argument expression. This has the same effect as if they
were given the top type and then flow-sensitively refined to the type of their argument. However, note that
programmer-written type qualifiers are not refined, so writing the top annotation is not the same as writing no
annotation.

• Implicit upper bounds are defaulted to top to allow them to be instantiated in any way.
Suppose a user declares a class as class C<T> { ... }. The Checker Framework assumes that the user
intended to allow any instantiation of the class. The Checker Framework interprets the declaration as class C<T
extends @Nullable Object> { ... } rather than as class C<T extends @NonNull Object> { ... }.
The latter would forbid instantiations such as C<@Nullable String>, or would require rewriting of code. On the

198

../api/org/checkerframework/framework/qual/DefaultQualifier.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/Nullable.html

other hand, if a user writes an explicit bound such as class C<T extends D> { ... }, then the user intends
some restriction on instantiation and can write a qualifier on the upper bound as desired.
This rule means that the upper bound of class C<T> is defaulted differently than the upper bound of class
C<T extends Object>. This is a bit unfortunate, but it is the least bad option. The more confusing alternative
would be for “Object” to be defaulted differently in class C<T extends Object> and in an instantiation
C<Object>, and for the upper bounds to be defaulted differently in class C<T extends Object> and class
C<T extends Date>.

• Implicit lower bounds are defaulted to the bottom type, again to allow maximal instantiation. Note that Java does
not allow a programmer to express both the upper and lower bounds of a type, but the Checker Framework allows
the programmer to specify either or both; see Section 31.1.2.

A @DefaultQualifier that specifies a CLIMB-to-top location takes precedence over the CLIMB-to-top rule.
Here is how the Nullness Checker overrides part of the CLIMB-to-top rule:

@DefaultQualifierInHierarchy
@DefaultFor({ TypeUseLocation.EXCEPTION_PARAMETER })
public @interface NonNull {}

public @interface Nullable {}

As mentioned above, the exception parameters are always non-null, so @DefaultFor({ TypeUseLocation.EXCEPTION_PARAMETER
}) on @NonNull overrides the CLIMB-to-top rule.

32.5.4 Inherited defaults
When overriding a method, programmers must fully specify types in the overriding method, which duplicates information
on the overridden method. By contrast, declaration annotations that are meta-annotated with @InheritedAnnotation
are inherited by overriding methods.

An example for type annotations is that when defining an equals() method, programmers must write the type
annotation @Nullable:

public boolean equals(@Nullable Object obj) {
...

}

An alternate design would be for every annotation on a superclass member to to be automatically inherited by
subclasses that override it.

The alternate design would reduce annotation effort.
The alternate design would reduce program comprehensibility. Currently, a user can determine the annotation on a

parameter or return value by looking at a single file. If annotations could be inherited from supertypes, then a user would
have to examine all supertypes, and do computations over them, to understand the meaning of an unannotated type in a
given file. For declaration annotations, no computation is necessary; that is why they may be inherited. Computation is
necessary for type annotations because different annotations might be inherited from a supertype and an interface, or
from two interfaces. For return types, the inherited type should be the least upper bound of all annotations on overridden
implementations in supertypes. For method parameters, the inherited type should be the greatest lower bound of all
annotations on overridden implementations in supertypes. In each case, the Checker Framework would need to issue an
error if no such annotations existed.

Because a program is read more often than it is edited/annotated, the Checker Framework does not currently support
the alternate design. In the future, this feature may be added.

199

../api/org/checkerframework/framework/qual/DefaultQualifier.html
../api/org/checkerframework/framework/qual/InheritedAnnotation.html

32.5.5 Inherited wildcard annotations
If a wildcard is unbounded and has no annotation (e.g. List<?>), the annotations on the wildcard’s bounds are copied
from the type parameter to which the wildcard is an argument.

For example, the two wildcards in the declarations below are equivalent.

class MyList<@Nullable T extends @Nullable Object> {}

MyList<?> listOfNullables;
MyList<@Nullable ? extends @Nullable Object> listOfNullables;

The Checker Framework copies these annotations because wildcards must be within the bounds of their corre-
sponding type parameter. By contrast, if the bounds of a wildcard were defaulted differently from the bounds of its
corresponding type parameter, then there would be many false positive type.argument warnings.

Here is another example of two equivalent wildcard declarations:

class MyList<@Regex(5) T extends @Regex(1) Object> {}

MyList<?> listOfRegexes;
MyList<@Regex(5) ? extends @Regex(1) Object> listOfRegexes;

Note, this copying of annotations for a wildcard’s bounds applies only to unbounded wildcards. The two wildcards
in the following example are equivalent.

class MyList<@NonNull T extends @Nullable Object> {}

MyList<? extends Object> listOfNonNulls;
MyList<@NonNull ? extends @NonNull Object> listOfNonNulls2;

Note, the upper bound of the wildcard ? extends Object is defaulted to @NonNull using the CLIMB-to-top rule
(see Section 32.5.3). Also note that the MyList class declaration could have been more succinctly written as: class
MyList<T extends @Nullable Object> where the lower bound is implicitly the bottom annotation: @NonNull.

32.5.6 Default qualifiers for .class files (library defaults)
(Note: Currently, the conservative library defaults presented in this section are off by default and can be turned on by sup-
plying the -AuseConservativeDefaultsForUncheckedCode=bytecode command-line option. In a future release,
they will be turned on by default and it will be possible to turn them off by supplying a -AuseConservativeDefaultsForUncheckedCode=-bytecode
command-line option.)

The defaulting rules presented so far apply to source code that is read by the compiler. When the compiler reads a
.class file, different defaulting rules apply.

If the checker was run during the compiler execution that created the .class file, then there is no need for defaults:
the .class file has an explicit qualifier at each type use. (Furthermore, unless warnings were suppressed, those
qualifiers are guaranteed to be correct.) When you are performing pluggable type-checking, it is best to ensure that the
compiler only reads such .class files. Section 35.4 discusses how to create annotated libraries.

If the checker was not run during the compiler execution that created the .class file, then the .class file contains
only the type qualifiers that the programmer wrote explicitly. (Furthermore, there is no guarantee that these qualifiers
are correct, since they have not been checked.) In this case, each checker decides what qualifier to use for the locations
where the programmer did not write an annotation. Unless otherwise noted, the choice is:

• For method parameters and lower bounds, use the bottom qualifier (see Section 36.5.7).
• For method return values, fields, and upper bounds, use the top qualifier (see Section 36.5.7).

200

These choices are conservative. They are likely to cause many false-positive type-checking errors, which will help
you to know which library methods need annotations. You can then write those library annotations (see Chapter 35) or
alternately suppress the warnings (see Chapter 33).

For example, an unannotated method

String concatenate(String p1, String p2)

in a classfile would be interpreted as

@Top String concatenate(@Bottom String p1, @Bottom String p2)

There is no single possible default that is sound for fields. In the rare circumstance that there is a mutable public
field in an unannotated library, the Checker Framework may fail to warn about code that can misbehave at run time.

32.6 Annotations on constructors

32.6.1 Annotations on constructor declarations
An annotation on the “return type” of a constructor declaration indicates what the constructor creates. For example,

@B class MyClass {
@C MyClass() {}

}

means that invoking that constructor creates a @C MyClass.
The Checker Framework cannot verify that the constructor really creates such an object, because the Checker

Framework does not know the type-system-specific semantics of the @C annotation. Therefore, if the constructor result
type is different than the top annotation in the hierarchy, the Checker Framework will issue a warning. The programmer
should check the annotation manually, then suppress the warning.

Defaults

If a constructor declaration is unannotated, it defaults to the same type as that of its enclosing class (rather than the
default qualifier in the hierarchy). For example, the Tainting Checker (Chapter 12) has @Tainted as its default qualifier.
Consider the following class:

@Untainted class MyClass {
MyClass() {}

}

The constructor declaration is equivalent to @Untainted MyClass() {}.
The Checker Framework produces the same error messages for explicitly-written and defaulted annotations.

32.6.2 Annotations on constructor invocations
The type of a method call expression x.myMethod(y, z) is determined by the return type of the declaration of
myMethod. There is no way to write an annotation on the call to change its type. However, it is possible to write a cast:
(@Anno SomeType) x.myMethod(y, z). The Checker Framework will issue a warning that it cannot verify that the
downcast is correct. The programmer should manually determine that the annotation is correct and then suppress the
warning.

A constructor invocation new MyClass() is also a call, so its semantics are similar. The type of the expression is
determined by the annotation on the result type of the constructor declaration. It is possible to write a cast (@Anno
MyClass) new MyClass(). The syntax new @Anno MyClass() is shorthand for the cast. For either syntax, the
Checker Framework will issue a warning that it cannot verify that the cast is correct. The programmer may suppress the
warning if the code is correct.

201

32.7 Type refinement (flow-sensitive type qualifier inference)
A checker can sometimes deduce that an expression’s type is more specific than — that is, a subtype of — its declared
or defaulted (Section 32.5). This is called “flow-sensitive type refinement” or “local type inference”.

Due to local type refinement, a programmer typically does not write any qualifiers on local variables within a method
body (except on type arguments and array component types). However, the programmer must write type annotations
for method signatures (arguments and return values) and fields, unless the default annotations are correct. Local type
refinement does not change the source code to insert the inferred annotations on local variables.

32.7.1 Type refinement examples
Here is an example for the Nullness Checker (Chapter 3, page 31). myVar is declared as @Nullable String, but it is
treated as @NonNull String within the body of the if test.

@Nullable String myVar;
... // myVar has type @Nullable String here.
myVar.hashCode(); // warning: possible dereference of null.
...
if (myVar != null) {

... // myVar has type @NonNull String here.
myVar.hashCode(); // no warning.

}

Here is another example. Note that the same expression may yield a warning or not depending on its context (that is,
depending on the current type refinement).

@Nullable String myVar;
... // myVar has type @Nullable String
myVar = "hello";
... // myVar has type @NonNull String
myVar.hashCode(); // no warning
...
myVar = myMap.get(someKey);
... // myVar has type @Nullable String
myVar.hashCode(); // warning: posible dereference of null

Type refinement applies to every checker, including new checkers that you write. Here is an example for the Regex
Checker (Chapter 14, page 113):

void m2(@Unannotated String s) {
s = RegexUtil.asRegex(s, 2); // asRegex throws an exception if its argument is not

// a regex with the given number of capturing groups
... // s now has type "@Regex(2) String"

}

32.7.2 Type refinement behavior
The checker treats a variable or expression as a subtype of its declared type:

• starting at the time that it is assigned a value, a method establishes a postcondition (e.g., as expressed by
@EnsuresNonNull or @EnsuresQualifierIf), or a run-time check is performed (e.g., via an assertion or if
statement).

• until its value might change (e.g., via an assignment, or because a method call might have a side effect).

202

../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
../api/org/checkerframework/framework/qual/EnsuresQualifierIf.html

The checker never treats a variable as a supertype of its declared type. For example, an expression with declared
type @NonNull type is never treated as possibly-null, and such an assignment is always illegal.

The functionality has a variety of names: type refinement, flow-sensitive type qualifier inference, local type
inference, and sometimes just “flow”.

32.7.3 Which types are refined
You generally do not need to annotate the top-level type of a local variable. You do need to annotate its type arguments
or array element types. (Type refinement does not change them, because doing so would not produce a subtype, as
explained in see Section 31.1.6 and Section 32.1.) Type refinement works within a method, so you still need to annotate
method signatures (parameter and return type) and field types.

If you find examples where you think a value should be inferred to have (or not have) a given annotation, but the
checker does not do so, please submit a bug report (see Section 40.2) that includes a small piece of Java code that
reproduces the problem.

Fields and type refinement

Type refinement infers the type of fields in some restricted cases:

• A final initialized field: Type inference is performed for final fields that are initialized to a compile-time constant
at the declaration site; so the type of protocol is @NonNull String in the following declaration:

public final String protocol = "https";

Such an inferred type may leak to the public interface of the class. If you wish to override such behavior, you can
explicitly insert the desired annotation, e.g.,

public final @Nullable String protocol = "https";

• Within method bodies: Type inference is performed for fields in the context of method bodies, like local variables
or any other expression. Consider the following example, where updatedAt is a nullable field:

class DBObject {
@Nullable Date updatedAt;

void m() {
// updatedAt is @Nullable, so warning about .getTime()
... updatedAt.getTime() ... // warning about possible NullPointerException

if (updatedAt == null) {
updatedAt = new Date();

}

// updatedAt is now @NonNull, so .getTime() call is OK
... updatedAt.getTime() ...

}
}

A method call may invalidate inferences about field types; see Section 32.7.5.

32.7.4 Run-time tests and type refinement
Some type systems support a run-time test that the Checker Framework can use to refine types within the scope of a
conditional such as if, after an assert statement, etc.

Whether a type system supports such a run-time test depends on whether the type system is computing properties of
data itself, or properties of provenance (the source of the data). An example of a property about data is whether a string

203

../api/org/checkerframework/checker/nullness/qual/NonNull.html

is a regular expression. An example of a property about provenance is units of measure: there is no way to look at the
representation of a number and determine whether it is intended to represent kilometers or miles.

Type systems that support a run-time test are:

• Nullness Checker for null pointer errors (see Chapter 3, page 31)
• Map Key Checker to track which values are keys in a map (see Chapter 4, page 55)
• Optional Checker for errors in using the Optional type (see Chapter 5, page 60)
• Lock Checker for concurrency and lock errors (see Chapter 10, page 87)
• Index Checker for array accesses (see Chapter 11, page 98)
• Resource Leak Checker for ensuring that resources are disposed of properly (see Chapter 8, page 74)
• SQL Quotes Checker to mitigate SQL injection attacks (see Chapter 13, page 111)
• Regex Checker to prevent use of syntactically invalid regular expressions (see Chapter 14, page 113)
• Format String Checker to ensure that format strings have the right number and type of % directives (see Chapter 15,

page 116)
• Internationalization Format String Checker to ensure that i18n format strings have the right number and type of
{} directives (see Chapter 16, page 123)

Type systems that do not currently support a run-time test, but could do so with some additional implementation
work, are

• Interning Checker for errors in equality testing and interning (see Chapter 6, page 63)
• Property File Checker to ensure that valid keys are used for property files and resource bundles (see Chapter 17,

page 129)
• Internationalization Checker to ensure that code is properly internationalized (see Chapter 17.2, page 130)
• Signature String Checker to ensure that the string representation of a type is properly used, for example in
Class.forName (see Chapter 18, page 132).

• Constant Value Checker to determine whether an expression’s value can be known at compile time (see Chapter 23,
page 150)

Type systems that cannot support a run-time test are:

• Initialization Checker to ensure all fields are set in the constructor (see Chapter 3.8, page 44)
• Called Methods Checker for the builder pattern (see Chapter 7, page 69)
• Fake Enum Checker to allow type-safe fake enum patterns and type aliases or typedefs (see Chapter 9, page 83)
• Tainting Checker for trust and security errors (see Chapter 12, page 108)
• GUI Effect Checker to ensure that non-GUI threads do not access the UI, which would crash the application (see

Chapter 19, page 135)
• Units Checker to ensure operations are performed on correct units of measurement (see Chapter 20, page 140)
• Signedness Checker to ensure unsigned and signed values are not mixed (see Chapter 21, page 144)
• Purity Checker to identify whether methods have side effects (see Chapter 22, page 148)
• Initialized Fields Checker to ensure all fields are set in the constructor (see Chapter 3.8, page 44)
• Aliasing Checker to identify whether expressions have aliases (see Chapter 27, page 165)
• Must Call Checker to over-approximate the methods that should be called on an object before it is de-allocated

(see Chapter 28, page 169)
• Subtyping Checker for customized checking without writing any code (see Chapter 29, page 172)

32.7.5 Side effects, determinism, purity, and type refinement
Calling a method typically causes the checker to discard its knowledge of the refined type, because the method might
assign a field. The @SideEffectFree annotation indicates that the method has no side effects, so calling it does not
invalidate any dataflow facts.

Calling a method twice might have different results, so facts known about one call cannot be relied upon at another
call. The @Deterministic annotation indicates that the method returns the same result every time it is called on the
same arguments.

204

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html
../api/org/checkerframework/dataflow/qual/SideEffectFree.html
../api/org/checkerframework/dataflow/qual/Deterministic.html

@Pure means both @SideEffectFree and @Deterministic. The @TerminatesExecution annotation indicates
that a given method never returns. This can enable the type refinement to be more precise.

Chapter 22 gives more information about these annotations. This section explains how to use them to improve type
refinement.

Side effects

Consider the following declarations and uses:

@Nullable Object myField;

int computeValue() { ... }

void m() {
...
if (myField != null) {

// The type of myField is now "@NonNull Object".
int result = computeValue();

// The type of myField is now "@Nullable Object",
// because computeValue might have set myField to null.

myField.toString(); // Warning: possible null pointer exception.
}

}

There are three ways to express that computeValue does not set myField to null, and thus to prevent the Nullness
Checker from issuing a warning about the call myField.toString().

1. If computeValue has no side effects, declare the method as @SideEffectFree:

@SideEffectFree
int computeValue() { ... }

The Nullness Checker issues no warnings, because it can reason that the second occurrence of myField has the
same (non-null) value as the one in the test.

2. If no method resets myField to null after it has been initialized to a non-null value (even if a method has some
other side effect), declare the field as @MonotonicNonNull:

@MonotonicNonNull Object myField;

3. If computeValue sets myField to a non-null value (or maintains it as a non-null value), declare the method as
@EnsuresNonNull:

@EnsuresNonNull("myField")
int computeValue() { ... }

If computeValue maintains myField as a non-null value, even if it might have other side effects and even if
other methods might set myField to null, declare it as

@RequiresNonNull("myField")
@EnsuresNonNull("myField")
int computeValue() { ... }

There are two other ways to suppress the warning:

• Put the expression in a local variable before the invocation. A method call never affects the value of a local
variable.

• If the warning is about a formal parameter (including the receiver) to a method foo(), then instead of declaring
foo() as @SideEffectFree, you can supply the -AinvocationPreservesArgumentNullness command-line
argument; see Section 3.1.1.

205

../api/org/checkerframework/dataflow/qual/Pure.html
../api/org/checkerframework/dataflow/qual/SideEffectFree.html
../api/org/checkerframework/dataflow/qual/Deterministic.html
../api/org/checkerframework/dataflow/qual/TerminatesExecution.html
../api/org/checkerframework/dataflow/qual/SideEffectFree.html
../api/org/checkerframework/checker/nullness/qual/MonotonicNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html

Deterministic methods

Consider the following declaration and uses:

@Nullable Object getField(Object arg) { ... }

void m() {
...
if (x.getField(y) != null) {

x.getField(y).toString(); // warning: possible null pointer exception
}

}

The Nullness Checker issues a warning regarding the toString() call, because its receiver x.getField(y) might
be null, according to the @Nullable return type in the declaration of getField. The Nullness Checker cannot assume
that getField returns non-null on the second call, just based on the fact that it returned non-null on the first call.

To indicate that a method returns the same value each time it is called on the same arguments, use the @Deterministic
annotation. Actually, it is necessary to use @Pure which means both @Deterministic and @SideEffectFree, because
otherwise the first call might change a value that the method depends on.

If you change the declaration of getField to

@Pure
@Nullable Object getField(Object arg) { ... }

then the Nullness Checker issues no warnings. Because getField is @SideEffectFree, the values of x and y are the
same at both invocations. Because getField is @Deterministic, the two invocations of x.getField(y) have the
same value. Therefore, x.getField(y) is non-null within the then branch of the if statement.

32.7.6 Assertions
If your code contains an assert statement, then your code could behave in two different ways at run time, depending
on whether assertions are enabled or disabled via the -ea, -enableassertions, -da, or -disableassertions
command-line options to java.

By default, the Checker Framework outputs warnings about any error that could happen at run time, whether
assertions are enabled or disabled.

If you supply the -AassumeAssertionsAreEnabled command-line option, then the Checker Framework assumes
assertions (that is, Java assert statements) are enabled, as if Java is run with the -ea or -enableassertions
command-line argument. If you supply the -AassumeAssertionsAreDisabled command-line option, then the
Checker Framework assumes assertions are disabled, as if Java is run with the -da or -disableassertions command-
line argument. You may not supply both command-line options. It is uncommon to supply either one.

These command-line arguments have no effect on processing of assert statements whose message contains the
text @AssumeAssertion; see Section 33.2.

32.7.7 Var Keyword
The initial type of a variable declared with var is exactly the type of the initializer expression at the declaration.

var list1 = new ArrayList<@Tainted String>(); // type of list1 is ArrayList<@Tainted String>
var list2 = new ArrayList<@Untainted String>(); // type of list2 is ArrayList<@Untainted String>

Flow-sensitive type refinement applies to these variables as usual. The base type qualifier may change at a later
program point due to a subsequent assignment, but the qualifiers on type parameters and array contents remain exactly
the same.

206

../api/org/checkerframework/dataflow/qual/Deterministic.html
../api/org/checkerframework/dataflow/qual/Pure.html

var list1 = new ArrayList<@Tainted String>(); // type of list1 is ArrayList<@Tainted String>
var list2 = new ArrayList<@Untainted String>(); // type of list2 is ArrayList<@Untainted String>
var list3 = list1; // type of list3 is ArrayList<@Tainted String>
list2 = list1; // assignment error

32.8 Writing Java expressions as annotation arguments
Sometimes, it is necessary to write a Java expression as the argument to an annotation. The annotations that take a Java
expression as an argument include:

• @RequiresQualifier
• @EnsuresQualifier
• @EnsuresQualifierIf
• @RequiresNonNull
• @EnsuresNonNull
• @EnsuresNonNullIf
• @RequiresPresent
• @EnsuresPresent
• @EnsuresPresentIf
• @KeyFor
• @EnsuresKeyFor
• @EnsuresKeyForIf
• @I18nFormatFor
• @EnsuresLockHeld
• @EnsuresLockHeldIf
• @GuardedBy
• @Holding

The set of permitted expressions is a subset of all Java expressions, with a few extensions. The extensions are formal
parameters like “#1” and (for some type systems) “<self>”.

• this, the receiver object. You can write this to annotate any variable or declaration where you could write this
in code. Notably, it cannot be used in annotations on declarations of static fields or static methods. For a field,
this is the field’s receiver (sometimes called its container). For a local variable, it is the method’s receiver.

• super, the receiver object as seen from the superclass. This can be used to refer to fields shadowed in the subclass
(although shadowing fields is discouraged in Java).

• <self>, the value of the annotated reference (non-primitive) variable. Currently only defined for the @GuardedBy
type system. For example, @GuardedBy("<self>") Object o indicates that the value referenced by o is
guarded by the intrinsic (monitor) lock of the value referenced by o.

• a formal parameter, e.g., #2. It is represented as # followed by the one-based parameter index. For example: #1,
#3. It is not permitted to write #0 to refer to the receiver object; use “this” instead.
The formal parameter syntax #1 is less natural in source code than writing the formal parameter name. This
syntax is necessary for separate compilation, because no formal parameter name information is available in
a .class file. Suppose an annotated method m has already been compiled into a .class file, perhaps by a
compilation that did not use the Checker Framework. When a client of m is later compiled, it cannot interpret a
formal parameter name, but it can interpret a number.
Within a method body, you may use the formal parameter name. The formal parameter name never works
within a method signature or for a contract (pre- or post-condition) annotation; in those locations, an identifier is
interpreted as a field name (not a formal parameter).

• a local variable, e.g., myLocalVar. The variable must be in scope; for example, a method annotation on method
m cannot mention a local variable that is declared inside m.

• a static variable, e.g., System.out. Write the class name and the variable.

207

../api/org/checkerframework/framework/qual/RequiresQualifier.html
../api/org/checkerframework/framework/qual/EnsuresQualifier.html
../api/org/checkerframework/framework/qual/EnsuresQualifierIf.html
../api/org/checkerframework/checker/nullness/qual/RequiresNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html
../api/org/checkerframework/checker/optional/qual/RequiresPresent.html
../api/org/checkerframework/checker/optional/qual/EnsuresPresent.html
../api/org/checkerframework/checker/optional/qual/EnsuresPresentIf.html
../api/org/checkerframework/checker/nullness/qual/KeyFor.html
../api/org/checkerframework/checker/nullness/qual/EnsuresKeyFor.html
../api/org/checkerframework/checker/nullness/qual/EnsuresKeyForIf.html
../api/org/checkerframework/checker/i18nformatter/qual/I18nFormatFor.html
../api/org/checkerframework/checker/lock/qual/EnsuresLockHeld.html
../api/org/checkerframework/checker/lock/qual/EnsuresLockHeldIf.html
../api/org/checkerframework/checker/lock/qual/GuardedBy.html
../api/org/checkerframework/checker/lock/qual/Holding.html

• a field of any expression. For example: next, this.next, #1.next. You may optionally omit a leading “this.”,
just as in Java. Thus, this.next and next are equivalent.

• an array access. For example: this.myArray[i], vals[#1].
• an array creation. For example: new int[10], new String[] "a", "b".
• literals: string, integer, char, long, float, double, null, class literals.
• a method invocation on any expression. This even works for overloaded methods and methods with type

parameters. For example: m1(x, y.z, #2), a.m2("hello").
Currently, the Checker Framework cannot prove all contracts about method calls, so you may need to suppress
some warnings.
One unusual feature of the Checker Framework’s Java expressions is that a method call is allowed to have side
effects. Other tools forbid methods with side effects (and doing so is necessary if a specification is going to
be checked at run time via assertions). The Checker Framework enables you to state more facts. For example,
consider the annotation on java.io.BufferedReader.ready():

@EnsuresNonNullIf(expression="readLine()", result=true)
@Pure public boolean ready() throws IOException { ... }

This states that if readLine() is called immediately after ready() returns true, then readLine() returns a
non-null value.

• a binary expression, e.g., x + y or #1 - 1. These are used by the Index Checker, for example.
• a class name expression within another expression, e.g., “String” in String.class or “pkg.MyClass” in
pkg.MyClass.staticField. The class name must be fully-qualified unless it can be referenced by its simple
name without an import statement at the location where the annotation appears. For example, an annotation in
class C can use the simple name of a class in java.lang or in the same package as C.

32.8.1 Limitations
If you mention a class in a Java expression, then that class must be available to the compiler. For example, if
you write @EnsuresNonNull("package1.package2.MyClass.myField.myOtherField"), then you should pass
MyClass.java to the compiler. Otherwise, the compiler does not know which components of the dotted name
are packages, classes, and field names. In that case, you might get confusing error messages such as “Invalid
’package1.package2’ because could not find class package1 in package package2”.

It is not possible to write a quantification over all array components (e.g., to express that all array elements are
non-null). There is no such Java expression, but it would be useful when writing specifications.

32.9 Field invariants
Sometimes a field declared in a superclass has a more precise type in a subclass. To express this fact, write
@FieldInvariant on the subclass. It specifies the field’s type in the class on which this annotation is written.
The field must be declared in a superclass and must be final.

For example,

class Person {
final @Nullable String nickname;
public Person(@Nullable String nickname) {

this.nickname = nickname;
}

}

// A rapper always has a nickname.
@FieldInvariant(qualifier = NonNull.class, field = "nickname")
class Rapper extends Person {

public Rapper(String nickname) {

208

../api/org/checkerframework/framework/qual/FieldInvariant.html

super(nickname);
}
void method() {

... nickname.length() ... // legal, nickname is non-null in this class.
}

}

A field invariant annotation can refer to more than one field. For example, @FieldInvariant(qualifier = NonNull.class,
field = {fieldA, fieldB}) means that fieldA and fieldB are both non-null in the class upon which the an-
notation is written. A field invariant annotation can also apply different qualifiers to different fields. For example,
@FieldInvariant(qualifier = {NonNull.class, Untainted.class}, field = {fieldA, fieldB}) means
that fieldA is non-null and fieldB is untainted.

This annotation is inherited: if a superclass is annotated with @FieldInvariant, its subclasses have the same anno-
tation. If a subclass has its own @FieldInvariant, then it must include the fields in the superclass annotation and those
fields’ annotations must be a subtype (or equal) to the annotations for those fields in the superclass @FieldInvariant.

Currently, the @FieldInvariant annotation is trusted rather than checked. In other words, the @FieldInvariant
annotation introduces a loophole in the type system, which requires verification by other means such as manual
examination.

32.10 Unused fields
In an inheritance hierarchy, subclasses often introduce new methods and fields. For example, a Marsupial (and its
subclasses such as Kangaroo) might have a variable pouchSize indicating the size of the animal’s pouch. The field
does not exist in superclasses such as Mammal and Animal, so Java issues a compile-time error if a program tries to
access myMammal.pouchSize.

If you cannot use subtypes in your program, you can enforce similar requirements using type qualifiers. For fields,
use the @Unused annotation (Section 32.10.1), which enforces that a field or method may only be accessed from a
receiver expression with a given annotation (or one of its subtypes). For methods, annotate the receiver parameter this;
then a method call type-checks only if the actual receiver is of the specified type.

Also see the discussion of typestate checkers, in Chapter 30.30.

32.10.1 @Unused annotation
A Java subtype can have more fields than its supertype. For example:

class Animal {}
class Mammal extends Animal { ... }
class Marsupial extends Mammal {

int pouchSize; // pouch capacity, in cubic centimeters
...

}

You can simulate the same effect for type qualifiers: the @Unused annotation on a field declares that the field may
not be accessed via a receiver of the given qualified type (or any supertype). For example:

class Animal {
@Unused(when=Mammal.class)
int pouchSize; // pouch capacity, in cubic centimeters
...

}
@interface Mammal {}
@interface Marsupial {}

209

../api/org/checkerframework/framework/qual/Unused.html

@Marsupial Animal joey = ...;
... joey.pouchSize ... // OK
@Mammal Animal mae = ...;
... mae.pouchSize ... // compile-time error

The above class declaration is like writing

class @Mammal-Animal { ... }
class @Marsupial-Animal {

int pouchSize; // pouch capacity, in cubic centimeters
...

}

210

Chapter 33

Suppressing warnings

When the Checker Framework reports a warning, it’s best to fix the underlying problem, by changing the code or its
annotations. For each warning, follow the methodology in Section 2.4.5 to correct the underlying problem.

This section describes what to do if the methodology of Section 2.4.5 indicates that you need to suppress the
warning. You won’t change your code, but you will prevent the Checker Framework from reporting this particular
warning to you. (Changing the code to fix a bug is another way to prevent the Checker Framework from issuing a
warning, but it is not what this chapter is about.)

You may wish to suppress checker warnings because of unannotated libraries or un-annotated portions of your
own code, because of application invariants that are beyond the capabilities of the type system, because of checker
limitations, because you are interested in only some of the guarantees provided by a checker, or for other reasons.
Suppressing a warning is similar to writing a cast in a Java program: the programmer knows more about the type than
the type system does and uses the warning suppression or cast to convey that information to the type system.

You can suppress a warning message in a single variable initializer, method, or class by using the following
mechanisms:

• the @SuppressWarnings annotation (Section 33.1), or
• the @AssumeAssertion string in an assert message (Section 33.2).

You can suppress warnings throughout the codebase by using the following mechanisms:

• the -AsuppressWarnings command-line option (Section 33.3),
• the -AskipUses and -AonlyUses command-line options (Section 33.4),
• the -AskipDefs and -AonlyDefs command-line options (Section 33.5),
• the -AskipFiles and -AonlyFiles command-line options (Section 33.6),
• the -AuseConservativeDefaultsForUncheckedCode=source command-line option (Section 35.4),
• the -Alint command-line option enables/disables optional checks (Section 33.7),
• changing the specification of a method (Section 33.8), or
• not running the annotation processor (Section 33.9).

Some type checkers can suppress warnings via

• checker-specific mechanisms (Section 33.10).

The rest of this chapter explains these mechanisms in turn.
You can use the -AwarnUnneededSuppressions command-line option to issue a warning if a @SuppressWarnings

did not suppress any warnings issued by the current checker.

211

33.1 @SuppressWarnings annotation
You can suppress specific errors and warnings by use of the @SuppressWarnings annotation, for example
@SuppressWarnings("interning") or @SuppressWarnings("nullness"). Section 33.1.1 explains the syntax
of the argument string.

A @SuppressWarnings annotation may be placed on program declarations such as a local variable declaration,
a method, or a class. It suppresses all warnings within that program element. Section 33.1.2 discusses where the
annotation may be written in source code.

Section 33.1.3 gives best practices for writing @SuppressWarnings annotations.

33.1.1 @SuppressWarnings syntax
The @SuppressWarnings annotation takes a string argument, in one of the following forms: "checkername:messagekey",
"checkername", or "messagekey".

The argument checkername is the checker name, without “Checker”. It is lower case by default, though a checker
can choose a different casing. For example, if you invoke a checker as javac -processor MyNiftyChecker ...,
then you would suppress its error messages with @SuppressWarnings("mynifty"). (An exception is the Subtyping
Checker, for which you use the annotation name; see Section 29.1.) Sometimes, a checker honors multiple checkername
arguments; use the -AshowSuppressWarningsStrings command-line option to see them.

The argument messagekey is the message key for the error. Each warning message from the compiler gives the most
specific suppression string that can be used to suppress that warning. An example is “dereference.of.nullable” in
MyFile.java:107: error: [dereference.of.nullable] dereference of possibly-null reference myList

myList.add(elt);
^

You are allowed to use any substring of a message key, so long as the substring extends at each end to a pe-
riod or an end of the key. For example, to suppress a warning with message key "assignment", you could use
@SuppressWarnings("assignment"), @SuppressWarnings("assignment.type"), @SuppressWarnings("type.incompatible"),
or other variants. We recommend using the longest possible message key; a short message might suppress more warnings
than you expect.

The checkername "allcheckers" means all checkers. Using this is not recommended, except for messages
common to all checkers such as purity-related messages when using -AcheckPurityAnnotations. If you use
"allcheckers", you run some checker that does not issue any warnings, and you suply the -AwarnUnneededSuppressions
command-line argument, then the Checker Framework will issue an unneeded.suppression warning.

The special messagekey “all” means to suppress all warnings.
If the checkername part is omitted, the @SuppressWarnings applies to all checkers. If the messagekey part is

omitted, the @SuppressWarnings applies to all messages (it suppresses all warnings from the given checker).
With the -ArequirePrefixInWarningSuppressions command-line option, the Checker Framework only sup-

presses warnings when the string is in the "checkername" or "checkername:messagekey" format, as in
@SuppressWarnings("nullness") or @SuppressWarnings("nullness:assignment"). For example, @SuppressWarnings("assignment")
and @SuppressWarnings("all") have no effect (they are ignored) when -ArequirePrefixInWarningSuppressions
is used. You can use @SuppressWarnings("allcheckers") to suppress all Checker Framework warnings.

33.1.2 Where @SuppressWarnings can be written
@SuppressWarnings is a declaration annotation, so it may be placed on program declarations such as a local variable
declaration, a method, or a class.

@SuppressWarnings cannot be used on statements, expressions, or types. To work around this, you can

• extract an expression into a local variable and suppress a warning on its declaration,
• write assert plus @AssumeAssertion between statements; it can affect arbitrary expressions (see Section 33.2),

or
• use a type-system-specific method call, such as NullnessUtil.castNonNull.

212

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/SuppressWarnings.html
../api/org/checkerframework/checker/nullness/util/NullnessUtil.html#castNonNull(T)

Always write a @SuppressWarnings annotation on the smallest possible scope. To reduce the scope of a
@SuppressWarnings annotation, it is sometimes desirable to refactor the code. You might extract an expression into a
local variable, so that warnings can be suppressed just for that local variable’s initializer expression. Likewise, you
might extract some code into a separate method, so that warnings can be suppressed just for its body. Or, you can use
@AssumeAssertion on an assert statement; see Section 33.2.

As an example, consider suppressing a warning at an assignment that you know is safe. Here is an example that
uses the Tainting Checker (Section 12). Assume that expr has compile-time (declared) type @Tainted String, but
you know that the run-time value of expr is untainted.

@SuppressWarnings("tainting:cast.unsafe") // expr is untainted because ... [explanation goes here]
@Untainted String myvar = expr;

Java does not permit annotations (such as @SuppressWarnings) on assignments (or on other statements or expressions),
so it would have been illegal to write
@Untainted String myvar;
...
@SuppressWarnings("tainting:cast.unsafe") // expr is untainted because ...
myvar = expr;

33.1.3 Good practices when suppressing warnings
Suppress warnings in the smallest possible scope

Prefer @SuppressWarnings on a local variable declaration to one on a method, and prefer one on a method to one on a
class. @SuppressWarnings on a local variable declaration applies only to the declaration (including its initializer if
any), not to all uses of the variable.

You may be able to suppress a warning about a use of an expression by writing @AssumeAssertion for the
expression, before the use. See Section 33.2.

Another way to reduce the scope of a @SuppressWarnings is to extract the expression into a new local variable
and place a @SuppressWarnings annotation on the variable declaration. See Section 33.1.2.

Use a specific argument to @SuppressWarnings

It is best to use the most specific possible message key to suppress just a specific error that you know to be a false
positive. The checker outputs this message key when it issues an error. If you use a broader @SuppressWarnings
annotation, then it may mask other errors that you needed to know about.

Any of the following would have suppressed the warning in Section 33.1.2:

@SuppressWarnings("tainting") // suppresses all tainting-related warnings
@SuppressWarnings("cast") // suppresses warnings from all checkers about casts
@SuppressWarnings("unsafe") // suppresses warnings from all checkers about unsafe code
@SuppressWarnings("cast.unsafe") // suppresses warnings from all checkers about unsafe casts
@SuppressWarnings("tainting:cast") // suppresses tainting warnings about casts
@SuppressWarnings("tainting:unsafe") // suppresses tainting warnings about unsafe code
@SuppressWarnings("tainting:cast.unsafe") // suppresses tainting warnings about unsafe casts

The last one is the most specific, and therefore is the best style.

Justify why the warning is a false positive

A @SuppressWarnings annotation asserts that the programmer knows that the code is actually correct or safe (that is,
no undesired behavior will occur), even though the type system is unable to prove that the code is correct or safe.

Whenever you write a @SuppressWarnings annotation, you should also write, typically on the same line, a code
comment explaining why the code is actually correct. In some cases you might also justify why the code cannot be
rewritten in a simpler way that would be amenable to type-checking. Also make it clear what error is being suppressed.

213

(This is particularly important when the @SuppressWarnings is on a method declaration and the suppressed warning
might be anywhere in the method body.)

This documentation will help you and others to understand the reason for the @SuppressWarnings annotation. It
will also help you audit your code to verify all the warning suppressions. (The code is correct only if the checker issues
no warnings and each @SuppressWarnings is correct.)

A suppression message like “a.f is not null” is not useful. The fact that you are suppressing the warning means that
you believe that a.f is not null. The message should explain why you believe that; for example, “a.f was checked above
and no subsequent side effect can affect it”.

Here are some terse examples from libraries in plume-lib:

@SuppressWarnings("cast") // cast is redundant (except when checking nullness)
@SuppressWarnings("interning") // FbType.FREE is interned but is not annotated
@SuppressWarnings("interning") // equality testing optimization
@SuppressWarnings("nullness") // used portion of array is non-null
@SuppressWarnings("nullness") // oi.factory is a static method, so null first argument is OK
@SuppressWarnings("purity") // side effect to local state of type BitSet

A particularly good (and concise) justification is to reference an issue in the issue tracker, as in these two from
Daikon:

@SuppressWarnings("flowexpr.parse.error") // https://tinyurl.com/cfissue/862
@SuppressWarnings("keyfor") // https://tinyurl.com/cfissue/877

Please report false positive warnings, then reference them in your warning suppressions. This permits the Checker
Framework maintainers to know about the problem, it helps them with prioritization (by knowing how often in
your codebase a particular issue arises), and it enables you to know when an issue has been fixed (though the
-AwarnUnneededSuppressions command-line option also serves the latter purpose).

33.2 @AssumeAssertion string in an assert message
Sometimes, it is too disruptive to refactor your code to create a location where @SuppressWarnings can
be written. You can instead suppress a warning by writing an assertion whose message contains the string
@AssumeAssertion(checkername).

For example, in this code:

while (c != Object.class) {
...
c = c.getSuperclass();
assert c != null

: "@AssumeAssertion(nullness): c was not Object, so its superclass is not null";
}

the Nullness Checker assumes that c is non-null from the assert statement forward (including on the next iteration
through the loop).

The assert expression must be an expression that would affect flow-sensitive type refinement (Section 32.7), if the
expression appeared in a conditional test. Each type system has its own rules about what type refinement it performs.

The value in parentheses is a checker name (typically lowercase), exactly as in the @SuppressWarnings annotation
(Section 33.1.1). Any subcheckers will also assume that the assertion is true (e.g., the Map Key Checker will assume
that the assertion in the example above cannot fail, when it runs as a subchecker of the Nullness Checker).

The same good practices apply as for @SuppressWarnings annotations, such as writing a comment justifying why
the assumption is safe (Section 33.1.3).

The -AassumeAssertionsAreEnabled and -AassumeAssertionsAreDisabled command-line options (Sec-
tion 32.7.6) do not affect processing of assert statements that have @AssumeAssertion in their message. Writing

214

https://github.com/plume-lib/
https://plse.cs.washington.edu/daikon/

@AssumeAssertion means that the assertion would succeed if it were executed, and the Checker Framework makes
use of that information regardless of the -AassumeAssertionsAreEnabled and -AassumeAssertionsAreDisabled
command-line options.

33.2.1 Suppressing warnings and defensive programming
This section explains the distinction between two different uses for assertions: debugging a program (also known as
defensive programming) versus specifying a program. The examples use nullness annotations, but the concepts apply to
any checker.

The purpose of assertions is to aid debugging by throwing an exception when a program does not work correctly.
Sometimes, programmers use assertions for a different purpose: documenting how the program works. By default, the
Checker Framework assumes that each assertion is used for its primary purpose of debugging: the assertion might fail
at run time, and the programmer wishes to be informed at compile time about such possible run-time errors.

Suppose that a programmer encounters a failing test, adds an assertion to aid debugging, and fixes the test. The
programmer leaves the assertion in the program if the programmer is worried that the program might fail in a similar
way in the future. The Checker Framework should not assume that the assertion succeeds — doing so would defeat the
very purpose of the Checker Framework, which is to detect errors at compile time and prevent them from occurring at
run time.

A non-standard use for annotations is to document facts that a programmer has independently verified to be true.
The Checker Framework can leverage these assertions in order to avoid issuing false positive warnings. The programmer
marks such assertions with the @AssumeAssertion string in the assert message (see Section 33.2). Only do so if you
are sure that the assertion always succeeds at run time.

Methods such as Objects.requireNonNull, JUnit’s Assert.assertNotNull, and Guava’s verifyNotNull and
checkNotNull are similar to assertions. Just as for assertions, their intended use is as debugging aids, they might fail
at run time, and the Checker Framework warns if that might happen. Some programmers may use assert methods as
documentation of facts that the programmer has verified in some other manner. If you know that a particular codebase
always uses an assertion method not for defensive programming but to indicate facts that are guaranteed to be true
(that is, these assertions cannot fail at run time), then there are two approaches to avoid false positive warnings: write
specifications or suppress warnings; see below for an explanation of each approach.

The method NullnessUtil.castNonNull is not an assertion method. It is a warning suppression method.
Note that some libraries have an imprecise/incorrect specification of their assertion methods. For example, Guava’s

Verify.verifyNotNull is imprecisely/incorrectly specified to have a @Nullable formal parameter. In a correct
execution, null never flows there, so its type can and should be annotated as @NonNull. That annotation allows the
Nullness Checker to warn about programs that crash due to passing null to verifyNotNull. (A comment in Guava’s
Preconditions.java agrees with this reasoning: “the first parameter to checkNotNull should be annotated to require
it to be non-null.” The comment goes on to say “I had hoped to take a principled stand on this” (that, is, write the
annotation @NonNull), but Guava annotates it as @Nullable to accommodate misuses within the Google codebase.)

By default, the Checker Framework uses Guava’s annotations as written. If you wish to take the principled stand in
order to prevent all NullPointerExceptions, you can use a different version of Guava with a small change to your
build file. Where the build file refers to Maven Central’s guava artifact, change the group name from “com.google.guava”
to “org.checkerframework.annotatedlib”. (The code is identical; the only difference is annotations.)

Option 1: Write specifications based on uses of assertion methods Suppose you are annotating a codebase that
already contains precondition checks, such as:

public String myGet(String key, String def) {
checkNotNull(key, "key"); // NOI18N
...

}

Because key is non-null in every correct execution, its type should be @NonNull in myGet’s signature. (@NonNull is
the default, so in this case there is nothing to write.) The checker will not issue a warning about the checkNotNull call,
but will issue a warning at incorrect calls to myGet.

215

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Objects.html#requireNonNull(T)
../api/org/checkerframework/checker/nullness/util/NullnessUtil.html#castNonNull(T)

Option 2: Suppress warnings at uses of assertion methods This section explains how to suppress warnings at all
uses of an assertion method. As with any warning suppression, you will compromise the checker’s guarantee that your
code is correct and will not fail at run time.

• If the method is defined in your source code, annotate its definition just as NullnessUtil.castNonNull is
annotated; see its Javadoc or the source code for the Checker Framework. Also, be sure to document the intention
in the method’s Javadoc, so that programmers do not accidentally misuse it for defensive programming.

• If the method is defined in an external library, write a stub file that changes the method’s annotations, or use
-AskipUses to make the Checker Framework ignore all calls to an entire class.
As a special case, if you want the Nullness Checker to prevent most null pointer exceptions in your code, but to per-
mit null pointer exceptions at nullness assertion methods, you can pass -Astubs=permit-nullness-assertion-exception.astub.

33.3 -AsuppressWarnings command-line option
Supplying the -AsuppressWarnings command-line option is equivalent to writing a @SuppressWarnings annotation
on every class that the compiler type-checks. The argument to -AsuppressWarnings is a comma-separated list of
warning suppression strings, as in -AsuppressWarnings=purity,uninitialized.

When possible, it is better to write a @SuppressWarnings annotation with a smaller scope, rather than using the
-AsuppressWarnings command-line option.

33.4 -AskipUses and -AonlyUses command-line options
You can suppress all errors and warnings at all uses of a given class, or suppress all errors and warnings except those
at uses of a given class. (The class itself is still type-checked, unless you also use the -AskipDefs, -AonlyDefs,
-AskipFiles, or -AonlyFiles command-line option, see 33.5). You can also use these options to affect entire packages
or directories/folders.

Set the -AskipUses command-line option to a regular expression that matches fully-qualified class names (not file
names) for which warnings and errors should be suppressed. Or, set the -AonlyUses command-line option to a regular
expression that matches fully-qualified class names (not file names) for which warnings and errors should be emitted;
warnings about uses of all other classes will be suppressed. The regular expressions are unanchored, unless you anchor
them yourself with “^” and/or “$”.

For example, suppose that you use “-AskipUses=^java\.” on the command line (with appropriate quoting) when
invoking javac. Then the checkers will suppress all warnings related to classes whose fully-qualified name starts with
java., such as all warnings relating to invalid arguments and all warnings relating to incorrect use of the return value.

To suppress all errors and warnings related to multiple classes, you can use the regular expression alternative
operator “|”, as in “-AskipUses="java\.lang\.|java\.util\."” to suppress all warnings related to uses of classes
that belong to the java.lang or java.util packages. (Depending on your shell or other tool, you might need to
change or remove the quoting.)

You can supply both -AskipUses and -AonlyUses, in which case the -AskipUses argument takes precedence,
and -AonlyUses does further filtering but does not add anything that -AskipUses removed.

Warning: Use the -AonlyUses command-line option with care, because it can have unexpected results. For example,
if the given regular expression does not match classes in the JDK, then the Checker Framework will suppress every
warning that involves a JDK class such as Object or String. The meaning of -AonlyUses may be refined in the
future. Oftentimes -AskipUses is more useful.

33.5 -AskipDefs and -AonlyDefs command-line options
You can suppress all errors and warnings in the definition of a given class, or suppress all errors and warnings
except those in the definition of a given class. (Uses of the class are still type-checked, unless you also use the

216

../api/org/checkerframework/checker/nullness/util/NullnessUtil.html#castNonNull(T)

-AskipUses or -AonlyUses command-line option, see 33.4.) You can also use these options to affect entire packages
or directories/folders.

Set the -AskipDefs command-line option to a regular expression that matches fully-qualified class names (not file
names) in whose definition warnings and errors should be suppressed. Or, set the -AonlyDefs command-line option to
a regular expression that matches fully-qualified class names (not file names) whose definitions should be type-checked.
(This is somewhat similar to NullAway’s -XepOpt:NullAway:AnnotatedPackages command-line argument.) (For
file names, use -AskipFiles and -AonlyFiles instead; see Section 33.6.) The regular expressions are unanchored,
unless you anchor them yourself with “^” and/or “$”.

For example, if you use “-AskipDefs=^mypackage\.” on the command line (with appropriate quoting) when
invoking javac, then the definitions of classes whose fully-qualified name starts with mypackage. will not be checked.

If you supply both -AskipDefs and -AonlyDefs, then -AskipDefs takes precedence.
Another way not to type-check a file is not to pass it on the compiler command-line: the Checker Framework

type-checks only files that are passed to the compiler on the command line, and does not type-check any file that is not
passed to the compiler. The -AskipDefs and -AonlyDefs command-line options are intended for situations in which
the build system is hard to understand or change. In such a situation, a programmer may find it easier to supply an extra
command-line argument, than to change the set of files that is compiled.

A common scenario for using the arguments is when you are starting out by type-checking only part of a legacy
codebase. After you have verified the most important parts, you can incrementally check more classes until you are
type-checking the whole thing.

33.6 -AskipFiles and -AonlyFiles command-line options
You can suppresss all errors and warnings originating from classes that are located in a given file or directory/folder, or
all those that are not in a given file or directory/folder.

Set the -AskipFiles command-line option to a regular expression that matches the path to files or directories/folders
containing classes for which errors and warnings should be suppressed. Similarly, -AonlyFiles suppresses warnings
everywhere except in the given files. The regular expressions are unanchored, unless you anchor them yourself with “^”
and/or “$”.

For example, if you use “-AskipFiles=/build/generated/” on the command line when invoking javac, then
the definitions of classes located in any /build/generated directory will not be checked.

If you supply both -AskipFiles and -AonlyFiles, then -AskipFiles takes precedence.
A common scenario for using this argument is when you want to exclude certain directories/folders (such as those

containing generated or legacy code) from type-checking. Another scenario is when a file contains multiple top-level
classes, only one of which has a name that corresponds to the file name.

33.7 -Alint command-line option
The -Alint option enables or disables optional checks, analogously to javac’s -Xlint option. Each of the distributed
checkers supports at least the following lint options (and possibly more, see the checker’s documentation):

• cast:unsafe (default: on) warn about unsafe casts that are not checked at run time, as in ((@NonNull String)
myref). Such casts are generally not necessary because of type refinement (Section 32.7).

• cast:redundant (default: on) warn about redundant casts that are guaranteed to succeed at run time, as in
((@NonNull String) "m"). Such casts are not necessary, because the target expression of the cast already has
the given type qualifier.

• cast Enable or disable all cast-related warnings.
• all Enable or disable all lint warnings, including checker-specific ones if any. Examples include
redundantNullComparison for the Nullness Checker (see Section 2) and dotequals for the Interning Checker
(see Section 6.4). This option does not enable/disable the checker’s standard checks, just its optional ones.

• none The inverse of all: disable or enable all lint warnings, including checker-specific ones if any.

217

To activate a lint option, write -Alint= followed by a comma-delimited list of check names. If the option is preceded
by a hyphen (-), the warning is disabled. For example, to disable all lint options except redundant casts, you can pass
-Alint=-all,cast:redundant on the command line.

Only the last -Alint option is used; all previous -Alint options are silently ignored. In particular, this means that
-Alint=all -Alint=cast:redundant is not equivalent to -Alint=-all,cast:redundant.

33.8 Change the specification of a method
To prevent a checker from issuing a warning at calls to a specific method, you can change the annotations on that
method by writing a stub file (see Section 35.5).

Stub files are usually used to provide correct specifications for unspecified code.
Stub files can also be used to provide incorrect specifications, for the purpose of suppressing warnings. For example,

suppose that you are running the Nullness Checker to prevent null pointer exceptions. Further suppose that for some
reason you do not care if method Objects.requireNonNull crashes with a NullPointerException. You can supply
a stub file containing:

package java.util;
class Objects {

@EnsuresNonNull("#1")
public static <T> @NonNull T requireNonNull(@Nullable T obj);

}

This particular stub file already exists. If you want the Nullness Checker to prevent most null pointer exceptions in
your code, but to permit null pointer exceptions at nullness assertion methods, you can pass -Astubs=permit-nullness-assertion-exception.astub.

33.9 Don’t run the processor
You can compile parts of your code without use of the -processor switch to javac. No checking is done during such
compilations, so no warnings are issued related to pluggable type-checking.

You can direct your build system to avoid compiling certain parts of your code. For example, the -Dmaven.test.skip=true
command-line argument tells Maven not to compile (or run) the tests.

33.10 Checker-specific mechanisms
Finally, some checkers have special rules. For example, the Nullness checker (Chapter 3) uses the special castNonNull
method to suppress warnings (Section 3.4.1). This manual also explains special mechanisms for suppressing warnings
issued by the Fenum Checker (Section 9.4) and the Units Checker (Section 20.5).

218

Chapter 34

Type inference

This chapter is about tools that infer annotations for your program’s method signatures and fields, before you run a
type-checker. To learn about local type inference within a method body, see Section 32.7.

A typical workflow (Section 2.4) is for a programmer to first write annotations on method signatures and fields,
then run a type-checker. Type inference performs the first step automatically for you. This saves time for programmers
who would otherwise have to understand the code, then write annotations manually.

Type inference outputs type qualifiers that are consistent with your program’s source code. Your program still might
not type-check if your program contains a bug or contains tricky code that is beyond the capabilities of the type checker.

The qualifiers are output into an annotation file. They can be viewed and adjusted by the programmer, can be used
by tools such as the type-checker, and can be inserted into the source code or the class file.

Inserting the inferred annotations into the program source code creates documentation in the form of type qualifiers,
which can aid programmer understanding and may make type-checking warnings more comprehensible. Storing
annotations in side-files is more desirable if the program’s source code cannot be modified for some reason, if the
typechecking is "one-off" (typechecking will be done once and its results will be evaluated, but it will not be done
repeatedly), or if the set of annotations is extremely voluminous and would clutter the code.

Type inference is most effective when you run it on a program rather than on a library — unless you also run it on
an extensive test suite for the library. See Section 34.6 for an explanation.

Type inference is costly: it takes several times longer than type-checking does. However, it only needs to be run
once, after which you can use and possibly modify the results.

34.1 Type inference tools
This section lists tools that take a program and output a set of annotations for it. It first lists tools that work only for a
single type system (but may do a more accurate job for that type system) then lists general tools that work for any type
system.

For the Nullness Checker: Section 3.3.7 lists several tools that infer annotations for the Nullness Checker.
For the Purity Checker: If you run the Checker Framework with the -AsuggestPureMethods command-line op-

tion, it will suggest methods that can be marked as @SideEffectFree, @Deterministic, or @Pure; see Sec-
tion 32.7.5.

WPI, for any type system: “Whole program inference”, or WPI, is distributed with the Checker Framework. See
Section 34.2.

CFI, for any type system: “Checker Framework Inference”, or CFI, is a type inference framework built on a variant
of the Checker Framework. You need to slightly rewrite your type system to work with CFI. The CFI repository
(https://github.com/opprop/checker-framework-inference) contains rewritten versions of some of the
type systems that are distributed with the Checker Framework.

219

https://github.com/opprop/checker-framework-inference
https://github.com/opprop/checker-framework-inference

Cascade, for any type system: Cascade [VPEJ15] is an Eclipse plugin that implements interactive type qualifier
inference. Cascade is interactive rather than fully-automated: it makes it easier for a developer to insert
annotations. Cascade starts with an unannotated program and runs a type-checker. For each warning it suggests
multiple fixes, the developer chooses a fix, and Cascade applies it. Cascade works with any checker built on
the Checker Framework. You can find installation instructions and a video tutorial at https://github.com/
reprogrammer/cascade. Cascade was last updated in November 2014, so it might or might not work for you.

Except for one of the nullness inference tools, all these type inference tools are static analyses. They analyze your
program’s source code, but they do not run your program.

34.2 Whole-program inference
Whole-program inference infers types for fields, method parameters, and method return types that do not have a
user-written qualifier (for the given type system). The inferred type qualifiers are output into annotation files. The
inferred type is the most specific type that is compatible with all the uses in the program. For example, the inferred type
for a field is the least upper bound of the types of all the expressions that are assigned into the field.

There are three scripts that you can use to run whole-program inference. Each has advantages and disadvantages,
discussed below:

• To run whole-program inference on a single project without modifying its source code, use the wpi.sh script
(Section 34.3). This script can automatically understand many Ant, Maven, and Gradle build files, so it requires
little manual configuration.

• To run whole-program inference on many projects without modifying their source code (say, when running it on
projects from GitHub), use the wpi-many.sh script (Section 34.4). This script can understand the same build
files as wpi.sh.

• If you want to insert the inferred annotations directly into a single project’s source code, use the infer-and-annotate.sh
script (Section 34.5).

These type inference scripts appear in the checker/bin/ directory. The remainder of this chapter describes them
(Sections 34.3–34.5), then concludes with discussion that applies to all of them.

34.3 Running whole-program inference on a single project
A typical invocation of wpi.sh is

$CHECKERFRAMEWORK/bin/wpi.sh -- --checker nullness

The result is a set of log files placed in the dljc-out/ folder of the target project. See Section 34.3.1 for an
explanation of the log files generated by an invocation of wpi.sh. The inferred annotations appear in .ajava files
in a temporary directory whose name appears in the dlcj-out/wpi-stdout.log file; you can find their location by
examining the -Aajava argument to the last javac command that was run. The annotation files generated in each
round of inference appear in directories labeled iteration0, iteration1, etc.

The wpi.sh script is most useful when analyzing projects that follow the standard conventions of their build
system for single-module projects. When analyzing a project that requires non-standard build system commands,
use the -c and -b options to override the defaults used by wpi.sh. For example, suppose that you wanted to use
wpi.sh to infer annotations for the Resource Leak Checker on Apache Zookeeper’s zookeeper-server module only.
Without wpi.sh, one might use the following command: mvn -B -projects zookeeper-server -also-make
install -DskipTests. To use this command via wpi.sh, use the following: sh wpi.sh -b "-B -projects
zookeeper-server -also-make" -c "install -DskipTests" - -checker resourceleak.

The full syntax for invoking wpi.sh is

wpi.sh [-d PROJECTDIR] [-t TIMEOUT] [-c COMPILATION_TARGET] [-b EXTRA_BUILD_ARGS] [-g GRADLECACHEDIR] -- [DLJC-ARGS]

220

https://github.com/reprogrammer/cascade/
https://github.com/reprogrammer/cascade
https://github.com/reprogrammer/cascade
https://github.com/apache/zookeeper

Arguments in square brackets are optional. Here is an explanation of the arguments:

-d PROJECTDIR The top-level directory of the project. It must contain an Ant, Gradle, or Maven buildfile. The
default is the current working directory.

-t TIMEOUT The timeout for running the checker, in seconds.
-c COMPILATION_TARGET The name(s) of the build system target(s) used to compile the target project. The

default is chosen based on the build system (e.g., compileJava for Gradle, compile for Maven, etc.). This
argument is passed directly to the build system when compiling the target project, so it can also include
command-line arguments that only apply to the compilation targets (and not other targets like clean); for general
command-line arguments that apply to all targets, use the -b option instead. When running WPI on a single
module of a multi-module project, you might want to use this option (possibly in combination with -b, below),
depending on the setup of the target project. The argument may contain spaces and is re-tokenized by the shell.

-b EXTRA_BUILD_ARGS Extra arguments to pass to the build script invocation. This argument will be passed
to compilation tasks, such as ant compile, gradle compileJava, or mvn compile. The main difference
between this option and -c is that the values of the -b option are also passed to other, non-compilation build
system commands, such as ant clean, gradle clean, or mvn clean. The argument may contain spaces and
is re-tokenized by the shell.

-g GRADLECACHEDIR The directory to use for the -g option to Gradle (the Gradle home directory). This option is
ignored if the target project does not build with Gradle. The default is .gradle relative to the target project (i.e.,
each target project has its own Gradle home). This default is motivated by Gradle issue #1319.

DLJC-ARGS Arguments that are passed directly to do-like-javac’s dljc program without modification. One argument
is required: --checker, which indicates what type-checker(s) to run (in the format described in Section 2.2.4).
The documentation of do-like-javac (https://github.com/kelloggm/do-like-javac) describes the other
commands that its WPI tool supports. Notably, to pass checker-specific arguments to invocations of javac, use the
--extraJavacArgs argument to dljc. For example, to use the -AignoreRangeOverflow option for the Constant
Value Checker (Chapter 23, page 150) when running inference, you would add --extraJavacArgs=’-AignoreRangeOverflow’
anywhere after the -- argument to wpi.sh.

You may need to wait a few minutes for the command to complete.

34.3.1 Whole-program inference results
The result of invoking wpi.sh are log files stored in the dljc-out/ folder of the target project. The dljc-out/ folder
contains:

• typecheck.out: The final error messages produced by javac, comprising the results of type-checking obtained
with the latest iteration of WPI (i.e., using the most precise, consistent set of annotations).

• build_output.txt: Logs collected from compiling the target project without the Checker Framework, using
the build file found at the top-level directory.

• wpi-stdout.log: The results of type-checking with each candidate set of annotations, concatenated together in
the order in which the annotations were inferred. The final results (i.e., those obtained using the most precise,
consistent set of annotations) will appear at the end of this file.

• wpi-stdout-*: These files are separate from the logs in wpi-stdout.log. They may be useful in the case
where dljc is not working as expected.

• toplevel.log: The log of the command executed at the top-level of the target directory to invoke whole-program
inference.

• javac.json: The list of all .java files for which inference was attempted by wpi.sh, and the options passed to
javac.

• stats.json: Statistics from the invocation of wpi.sh on the target project, including build time, the number of
built .jar files, the number of executable .jar files, the number of javac invocations, and the number of source
files.

221

https://github.com/gradle/gradle/issues/1319
https://github.com/kelloggm/do-like-javac
https://github.com/kelloggm/do-like-javac

34.3.2 Requirements for whole-program inference scripts
The requirements to run wpi.sh and wpi-many.sh are the same:

• The project on which inference is run must contain an Ant, Gradle, or Maven buildfile that compiles the project.
• At least one of the JAVA_HOME, JAVA8_HOME, JAVA11_HOME, JAVA17_HOME, or JAVA21_HOME environment vari-

ables must be set.
• If set, the JAVA_HOME environment variable must point to a Java 8, 11, 17, 21, or 22 JDK.
• If set, the JAVA8_HOME environment variable must point to a Java 8 JDK.
• If set, the JAVA11_HOME environment variable must point to a Java 11 JDK.
• If set, the JAVA17_HOME environment variable must point to a Java 17 JDK.
• If set, the JAVA21_HOME environment variable must point to a Java 21 JDK.
• If set, the JAVA22_HOME environment variable must point to a Java 22 JDK.
• CHECKERFRAMEWORK environment variable must point to a built copy of the Checker Framework.
• If set, the DLJC environment variable must point to a copy of the dljc script from do-like-javac (https:
//github.com/kelloggm/do-like-javac). (If this variable is not set, the WPI scripts will download this
dependency automatically.)

• Other dependencies: ant, awk, curl, git, gradle, mvn, python3 (for dljc), wget.
Python2.7 modules: subprocess32.

34.4 Running whole-program inference on many projects
The requirements to run wpi.sh and wpi-many.sh are the same. See Section 34.3.2 for the list of requirements.

To run an experiment on many projects:

1. Use query-github.sh to search GitHub for candidate repositories. File docs/examples/wpi-many/securerandom.query
is an example query, and file docs/manual/securerandom.list is the standard output created by running
query-github.sh securerandom.query 100. If you do not want to use GitHub, construct a file yourself that
matches the format of the file securerandom.list.

2. Use wpi-many.sh to run whole-program inference on multiple Ant, Gradle, or Maven projects. You provide it a
file in which each line is “GitHub repository URL” “git hash” (with no quotes, and with whitespace between
them).

• If you are using a checker that is distributed with the Checker Framework, use wpi-many.sh directly.
• If you are using a checker that is not distributed with the Checker Framework (also known as a "custom

checker"), file docs/examples/wpi-many/wpi-many-custom-checker-example.sh is a no-arguments
script that serves as an example of how to use wpi-many.sh.

Log files are copied into a results directory. For a failed run, the log file indicates the reason that WPI could not
be run to completion on the project. For a successful run, the log file indicates whether the project was verified
(i.e., no errors were reported), or whether the checker issued warnings (which might be true positive or false
positive warnings).

3. Use wpi-summary.sh to summarize the logs in the output results directory. Use its output to guide your analysis
of the results of running wpi-many.sh: you should manually examine the log files for the projects that appear in
the "results available" list it produces. This list is the list of every project that the script was able to successfully
run WPI on. (This does not mean that the project type-checks without errors afterward, or even typechecks at all
— just that the Checker Framework attempted to typecheck the project and some output was produced.)

4. (Optional) Add annotations that WPI does not infer, to eliminate false positive warnings. There are two ways you
can add annotations to a target program:

• Fork the project and add the annotations directly to the project’s source code, and add a dependency on
org.checkerframework:checker-qual to the project’s build system. This approach is the most difficult,
but has the advantage that the checker will attempt to verify any annotations you add.

222

https://github.com/kelloggm/do-like-javac
https://github.com/kelloggm/do-like-javac

• Add the annotations in a stub file, creating the .astub file as a copy of the .java file. When you run the
checker, supply the -AmergeStubsWithSource and -Astubs=... command-line arguments.

A typical invocation is

wpi-many.sh -o outdir -i /path/to/repo.list -t 7200 -- --checker optional

The wpi-many.sh script takes the following command-line arguments. The -o and -i arguments are mandatory.
An invocation should also include - [DLJC-ARGS] at the end; DLJC-ARGS is documented in Section 34.3.

-o outdir run the experiment in the outdir directory, and place the results in the outdir-results directory. Both
will be created if they do not exist. The directory may be specified as an absolute or relative path.

-i infile Read the list of repositories to use from the file infile. The file must be specified as an absolute, not relative,
path. Each line should have 2 elements, separated by whitespace:

1. The URL of the git repository on GitHub. The URL must be of the form https://github.com/username/repository
. The script is reliant on the number of slashes, so excluding “https://” is an error.

2. The commit hash to use.

-t timeout The timeout for running the checker on each project, in seconds.
-g GRADLECACHEDIR The directory to use for the -g option to Gradle (the Gradle home directory). This option is

ignored if the target project does not build with Gradle. The default is .gradle relative to the target project (i.e.,
each target project has its own Gradle home). This default is motivated by Gradle issue #1319.

-s If this flag is present, then projects which are not buildable — for which no supported build file is present or for which
running the standard build commands fail — are skipped on future runs but are not deleted immediately (such
projects are deleted immediately if this flag is not present). This flag is useful if you intend to run wpi-many.sh
several times on the same set of repositories (for example, during checker development), to avoid re-downloading
unusable projects.

To obtain the locations of the annotation files generated by an invocation of wpi-many.sh, you can run wpi-annotation-paths.sh
on the result directory, e.g., outdir-results.

A typical invocation is

wpi-annotation-paths.sh outdir-results

Here, the results of wpi-many.sh are located in outdir-results.

34.5 Whole-program inference that inserts annotations into source code
To use this version of whole-program inference, make sure that insert-annotations-to-source, from the Annota-
tion File Utilities project, is on your path (for example, its directory is in the $PATH environment variable). Then, run
the script checker-framework/checker/bin/infer-and-annotate.sh. Its command-line arguments are:

1. Optional: Command-line arguments to insert-annotations-to-source.
2. Processor’s name.
3. Target program’s classpath. This argument is required; pass "" if it is empty.
4. Optional: Extra processor arguments which will be passed to the checker, if any. You may supply any number of

such arguments, or none. Each such argument must start with a hyphen.
5. Optional: Paths to .jaif files used as input in the inference process.
6. Paths to .java files in the program.

For example, to add annotations to the plume-lib project:

223

https://github.com/gradle/gradle/issues/1319
https://checkerframework.org/annotation-file-utilities/#insert-annotations-to-source

git clone https://github.com/mernst/plume-lib.git
cd plume-lib
make jar
$CHECKERFRAMEWORK/checker/bin/infer-and-annotate.sh \

"LockChecker,NullnessChecker" java/plume.jar:java/lib/junit-4.12.jar:$JAVA_HOME/lib/tools.jar \
$(find java/src/plume/ -name "*.java")

View the results
git diff

You may need to wait a few minutes for the command to complete. You can ignore warnings that the command
outputs while it tries different annotations in your code.

It is recommended that you run infer-and-annotate.sh on a copy of your code, so that you can see what changes
it made and so that it does not change your only copy. One way to do this is to work in a clone of your repository that
has no uncommitted changes.

34.6 Inference results depend on uses in your program or test suite
Type inference outputs the most specific type qualifiers that are consistent with all the source code it is given. (Sec-
tion 34.6.1 explains when type inference ignores some code.) This may be different than the specification the
programmer had in mind when writing tho code. If the program uses a method or field in a limited way, then the
inferred annotations will be legal for the program as currently written but may not be as general as possible and may not
accommodate future program changes.

Here are some examples:

• Suppose that your program (or test suite) currently calls method m1 only with non-null arguments. The tool
will infer that m1’s parameter has @NonNull type. If you had intended the method to be able to take null as an
argument and you later add such a call, the type-checker will issue a warning because the inferred @NonNull
annotation is inconsistent with the new call.

• If your program (or test suite) passes only null as an argument, the inferred type will be the bottom type, such as
@GuardedByBottom.

• Suppose that method m2 has no body, because it is defined in an interface or abstract class. Type inference can
still infer types for its signature, based on the overriding implementations. If all the methods that override m2
return a non-null value, type inference will infer that m2’s return type has @NonNull type, even if some other
overriding method is allowed to return null.

If the program contains erroneous calls, the inferred annotations may reflect those errors. Suppose you intend
method m3 to be called with non-null arguments, but your program contains an error and one of the calls to m3 passes
null as the argument. Then the tool will infer that m3’s parameter has @Nullable type.

If you run whole-program inference on a library that contains mutually recursive routines, and there are no non-
recursive calls to the routines, then whole-program inference may run a long time and eventually produce incorrect
results. In this case, write type annotations on the formal parameters of one of the routines.

Whole-program inference is a “forward analysis”. It determines a method parameter’s type annotation based on
what arguments are passed to the method but not on how the parameter is used within the method body. It determines a
method’s return type based on code in the method body but not on uses of the method return value in client code.

34.6.1 Whole-program inference ignores some code
Whole-program inference ignores code within the scope of a @SuppressWarnings annotation with an appropriate key
(Section 33.1). In particular, uses within the scope do not contribute to the inferred type, and declarations within the
scope are not changed. You should remove @SuppressWarnings annotations from the class declaration of any class
you wish to infer types for.

224

As noted above, whole-program inference generalizes from invocations of methods and assignments to fields. If a
field is set via reflection (such as via injection), there are no explicit assignments to it for type inference to generalize
from, and type inference will produce an inaccurate result. There are two ways to make whole-program inference ignore
such a field. (1) You probably have an annotation such as @Inject or @Option that indicates such fields. Meta-annotate
the declaration of the Inject or Option annotation with @IgnoreInWholeProgramInference. (2) Annotate the field
to be ignored with @IgnoreInWholeProgramInference.

Whole-program inference, for a type-checker other than the Nullness Checker, ignores assignments and pseudo-
assignments where the right-hand-side is the null literal.

34.6.2 Manually checking whole-program inference results
With any type inference tool, it is a good idea to manually examine the results. This can help you find bugs in your code
or places where type inference inferred an overly-precise result. You can correct the inferred results manually, or you
can add tests that pass additional values and then re-run inference.

When arguments or assignments are literals, whole-program inference commonly infers overly precise type
annotations, such as @Interned and @Regex annotations when the analyzed code only uses a constant string.

When an annotation is inferred for a use of a type variable, you may wish to move the annotation to the corresponding
upper bounds of the type variable declaration.

34.7 How whole-program inference works
This section explains how the wpi.sh and infer-and-annotate.sh scripts work. If you merely want to run the
scripts and you are not encountering trouble, you can skip this section.

Each script repeatedly runs the checker with an -Ainfer= command-line option to infer types for fields and
method signatures. The output of this step is a .jaif (for infer-and-annotate.sh) or .ajava (for wpi.sh) file that
records the inferred types. Each script adds the inferred annotation to the next run, so that the checker takes them into
account (and checks them). wpi.sh does this by updating the set of .ajava files that are passed to the checker via the
-Aajava command-line argument; infer-and-annotate.sh inserts the inferred annotations in the program using the
Annotation File Utilities (https://checkerframework.org/annotation-file-utilities/).

On each iteration through the process, there may be new annotations in the .jaif or .ajava files, and some
type-checking errors may be eliminated (though others might be introduced). The process halts when there are no more
changes to the inference results, that is, the .jaif or .ajava files are unchanged between two runs.

When the type-checker is run on the program with the final annotations inserted, there might still be errors. This
may be because the tool did not infer enough annotations, or because your program cannot typecheck (either because
contains a defect, or because it contains subtle code that is beyond the capabilities of the type system). However, each
of the inferred annotations is sound, and this reduces your manual effort in annotating the program.

The iterative process is required because type-checking is modular: it processes each class and each method
only once, independently. Modularity enables you to run type-checking on only part of your program, and it makes
type-checking fast. However, it has some disadvantages:

• The first run of the type-checker cannot take advantage of whole-program inference results because whole-
program inference is only complete at the end of type-checking, and modular type-checking does not revisit any
already-processed classes.

• Revisiting an already-processed class may result in a better estimate.

34.8 Type inference compared to other whole-program analyses
There exist monolithic whole-program analyses that run without requiring any annotations in the source code. An
advantage of such a tool is that the programmer never needs to write any type annotations.

Running a whole-program inference tool, then running a type-checker, has some benefits:

225

https://docs.oracle.com/javaee/7/api/javax/inject/Inject.html
https://types.cs.washington.edu/plume-lib/api/plume/Option.html
../api/org/checkerframework/framework/qual/IgnoreInWholeProgramInference.html
../api/org/checkerframework/framework/qual/IgnoreInWholeProgramInference.html
https://checkerframework.org/annotation-file-utilities/

• The type qualifiers act as machine-checked documentation, which can aid programmer understanding.
• Error messages may be more comprehensible. With a monolithic whole-program analysis, error messages can be

obscure, because the analysis has already inferred (possibly incorrect) types for a number of variables.
• Errors are localized. A change to one part of the program does not lead to an error message in a far-removed part

of the program.
• Type-checking is modular, which can be faster than re-doing a whole-program analysis every time the program

changes.

226

Chapter 35

Annotating libraries

When your code uses a library that is not currently being compiled, the Checker Framework looks up the library’s
annotations in its class files. Section 2.2.1 tells you how to find and use a version of a library that contains type
annotations.

If your code uses a library that does not contain type annotations, then the type-checker has no way to know the
library’s behavior. The type-checker makes conservative assumptions about unannotated bytecode. (See Section 32.5.6
for details, an example, and how to override this conservative behavior.) These conservative library annotations
invariably lead to checker warnings.

This chapter describes how to eliminate the warnings by adding annotations to the library. (Alternately, the
-AskipUses or -AonlyUses command-line option can suppress all warnings related to an unannotated library, or to
part of your codebase; see Sections 33.4–33.5.)

You can write annotations for a library, and make them known to a checker, in two ways.

1. Write annotations in a copy of the library’s source code (for instance, in a fork of the library’s GitHub project).
In addition to writing annotations, adjust the build system to run pluggable-type-checking when compiling (see
Chapter 38, page 266). Now, when you compile the library, the resulting .jar file contains type annotations.
When checking a client of the library, put the annotated library’s .jar file on the classpath, as explained in
Section 2.2.1.
With this compilation approach, the syntax of the library annotations is validated ahead of time. Thus, this
compilation approach is less error-prone, and the type-checker runs faster. You get correctness guarantees about
the library in addition to your code.
For instructions, see Section 35.2.

2. Write annotations in a “stub file”, if you do not have access to the source code.
Then, when checking a client of the library, supply the “stub file” textually to the Checker Framework.
This approach does not require you to compile the library source code. A stub file is applicable to multiple
versions of a library, so the stub file does not need to be updated when a new version of the library is released,
unless the API has changed (such as defining a new class or method).
For instructions, see Section 35.5.

If you annotate a new library (either in its source code or in a stub file), please inform the Checker Framework
developers so that your annotated library can be advertised to users of the Checker Framework. Sharing your annotations
is useful even if the library is only partially annotated. However, as noted in Sections 2.4.2 and 35.1.4, you should
annotate an entire class at a time. You may find type inference tools (Chapter 34, page 219) helpful when getting started,
but you should always examine their results.

227

35.1 Tips for annotating a library
Section 2.4 gives general tips for writing annotations. This section gives tips that are specific to annotating a third-party
library.

35.1.1 Don’t change the code
If you annotate a library that you maintain, you can refactor it to improve its design.

When you annotate a library that you do not maintain, you should only add annotations and, when necessary,
documentation of those annotations. You can place the documentation in a Java comment (// or /*...*/) or in a
@CFComment annotation.

Do not change the library’s code, which will change its behavior and make the annotated version inconsistent with
the unannotated version. (Sometimes it is acceptable to make a refactoring, such as extracting an expression into a
new local variable in order to annotate its type or suppress a warning. Perform refactoring only when you cannot use
@AssumeAssertion.)

Do not change publicly-visible documentation, such as Javadoc comments. That also makes the annotated version
inconsistent with the unannotated version.

Do not change formatting and whitespace.
Any of these changes would increase the difference between upstream (the original version) and your annotated

version. Unnecessary differences make it harder for others to understand what you have done, and they make it harder
to pull changes from upstream into the annotated library.

35.1.2 Library annotations should reflect the specification, not the implementation
Publicly-visible annotations (including those on public method formal parameters and return types) should be based on
the documentation, typically the method’s Javadoc. In other words, your annotations should re-state facts that are in the
Javadoc documentation.

Do not add requirements or guarantees beyond what the library author has already committed to. If a project’s
Javadoc says nothing about nullness, then you should not assume that the specification forbids or permits null. (If the
project’s Javadoc explicitly mentions null everywhere it is permitted, then you can assume it is forbidden elsewhere,
where the author omitted those statements.)

If a fact is not mentioned in the documentation, then it is usually an implementation detail. Clients should not
depend on implementation details, which are prone to change without notice. (In some cases, you can infer some facts
from the implementation, such as that null is permitted for a method’s parameter or return type if the implementation
explicitly passes null to the method or the method implementation returns null.)

If there is a fact that you think should be in the library’s documentation but was unintentionally omitted by its
authors, then please submit a bug report asking them to update the documentation to reflect this fact. After they do, you
can also express the fact as an annotation.

35.1.3 Report bugs upstream
While annotating the library, you may discover bugs or missing/wrong documentation. If you have a documentation
improvement or a bug fix, then open a pull request against the upstream version of the library. This will benefit all users
of the library. And, once the documentation is updated, you will be able to add annotations that are consistent with the
documentation.

35.1.4 Fully annotate the library, or indicate which parts you did not
If you do not annotate all the files in the library, then use @AnnotatedFor to indicate what files you have annotated.

Whenever you annotate any part of a file, fully annotate the file! That is, write annotations for all the methods and
fields, based on their documentation. Here are reasons for this rule:

228

../api/org/checkerframework/framework/qual/CFComment.html
../api/org/checkerframework/framework/qual/AnnotatedFor.html

• If you annotate just part of the file, then users may be surprised that calls to some methods type-check as expected
whereas other methods do not (because they have not been annotated).

• Annotating one method or field at a time may lead to inconsistencies between different parts of the file. Different
people may make different assumptions, might write annotations in a way that is locally convenient but globally
inconsistent, or might not read all the documentation of the class to understand how it works.

• It is not much more effort to annotate an entire class versus one method or field. In either case it is usually
necessary to understand the entire class’s design and implementation. Once you have done that, you might as
well annotate the whole thing.

• If you fully annotate the file, it is possible to type-check the library to verify the annotations. (Even if you do not
do this right now, it eases the task in the future.)

35.1.5 Verify your annotations
Ideally, after you annotate a file, you should type-check the file to verify the correctness and completeness of your
annotations.

An alternative is to only annotate method signatures. The alternative is quicker but more error-prone. There is no
difference from the point of view of clients, who can only see annotations on public methods and fields. When you
compile the library, the type-checker will probably issue warnings; you can supply -Awarns so that the compiler will
still produce .class files.

35.2 Creating an annotated library
This section describes how to create an annotated library.

1. See the org.checkerframework.annotatedlib group in the Maven Central Repository to find out whether an
annotated version of the library already exists.

• If it exists, but you want to add annotations for a different checker:
Clone its repository from https://github.com/typetools/, and tweak its buildfile to run an additional
checker.

• If it does not already exist:
Fork the project. (First, verify that its license permits forking.)
Add a line in its main README to indicate that this is an annotated version of the library. That line should
also indicate how to obtain the corresponding upstream version (typically a git tag corresponding to a
release), so that others can see exactly what edits you have made.
Adjust the library’s build process, such as an Ant, Gradle, or Maven buildfile (for guidance, see Chapter 38,
page 266). Every time the build system runs the compiler, it should:

– pass the -AuseConservativeDefaultsForUncheckedCode=source,bytecode command-line op-
tion and

– run every pluggable type-checker for which any annotations exist, using -processor TypeSystem1,TypeSystem2,TypeSystem3

You are not adding new build targets, but modifying existing targets. The reason to run every type-checker
is to verify the annotations you wrote, and to use appropriate defaults for all unannotated type uses.

2. Annotate some files.
When you annotate a file, annotate the whole thing, not just a few of its methods. Add an @AnnotatedFor({"checkername"})
annotation to each class declaration, or augment an existing @AnnotatedFor annotation.

3. Build the library.
Because of the changes that you made in step 1, this will run pluggable type-checkers. If there are any compiler
warnings, fix them and re-compile.
Now you have a .jar file that you can use while type-checking and at run time.

4. Tell other people about your work so that they can benefit from it.

229

https://search.maven.org/search?q=org.checkerframework.annotatedlib
https://github.com/typetools/
https://checkerframework.org/manual/developer-manual.html#annotated-library-version-numbers
https://checkerframework.org/manual/developer-manual.html#annotated-library-version-numbers
../api/org/checkerframework/framework/qual/AnnotatedFor.html

• Please inform the Checker Framework developers about your new annotated library by opening a pull request
or an issue. This will let us add your annotations to a repository in https://github.com/typetools/
and upload a compiled artifact to the Maven Central Repository.

• Optionally, encourage the library’s maintainers to accept your annotations into its main version control
repository. This suggestion will be most compelling if you have already reported bugs in the library that
were revealed by pluggable type-checking. Once the annotations are in the main version control repository,
they will be easier to maintain, the library will obtain the correctness guarantees of pluggable type-checking,
and there will be no need to distribute an annotated version of the library.
If the library maintainers do not accept the annotations, then periodically, such as when a new version of the
library is released, pull changes from upstream (the library’s main version control system) into your fork,
add annotations to any newly-added methods in classes that are annotated with @AnnotatedFor, rebuild to
create an updated .jar file, and inform the Checker Framework developers by opening an issue or issuing a
pull request.

35.3 Creating an annotated JDK
When you create a new checker, you need to also supply annotations for parts of the JDK. You can do so either as
stub files or in a copy of the JDK source code, as described in Section 36.10. Section 40.2.1 tells how to improve JDK
annotations for an existing type system.

35.4 Compiling partially-annotated libraries
If you completely annotate a library, then you can compile it using a pluggable type-checker. You get a guarantee that
the library contains no errors (that is, it is consistent with the specifications you wrote).

The rest of this section tells you how to compile a library if you partially annotate it: that is, you write annotations
for some of its classes but not others. (There is another type of partial annotation, which is when you annotate method
signatures but do not type-check the bodies. See Section 35.1.)

Here are two concerns you may have when partially annotating a library:

• Ignoring type-checking errors in unannotated parts of the library. Use the -AskipDefs, -AonlyDefs, -AskipFiles,
or -AonlyFiles command-line arguments; see Section 33.5.

• Putting conservative annotations in unannotated parts of the library. The checker needs to use normal defaulting
rules (Section 32.5.3) for code you have annotated and conservative defaulting rules (Section 32.5.6) for code
you have not yet annotated. This section describes how to do this. You use @AnnotatedFor to indicate which
classes you have annotated.

35.4.1 The -AuseConservativeDefaultsForUncheckedCode=source,bytecode
command-line argument

When compiling a library that is not fully annotated, use command-line argument
-AuseConservativeDefaultsForUncheckedCode=source,bytecode. This causes the checker to behave
normally for classes with a relevant @AnnotatedFor annotation. For classes without @AnnotatedFor, the checker uses
conservative defaults (see Section 32.5.6) for any type use with no explicit user-written annotation, and the checker
issues no warnings.

The @AnnotatedFor annotation, written on a class, indicates that the class has been annotated for certain type
systems. For example, @AnnotatedFor({"nullness", "regex"}) means that the programmer has written an-
notations for the Nullness and Regular Expression type systems. If one of those two type-checkers is run, the
-AuseConservativeDefaultsForUncheckedCode=source,bytecode command-line argument has no effect and
this class is treated normally: unannotated types are defaulted using normal source-code defaults and type-checking
warnings are issued. @AnnotatedFor’s arguments are any string that may be passed to the -processor command-line

230

https://github.com/typetools/
../api/org/checkerframework/framework/qual/AnnotatedFor.html
../api/org/checkerframework/framework/qual/AnnotatedFor.html

argument: the fully-qualified class name for the checker, or a shorthand for built-in checkers (see Section 2.2.4). The
argument to @AnnotatedFor is not an annotation name, but a checker name. Writing @AnnotatedFor on a class
doesn’t necessarily mean that you wrote any annotations, but that you examined the source code and verified that all
appropriate annotations are present.

Whenever you compile a class using the Checker Framework, including when using the
-AuseConservativeDefaultsForUncheckedCode=source,bytecode command-line argument, the resulting
.class files are fully-annotated; each type use in the .class file has an explicit type qualifier for any checker that is
run.

35.5 Using stub classes
You use a “stub file” to write annotations for a library, when you cannot edit and recompile the library. A checker uses
the annotated signatures at compile time, instead of or in addition to annotations that appear in the library’s .class
files.

A stub file cannot override the types of a package-private class, method, or field.
A stub class is Java source code that is allowed to omit certain parts, such as method bodies. Section 35.5.4 describes

the stub file format.
Section 35.3 explains how you should choose between creating stub classes or creating an annotated library.

Section 35.5.5 describes how to create stub classes. Section 35.5.1 describes how to use stub classes. These sections
illustrate stub classes via the example of creating a @Interned-annotated version of java.lang.String. You don’t
need to repeat these steps to handle java.lang.String for the Interning Checker, but you might do something similar
for a different class and/or checker.

There are two types of annotation files, which are files containing annotations that can be read by the Checker
Framework. This section describes stub files, which are used by programmers and type system designers. Section 35.6
describes ajava files, which are used by tools, such as type inference.

35.5.1 Using a stub file
The -Astubs argument causes the Checker Framework to read annotations from annotated stub classes in preference to
the unannotated original library classes. For example:
javac -processor org.checkerframework.checker.interning.InterningChecker \

-Astubs=path/to/String.astub:stubs MyFile.java MyOtherFile.java ...

Each stub path entry is a stub file (ending with .astub), directory, or .jar file; specifying a directory or .jar
file is equivalent to specifying every file in it whose name ends with .astub. The stub path entries are delimited by
File.pathSeparator (“:” for Linux and Mac, “;” for Windows).

A checker automatically reads some of its own stub files, even without a -Astubs command-line argument; see
Section 36.10.

User-supplied stub files override a checker’s built-in stub files and the annotated JDK.

35.5.2 Multiple specifications for a method
There are three possible sources of information for a given element: source files, stub files, and bytecode files. Usually
source files take precedence over the other two, and stub files take precedence over bytecode. In other words:

• If file A.java is being compiled, then by default any stub for class A is ignored. See below for how to change this
behavior and respect both types of annotations.

• An un-annotated type variable in a stub file is used instead of annotations on a type variable in bytecode.
Use the -AstubWarnIfRedundantWithBytecode command-line option to get a warning whenever a stub file
specification is redundant with bytecode annotations.

• If a stub file does not mention a method or field (and no source is available), its annotations are taken from
bytecode.

231

../api/org/checkerframework/framework/qual/AnnotatedFor.html
../api/org/checkerframework/checker/interning/qual/Interned.html

If a method appears in more than one stub file (or twice in the same stub file), then, for each type hierarchy, the last
annotation read is used.

The annotated JDK is read as a stub file. You can override JDK annotations by providing your own stub file. If
your stub file contains a JDK method m, then no type annotations from the JDK’s m are used. If the JDK’s m contains a
declaration annotation @D, it is used unless your stub file contains a different @D annotation for m.

The command-line option -AmergeStubsWithSource tells the checker to use both source files and stub files. The
checker permits only values that are permitted by both the source and stub annotations. (This is called the greatest lower
bound, or GLB, of the types.)

As an example of GLB, suppose the source annotation says the value is in the range [1..20] and the stub file says the
value is in the range [11..30]. Since both sources of information are trusted, the value must be in the range [11..20].
Equivalently, the GLB of @IntRange(from=1, to=20) and @IntRange(from=11, to=30) is @IntRange(from=11,
to=20). As another example, the GLB of @KeyFor({"map1", "map2"}) and @KeyFor({"map2", "map3"}) is
@KeyFor({"map1", "map2", "map3"}) since the value is known to be a key for all three maps.

35.5.3 Stub methods in subclasses of the declaring class
Sometimes, a method’s return type is different in a subclass than in a superclass, even though the subclass inherits (does
not define) the method. An example, SecureRandom.nextInt(), is shown below.

To express that method m has a different type in subclass Sub than where m is defined, write a “fake override”: write
the method in class Sub in a stub file. The Checker Framework will use that type for m at calls where the receiver’s
declared type is Sub or lower.

In a fake override of m, the formal parameter Java types of the method must be identical to those where m is defined,
but you can change its annotations. (The return type and the receiver type can be different.) If a fake override has no
annotations on a given type use, that type use is defaulted according to the usual defaulting rules.

This feature currently only works for return types. That is, a fake override changes the return type at certain calls,
but formal parameter type annotations on fake overrides have no effect. Type annotations on fake overrides of fields
also have no effect. Fake overrides will be able to change formal parameter and field type annotations in a future release
of the Checker Framework.

Example As an example, consider a type system that tracks whether a value is cryptographically secure. @Secure
is a subtype of @Insecure. Although SecureRandom does not override Random.nextInt (it overrides the source of
randomness instead), you are allowed to write the following stub file:

package java.util;
class Random {

@Insecure int nextInt();
}

package java.security;
class SecureRandom extends Random {

@Secure int nextInt();
}

Client code behaves as follows:

Random r = ...;
SecureRandom sr = ...;

@Secure int i1 = r.nextInt(); // error
@Secure int i2 = sr.nextInt(); // OK

232

../api/org/checkerframework/common/value/qual/IntRange.html
../api/org/checkerframework/common/value/qual/IntRange.html
../api/org/checkerframework/common/value/qual/IntRange.html
../api/org/checkerframework/checker/nullness/qual/KeyFor.html
../api/org/checkerframework/checker/nullness/qual/KeyFor.html
../api/org/checkerframework/checker/nullness/qual/KeyFor.html

35.5.4 Stub file format
Every Java file is a valid stub file. However, you can omit information that is not relevant to pluggable type-checking,
as explained below; this makes the stub file smaller and easier for people to read and write. The stub file’s extension
must be .astub, not .java.

As an illustration, a stub file for the Interning type system (Chapter 6) could be:

import org.checkerframework.checker.interning.qual.Interned;
package java.lang;
@Interned class Class<T> {}
class String {

@Interned String intern();
}

The stub file format is allowed to differ from Java source code in the following ways:

Method bodies: The stub class does not require method bodies for classes; any method body may be replaced by a
semicolon (;), as in an interface or abstract method declaration.

Method declarations: You only have to specify the methods that you need to annotate. Any method declaration may
be omitted, in which case the checker reads its annotations from library’s .class files. If you are using a stub
class, then often the library is unannotated, but you can use stub files to override library annotations.

Declaration specifiers: Declaration specifiers (e.g., public, final, volatile) may be omitted.
Return types: The return type of a method does not need to match the real method. In particular, it is valid to use

java.lang.Object for every method. This simplifies the creation of stub files.
Multiple classes and packages: The stub file format permits having multiple classes and packages. The packages are

separated by a package statement: package my.package;. Each package declaration may occur only once; in
other words, all classes from a package must appear together.

Import statements: Imports may appear at the beginning of the file or after any package declaration. The only
required import statements are the ones to import type annotations. Import statements for types are optional.
If you omit an import statement for an annotation, occurrences of that annotation are silently ignored; this is a
common error in stub files.

When you create a stub file, it is recommended that you validate it by copying the stub file to a file with the .java
extension and running the type-checker. This will ensure that your annotations are syntactically valid, are written in the
correct locations, and are properly imported. When you run the type-checker on your annotations, there should not be
any stub file that also contains annotations for the class. In particular, if you are type-checking a stub file for a class in
the JDK, then you should use the -Aignorejdkastub command-line option.

35.5.5 Creating a stub file
If you have access to the Java source code

Every Java file is a stub file. If you have access to the Java file, copy file A.java to A.astub. You can add annotations
to the signatures, leaving the method bodies unchanged. The stub file parser silently ignores any annotations that it
cannot resolve to a type, so don’t forget the import statement.

This copy-and-annotate approach retains the original documentation and source code, making it easier for a
programmer to double-check the annotations. It also enables creation of diffs, easing the process of upgrading when a
library adds new methods. And, the annotations are in a format that the library maintainers can even incorporate.

The downside of the copy-and-annotate approach is that the stub files are larger. This can slow down the Checker
Framework, because it parses the stub files each time it runs.

You can minimize source files to speed up parsing them. Use the JavaStubifier to convert, in-place, all .java
files in given directories into minimal stub files.

233

mkdir project-stubs
cp -R project/src project-stubs
java -cp $CHECKERFRAMEWORK/checker/dist/checker.jar org.checkerframework.framework.stub.JavaStubifier project-stubs
find project-stubs -type f -name "*.java" -exec rename ’s/.java$/.astub/’ {} \;

Supply it a list of directories to process. Replacement happens in-place, so make sure to process a copy of your
sources.

You can now provide project-stubs as a stub directory using -Astubs=project-stubs as an additional
command-line option.

If you wish to use a single stub file, rather than a stub directory, you can concatenate all the minimized .java files
into a single .astub file:

find project-stubs/ -name "*.java" -type f | xargs cat > project.astub

If you do not have access to the Java source code

If you do not have access to the library source code, you can create a stub file by hand.
If you have access to the API documentation for the element you wish to annotate, it is often easiest to copy–paste

names, types, and signatures from the API documentation. (The API documentation is a .html file that is sometimes
colloquially called the “Javadoc”.) This avoids common mistakes when writing stub files by hand, such as typos in the
package name or in a method signature.

Here are steps to write a stub file by hand:

1. Create a file whose name ends in .astub, or use an existing one.
2. Write a package declaration, exactly as if you are writing a Java file for the target class. (If the file already

contains a declaration for that package, re-use it by doing the rest of your work under it; don’t write a duplicate
package declaration in the file.) Typically, it is easiest to copy–paste the package name from API documentation
or from an import statement in the code that you are type-checking, to avoid typos.

3. Write a class declaration header: class followed by the class name. The stub file format does not care whether
the enclosing type is a class, interface, etc., so you can write “class” regardless of what kind of type it is.
A common mistake at this stage is that the target method or field may be defined in a superclass of the static
type of the class that is actually being used in the code you are trying to analyze. For example, suppose that you
are trying to annotate the drawImage(Image,int,int,int,int,ImageObserver) method of an object whose
static type is java.awt.Graphics2D. This method is actually defined in the abstract Graphics class (which is
the superclass of Graphics2D), so it needs to appear within the class Graphics rather than the class Graphics2D
in the stub file.

4. Write the element declaration that you wish to annotate, within the class you just created.
For a method, this is the method signature, followed by “;”.
For a field, this is the type, field name, and “;”, without an initializer.

5. Annotate the declaration that you just wrote.
6. Add import statements for any annotations you wrote.

35.5.6 Distributing stub files
If you are writing stub files but are not writing a checker, you can place the stub files anywhere that is convenient.
However, please consider providing your stub files to the checker author, so that other users can also benefit from the
stub files you wrote.

Stub files distributed with a checker appear in the same directory as the checker implementation (the *Checker.java
file, see Section 36.2). For example, in the Checker Framework they appear in files such as

checker/src/main/java/org/checkerframework/checker/regex/apache-xerces.astub
checker/src/main/java/org/checkerframework/checker/signature/javaparser.astub

234

If you are distributing stub files with a checker implementation, you must configure your build system to copy the
stub files into the distributed jar for your checker. Here are instructions if you are using the Checker Framework Gradle
plugin:

• If the stub files appear in the same directory as the checker class, which is a subtype of BaseTypeChecker, use
the following build configuration:

sourceSets {
main {

resources {
srcDirs += [’src/main/java’]

}
}

}

• If the stub files appear under the src/main/resources/ directory in a sub-directory matching the package of
your checker class, the default Gradle build configuration is sufficient.

In either case, recall that a @StubFiles annotation on the checker class lists stub files that are always used. For stub
files whose use is optional (for example, because the behavior is unsound, or unsound except in certain circumstances),
users must supply the -Astubs=... command-line option.

If a stub file contains annotations that are used by the framework rather than by any specific checker (such
as purity annotations), and you wish to distribute it with the Checker Framework, put the stub file in directory
checker/src/main/resources/. You can also do this if the stub file has annotations for multiple checkers. To use a
stub file in directory checker/src/main/resources/, users must supply the -Astubs=checker.jar/stub-file-name.astub
command-line option.

35.5.7 Troubleshooting stub libraries
Type-checking does not yield the expected results

By default, the stub parser silently ignores annotations on unknown classes and methods. The stub parser also silently
ignores unknown annotations, so don’t forget to import any annotations. Some command-line options make the stub
parser issue more warnings:

-AstubWarnIfNotFound
-AstubNoWarnIfNotFound The Checker Framework can issue a “Type not found” warning when a stub file

contains a nonexistent element, for example when the stub file mentions a method that the class does not contain.
By default, the Checker Framework warns about such problems in a stub file provided on the command line, but
does not warn about built-in stub files. These command-line options turn the warnings on or off (respectively) for
all stub files.
The @NoAnnotationFileParserWarning annotation on a package or type in a stub file causes no warning to be
issued for that package or type, regardless of the command-line options.

-AstubWarnIfNotFoundIgnoresClasses Modifies the behavior of -AstubWarnIfNotFound to report only
missing methods/fields, but ignore missing classes, even if other classes from the same package are present.
Useful if a package spans more than one jar.

-AstubWarnIfRedundantWithBytecode Warn if a stub file entry is redundant with bytecode information.
The warning means that the stub file’s type is the same as the bytecode type, so that entry in the stub file has no
effect. You could remove the entry in the stub file to make it shorter, or you could add an annotation to the stub
file to make the entry have an effect.

-AstubWarnNote Issue a “note”, not a warning, for the -AstubWarn* command-line arguments. A warning may
prevent further compilation (depending on whether the -Werror command-line argument is passed), but a note
permits compilation to proceed.

Finally, use command-line option -AstubDebug to output debugging messages while parsing stub files, including
about unknown classes, methods, and annotations. This overrides the @NoAnnotationFileParserWarning annotation.

235

../api/org/checkerframework/framework/qual/StubFiles.html

Problems parsing stub libraries

When using command-line option -AstubWarnIfNotFound, an error is issued if a stub file has a typo or the API
method does not exist.

Fix an error of the form

AnnotationFileParser: Method isLLowerCase(char) not found in type java.lang.Character

by removing the extra “L” in the method name.
Fix an error of the form

AnnotationFileParser: Method enableForegroundNdefPush(Activity,NdefPushCallback)
not found in type android.nfc.NfcAdapter

by removing the method enableForgroundNdefPush(...) from the stub file, because it is not defined in class
android.nfc.NfcAdapter in the version of the library you are using.

35.6 Ajava files
There are two types of annotation files, which are files containing annotations that can be read by the Checker Framework.
Section 35.5 describes stub files, which are used by programmers and type system designers. This section describes
ajava files. Ajava files are read and written by tools, such as whole-program type inference (see Section 34.2). This
section about ajava files is primarily of interest to the maintainers of such tools.

An ajava file is simply a valid Java source file. The Checker Framework reads its annotations. (This includes
annotations that are written on anonymous and local classes — annotations in such locations are ignored in stub files.)

35.6.1 Using an Ajava file
The -Aajava command-line argument works like -Astubs (see Section 35.5.1). It takes a colon-separated list of files
and directories containing ajava files, which end in the .ajava extension.

For example:
javac -processor org.checkerframework.checker.interning.InterningChecker \

-Aajava=path/to/String.ajava:ajavadir MyFile.java MyOtherFile.java ...

If there’s an annotation in both a source file and the corresponding a source file, the Checker Framework uses the
greatest lower bound, as with the -AmergeStubsWithSource option.

35.6.2 Corresponding source files and ajava files
If the Checker Framework reads both a source file and an ajava file that corresponds to it, then the source file and the
ajava file must have a specific relationship to one another, to prevent errors that could occur due to mismatches.

Names of ajava files

The ajava file must either (1) be found below one of the arguments to -Aajava, in a subdirectory matching its package
name, or (2) be unambiguously specified directly with its full path. A pair of .ajava files are specified ambiguously if
one of their fully-qualified names is a substring of the other, and both are specified as .ajava files (rather than being
found under directories). For example, if the -Aajava argument was -Aajava= /foo/Bar.ajava: /baz/foo/Bar.ajava,
the two .ajava files would be considered ambiguous and a ambiguous.ajava warning would be issued. Files found
under a directory are always unambiguous, because their file structure must match their package name; the solution to a
ambiguous.ajava warning is to convert the specific files in the -Aajava argument to directories.

The ajava file must be named ClassName-checker.qualified.name.ajava where checker.qualified.name
is the fully qualified name of the checker that the ajava file’s annotations belong to.

For example, an ajava file with tainting annotations for a class outerpackage.innerpackage.MyClass would be
located in a subdirectory outerpackage/innerpackage and it would be named MyClass-org.checkerframework.checker.tainting.TaintingChecker.ajava.

236

Contents of an ajava file

The ajava file must contain the same source code as the source file with the following exceptions:

• The two may differ in annotations.
• The two may have different import statements.
• The ajava file may have explicit receivers where the source file doesn’t. If a source file has a method declaration
void myMethod(), the ajava file might contain void myMethod(MyClass this) or void myMethod(@Interned
MyClass this).

• The ajava file may have explicit type bounds that are implicit in the source file. If a source file has a type argument
?, the ajava file might contain ? extends Object or ? extends @Nullable Object.

Inserting annotations from ajava files

The InsertAjavaAnnotations.java program inserts annotations from ajava files into Java files. This can be used
to insert the annotations inferred by whole program inference into the source code of a program, similarly to the
insert-annotations-to-source script from the Annotation File Utilities project.

Its arguments are a directory containing ajava files and a directory containing Java files. The checker.jar file must
be in the classpath. Here is an example invocation:

java -cp $CHECKERFRAMEWORK/checker/dist/checker.jar \
org.checkerframework.framework.ajava.InsertAjavaAnnoations \
<path-to-ajava-files> <path-to-java-files>

35.7 Troubleshooting/debugging annotated libraries
Sometimes, it may seem that a checker is treating a library as unannotated even though the library has annotations. The
compiler has a flag that may help you in determining which library files are read.

-verbose Outputs info about compile phases — when the compiler reads/parses/attributes/writes any file. Also
outputs the classpath and sourcepath paths.

A syntax error in a stub file or the annotated JDK can lead to the file being silently ignored. A typo in an annotation
name, or a missing import statement, can lead to annotations being silently ignored.

237

https://checkerframework.org/annotation-file-utilities/#insert-annotations-to-source
https://checkerframework.org/annotation-file-utilities/

Chapter 36

How to create a new checker

This chapter describes how to create a checker — a type-checking compiler plugin that detects bugs or verifies
their absence. After a programmer annotates a program, the checker verifies that the code is consistent with the
annotations. If you only want to use a checker, you do not need to read this chapter. People who wish to edit
the Checker Framework source code or make pull requests should read the Checker Framework Developer Manual
(https://checkerframework.org/manual/developer-manual.html).

Writing a simple checker is easy! For example, here is a complete, useful type-checker:

import java.lang.annotation.Documented;
import java.lang.annotation.Target;
import java.lang.annotation.ElementType;
import org.checkerframework.common.subtyping.qual.Unqualified;
import org.checkerframework.framework.qual.SubtypeOf;

@Documented
@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
@SubtypeOf(Unqualified.class)
public @interface Encrypted {}

This checker is so short because it builds on the Subtyping Checker (Chapter 29). See Section 29.2 for more
details about this particular checker. When you wish to create a new checker, it is often easiest to begin by building it
declaratively on top of the Subtyping Checker, and then return to this chapter when you need more expressiveness or
power than the Subtyping Checker affords.

Three choices for creating your own checker are:

• Customize an existing checker. Checkers that are designed for extension include the Subtyping Checker
(Chapter 29, page 172), the Accumulation Checker (Chapter 37, page 264), the Fake Enumeration Checker
(Chapter 9, page 83), and the Units Checker (Chapter 20, page 140).

• Follow the instructions in this chapter to create a checker from scratch. This enables creation of checkers that are
more powerful than customizing an existing checker.

• Copy and then modify a different existing checker — whether one distributed with the Checker Framework or a
third-party one. You can get tangled up if you don’t fully understand the subtleties of the existing checker that
you are modifying. Usually, it is easier to follow the instructions in this chapter. (If you are going to copy a
checker, one good choice to copy and modify is the Regex Checker (Chapter 14, page 113). A bad choice is the
Nullness Checker (Chapter 3, page 31), which is more sophisticated than anything you want to start out building.)

You do not need all of the details in this chapter, at least at first. In addition to reading this chapter of the manual,
you may find it helpful to examine the implementations of the checkers that are distributed with the Checker Framework.
The Javadoc documentation of the framework and the checkers is in the distribution and is also available online at
https://checkerframework.org/api/.

238

https://checkerframework.org/manual/developer-manual.html
https://checkerframework.org/api/

If you write a new checker and wish to advertise it to the world, let us know so we can mention it in Chapter 30,
page 177 or even include it in the Checker Framework distribution.

36.1 How checkers build on the Checker Framework
This table shows the relationship among tools that the Checker Framework builds on or that are built on the Checker
Framework. You use the Checker Framework to build pluggable type systems, and the Annotation File Utilities to
manipulate .java and .class files.

Subtyping
Checker

Nullness
Checker

Index
Checker

Tainting
Checker

. . . Your
Checker

Base Checker
(enforces subtyping rules)

Type
inference

Other
tools

Checker Framework
(enables creation of pluggable type-checkers)

Annotation File Utilities
(.java↔ .class files)

Java type annotations syntax and classfile format
(no built-in semantics)

The Base Checker (more precisely, the BaseTypeChecker) enforces the standard subtyping rules. The Subtyping
Checker is a simple use of the Base Checker that supports providing type qualifiers on the command line. You usually
want to build your checker on the Base Checker.

36.2 The parts of a checker
The Checker Framework provides abstract base classes (default implementations), and a specific checker overrides
as little or as much of the default implementations as necessary. To simplify checker implementations, by default
the Checker Framework automatically discovers the parts of a checker by looking for specific files. Thus, checker
implementations follow a very formulaic structure. To illustrate, a checker for MyProp must be laid out as follows:

myPackage/
| qual/ type qualifiers
| MyPropChecker.java interface to the compiler
| MyPropVisitor.java [optional] type rules
| MyPropAnnotatedTypeFactory.java [optional] type introduction and dataflow rules

MyPropChecker.java is occasionally optional, such as if you are building on the Subtyping Checker. If you want to
create an artifact containing just the qualifiers (similar to the Checker Framework’s checker-qual artifact), you should
put the qual/ directory in a separate Maven module or Gradle subproject.

Sections 36.5–36.9 describe the individual components of a type system as written using the Checker Framework:

36.5 Type qualifiers and hierarchy. You define the annotations for the type system and the subtyping relationships
among qualified types (for instance, @NonNull Object is a subtype of @Nullable Object). This is also where
you specify the default annotation that applies whenever the programmer wrote no annotation and no other
defaulting rule applies.

36.6 Interface to the compiler. The compiler interface indicates which annotations are part of the type system, which
command-line options and @SuppressWarnings annotations the checker recognizes, etc.

36.7 Type rules. You specify the type system semantics (type rules), violation of which yields a type error. A type
system has two types of rules.

• Subtyping rules related to the type hierarchy, such as that in every assignment, the type of the right-hand-side
is a subtype of the type of the left-hand-side. Your checker automatically inherits these subtyping rules
from the Base Checker (Chapter 29), so there is nothing for you to do.

239

https://checkerframework.org/annotation-file-utilities/
https://checkerframework.org/jsr308/
../api/org/checkerframework/common/basetype/BaseTypeChecker.html

• Additional rules that are specific to your particular checker. For example, in the Nullness type system, only
references whose type is @NonNull may be dereferenced. You write these additional rules yourself.

36.8 Type introduction rules. You specify the type of some expressions where the rules differ from the built-in
framework rules.

36.9 Dataflow rules. These optional rules enhance flow-sensitive type qualifier inference (also sometimes called
“local variable type inference”).

36.3 Compiling and using a custom checker
You can place your checker’s source files wherever you like. One choice is to write your checker in a fork of the
Checker Framework repository https://github.com/typetools/checker-framework. Another choice is to write
it in a stand-alone repository. Here is a template for a stand-alone repository: https://github.com/typetools/
templatefora-checker; at that URL, click the “Use this template” button.

Once your custom checker is written, using it is very similar to using a built-in checker (Section 2.2): simply pass
the fully-qualified name of your BaseTypeChecker subclass to the -processor command-line option:

javac -processor mypackage.MyPropChecker SourceFile.java

Note that your custom checker’s .class files must be on the same path (the classpath or processorpath) as the Checker
Framework. Invoking a custom checker that builds on the Subtyping Checker is slightly different (Section 29.1).

36.4 Tips for creating a checker
To make your job easier, we recommend that you build your type-checker incrementally, testing at each phase rather
than trying to build the whole thing at once.

Here is a good way to proceed.

1. Write the user manual. Do this before you start coding. The manual explains the type system, what it guarantees,
how to use it, etc., from the point of view of a user. Writing the manual will help you flesh out your goals and the
concepts, which are easier to understand and change in text than in an implementation. Section 36.13 gives a
suggested structure for the manual chapter, which will help you avoid omitting any parts. Get feedback from
someone else at this point to ensure that your manual is comprehensible.
Once you have designed and documented the parts of your type system, you should “play computer”, manually
type-checking some code according to the rules you defined. During manual checking, ask yourself what
reasoning you applied, what information you needed, and whether your written-down rules were sufficient. It is
more efficient to find problems now rather than after coding up your design.

2. Implement the type qualifiers and hierarchy (Section 36.5).
Write simple test cases that consist of only assignments, to test your type hierarchy. For instance, if your type
hierarchy consists of a supertype @UnknownSign and a subtype @NonNegative, then you could write a test case
such as:

void testHierarchy(@UnknownSign int us, @NonNegative int nn) {
@UnknownSign int a = us;
@UnknownSign int b = nn;
// :: error: (assignment)
@NonNegative int c = us; // expected error on this line
@NonNegative int d = nn;

}

Type-check your test files using the Subtyping Checker (Chapter 29, page 172).
3. Write the checker class itself (Section 36.6).

Ensure that you can still type-check your test files and that the results are the same. You will not use the Subtyping
Checker any more; you will call the checker directly, as in

240

../api/org/checkerframework/checker/nullness/qual/NonNull.html
https://github.com/typetools/checker-framework
https://github.com/typetools/templatefora-checker
https://github.com/typetools/templatefora-checker

javac -processor mypackage.MyChecker File1.java File2.java ...

4. Test infrastructure. If your checker source code is in a clone of the Checker Framework repository, integrate your
checker with the Checker Framework’s Gradle targets for testing (Section 36.11). This will make it much more
convenient to run tests, and to ensure that they are passing, as your work proceeds.

5. Annotate parts of the JDK, if relevant (Section 36.10).
Write test cases for a few of the annotated JDK methods to ensure that the annotations are being properly read by
your checker.

6. Implement type rules, if any (Section 36.7). (Some type systems need JDK annotations but don’t have any
additional type rules.)
Before implementing type rules (or any other code in your type-checker), read the Javadoc to familiarize yourself
with the utility routines in the org.checkerframework.javacutil package, especially AnnotationBuilder,
AnnotationUtils, ElementUtils, TreeUtils, TypeAnnotationUtils, and TypesUtils. You will learn how
to access needed information and avoid reimplementing existing functionality.
Write simple test cases to test the type rules, and ensure that the type-checker behaves as expected on those test
files. For example, if your type system forbids indexing an array by a possibly-negative value, then you would
write a test case such as:

void testArrayIndexing(String[] myArray, @UnknownSign int us, @NonNegative int nn) {
myArray[us]; // expected error on this line
myArray[nn];

}

7. Implement type introduction rules, if any (Section 36.8).
Test your type introduction rules. For example, if your type system sets the qualifier for manifest literal integers
and for array lengths, you would write a test case like the following:

void testTypeIntroduction(String[] myArray) {
@NonNegative nn1 = -1; // expected error on this line
@NonNegative nn2 = 0;
@NonNegative nn3 = 1;
@NonNegative nn4 = myArray.length;

}

8. Optionally, implement dataflow refinement rules (Section 36.9).
Test them if you wrote any. For instance, if after an arithmetic comparison, your type system infers which
expressions are now known to be non-negative, you could write a test case such as:

void testDataflow(@UnknownSign int us, @NonNegative int nn) {
@NonNegative nn2;
nn2 = us; // expected error on this line
if (us > j) {

nn2 = us;
}
if (us >= j) {

nn2 = us;
}
if (j < us) {

nn2 = us;
}
if (j <= us) {

nn2 = us;
}
nn = us; // expected error on this line

}

241

../api/org/checkerframework/javacutil/AnnotationBuilder.html
../api/org/checkerframework/javacutil/AnnotationUtils.html
../api/org/checkerframework/javacutil/ElementUtils.html
../api/org/checkerframework/javacutil/TreeUtils.html
../api/org/checkerframework/javacutil/TypeAnnotationUtils.html
../api/org/checkerframework/javacutil/TypesUtils.html

36.5 Annotations: Type qualifiers and hierarchy
A type system designer specifies the qualifiers in the type system (Section 36.5.1) and the type hierarchy that relates
them. The type hierarchy — the subtyping relationships among the qualifiers — can be defined either declaratively
via meta-annotations (Section 36.5.2), or procedurally through subclassing QualifierHierarchy or TypeHierarchy
(Section 36.5.3).

36.5.1 Defining the type qualifiers
Type qualifiers are defined as Java annotations. In Java, an annotation is defined using the Java @interface keyword.
Here is how to define a two-qualifier hierarchy:

package mypackage.qual;
import java.lang.annotation.Documented;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;
import org.checkerframework.framework.qual.DefaultQualifierInHierarchy;
import org.checkerframework.framework.qual.SubtypeOf;
/**
* The run-time value of the integer is unknown.
*
* @checker_framework.manual #nonnegative-checker Non-Negative Checker
*/

@Documented
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
@SubtypeOf({})
@DefaultQualifierInHierarchy
public @interface UnknownSign {}

package mypackage.qual;
import java.lang.annotation.Documented;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;
import org.checkerframework.framework.qual.LiteralKind;
import org.checkerframework.framework.qual.SubtypeOf;
/**
* Indicates that the value is greater than or equal to zero.
*
* @checker_framework.manual #nonnegative-checker Non-Negative Checker
*/

@Documented
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
@SubtypeOf({UnknownSign.class})
public @interface NonNegative {}

The @SubtypeOf meta-annotation indicates the parent in the type hierarchy.

242

../api/org/checkerframework/framework/type/QualifierHierarchy.html
../api/org/checkerframework/framework/type/TypeHierarchy.html
../api/org/checkerframework/framework/qual/SubtypeOf.html

The @Target meta-annotation indicates where the annotation may be written. All type qualifiers that users can
write in source code should have the value ElementType.TYPE_USE and optionally with the additional value of
ElementType.TYPE_PARAMETER, but no other ElementType values.

The qualifiers should be in a qual subpackage of the type checker package — by default, the checker reflectively
determines the qualifiers and the only thing that matters for that is the package name. As mentioned in creating-parts-of-
a-checker, the files for that qual package can be either in a subdirectory or in a separate Gradle module, depending
on whether they should be distributable separately. The Checker Framework automatically treats any annotation that
is declared in the qual package as a type qualifier. (See Section 36.6.1 for more details.) For example, the Nullness
Checker’s source file is located at .../nullness/NullnessChecker.java. The @NonNull qualifier is defined in file
.../nullness/qual/NonNull.java.

Your type system should include a top qualifier and a bottom qualifier (Section 36.5.7). The top qualifier is
conventionally named CheckerNameUnknown. Most type systems should also include a polymorphic qualifier
@PolyMyTypeSystem (Section 36.5.2).

One of the annotations must be meta-annotated with @DefaultQualifierInHierarchy or @DefaultFor(TypeUseLocation.OTHERWISE).
It is usually easiest to make the top type be the default; this may or may not be the correct default for the type system
design.

Choose good names for the qualifiers, because users will write these in their source code. The Javadoc of every type
qualifier should include a precise English description and an example use of the qualifier.

36.5.2 Declaratively defining the qualifier hierarchy
Declaratively, the type system designer uses two meta-annotations (written on the declaration of qualifier annotations)
to specify the qualifier hierarchy.

• @SubtypeOf denotes that a qualifier is a subtype of another qualifier or qualifiers, specified as an array of class
literals. For example, for any type T , @NonNull T is a subtype of @Nullable T :

@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
@SubtypeOf({ Nullable.class })
public @interface NonNull {}

@SubtypeOf accepts multiple annotation classes as an argument, permitting the type hierarchy to be an arbitrary
DAG.
All type qualifiers, except for polymorphic qualifiers (see below and also Section 31.2), need to be properly
annotated with SubtypeOf.
The top qualifier is annotated with @SubtypeOf({ }). The top qualifier is the qualifier that is a supertype of
all other qualifiers. For example, @Nullable is the top qualifier of the Nullness type system, hence is defined as:

@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
@SubtypeOf({})
public @interface Nullable {}

If the top qualifier of the hierarchy is the generic unqualified type (this is not recommended!), then its children will
use @SubtypeOf(Unqualified.class), but no @SubtypeOf({}) annotation on the top qualifier Unqualified
is necessary. For an example, see the Encrypted type system of Section 29.2.

• @PolymorphicQualifier denotes that a qualifier is a polymorphic qualifier. For example:

import java.lang.annotation.ElementType;
import java.lang.annotation.Target;
import org.checkerframework.framework.qual.PolymorphicQualifier;

@PolymorphicQualifier
@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
public @interface PolyNull {}

243

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/annotation/Target.html
../api/org/checkerframework/framework/qual/DefaultQualifierInHierarchy.html
../api/org/checkerframework/framework/qual/DefaultFor.html
../api/org/checkerframework/framework/qual/SubtypeOf.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/Nullable.html
../api/org/checkerframework/framework/qual/SubtypeOf.html
../api/org/checkerframework/framework/qual/SubtypeOf.html
../api/org/checkerframework/checker/nullness/qual/Nullable.html
../api/org/checkerframework/framework/qual/PolymorphicQualifier.html

A polymorphic qualifier must not have a @SubtypeOf meta-annotation nor be mentioned in any other @SubtypeOf
meta-annotation.
For how to restrict instantiation, see Section 36.5.2. For a general description of polymorphic qualifiers, see
Section 31.2.

The declarative and procedural mechanisms for specifying the hierarchy can be used together. If any of the
annotations representing type qualifiers have elements, then the relationships between those qualifiers must be defined
procedurally.

Restricting instantiation

Sometimes, you wish to restrict how a polymorphic qualifier can be instantiated. An example is the Signedness Checker
(Chapter 21, page 144). Its two main qualifiers are @Signed and @Unsigned, and the top qualifier (which should be
rarely used) is @UnknownSignedness.

As described so far, there is no way for a programmer to require that two method arguments have the same
signedness type. Writing

void foo(@PolySigned Object a, @PolySigned Object b) { ... }

permits every invocation, because one of its instantiations is

void foo(@UnknownSignedness Object a, @UnknownSignedness Object b) { ... }

which is consistent with any two arguments, regardless of their signedness type.
It is possible to permit only method calls whose arguments have exactly the same type qualifier. This is enabled for

an entire type system. To do so, create a subclass of DefaultQualifierPolymorphism, override its combine method,
and make method createQualifierPolymorphism in the type factory return an instance of the new subclass. The
Signedness Checker gives an example.

Changing the qualifier polymorphism allows a loophole: upcasts to top. For example, the type system permits a call
like

Objects.equals((@UnknownSignedness) mySigned, (@UnknownSignedness) myUnsigned)

A type system can forbid upcasts to top (including in assignments, not just explicit casts) to close this loophole.
If you change the qualifier polymorphism, your type system may need class qualifier polymorphism (see Sec-

tion 31.3). And, you may need to suppress false positive warnings within the body of methods whose formal parameter
types are annotated with the polymorphic qualifier (e.g., @PolySigned).

36.5.3 Procedurally defining the qualifier hierarchy
The declarative syntax suffices for most cases. More complex type hierarchies can be expressed by overriding, in your
subclass of BaseAnnotatedTypeFactory, either createQualifierHierarchy or createTypeHierarchy (typically
only one of these needs to be overridden).

For more details, see the Javadoc of those methods and of the classes QualifierHierarchy and TypeHierarchy.
The QualifierHierarchy class represents the qualifier hierarchy (not the type hierarchy). A type-system de-

signer may subclass QualifierHierarchy to express customized qualifier relationships (e.g., relationships based on
annotation arguments).

The TypeHierarchy class represents the type hierarchy — that is, relationships between annotated types, rather
than merely type qualifiers, e.g., @NonNull Date is a subtype of @Nullable Date. The default TypeHierarchy uses
QualifierHierarchy to determine all subtyping relationships. The default TypeHierarchy handles generic type
arguments, array components, type variables, and wildcards in a similar manner to the Java standard subtype relationship
but with taking qualifiers into consideration. Some type systems may need to override that behavior. For instance, the
Java Language Specification specifies that two generic types are subtypes only if their type arguments are identical: for
example, List<Date> is not a subtype of List<Object>, or of any other generic List. (In the technical jargon, the
generic arguments are “invariant” or “novariant”.)

244

../api/org/checkerframework/framework/qual/SubtypeOf.html
../api/org/checkerframework/framework/qual/SubtypeOf.html
../api/org/checkerframework/checker/signedness/qual/Signed.html
../api/org/checkerframework/checker/signedness/qual/Unsigned.html
../api/org/checkerframework/checker/signedness/qual/UnknownSignedness.html
../api/org/checkerframework/framework/type/poly/DefaultQualifierPolymorphism.html
../api/org/checkerframework/checker/signedness/qual/PolySigned.html
../api/org/checkerframework/common/basetype/BaseAnnotatedTypeFactory.html
../api/org/checkerframework/framework/type/AnnotatedTypeFactory.html#createQualifierHierarchy()
../api/org/checkerframework/framework/type/AnnotatedTypeFactory.html#createTypeHierarchy()
../api/org/checkerframework/framework/type/QualifierHierarchy.html
../api/org/checkerframework/framework/type/TypeHierarchy.html
../api/org/checkerframework/framework/type/QualifierHierarchy.html
../api/org/checkerframework/framework/type/QualifierHierarchy.html
../api/org/checkerframework/framework/type/TypeHierarchy.html
../api/org/checkerframework/framework/type/TypeHierarchy.html
../api/org/checkerframework/framework/type/QualifierHierarchy.html
../api/org/checkerframework/framework/type/TypeHierarchy.html

36.5.4 Defining the default annotation
A type system applies the default qualifier where the user has not written a qualifier (and no other default qualifier is
applicable), as explained in Section 32.5.

The type system designer must specify the default annotation. The designer can specify the default annotation
declaratively, using the @DefaultQualifierInHierarchy meta-annotation. Note that the default will apply to any
source code that the checker reads, including stub libraries, but will not apply to compiled .class files that the checker
reads.

Alternately, the type system designer may specify a default procedurally, by overriding the
GenericAnnotatedTypeFactory.addCheckedCodeDefaults method. You may do this even if you have
declaratively defined the qualifier hierarchy.

If the default qualifier in the type hierarchy requires a value, there are ways for the type system designer to specify a
default value both declaratively and procedurally, as well. To do so declaratively, append the string default value
where value is the actual value you want to be the default, after the declaration of the value in the qualifier file.
For instance, int value() default 0; would make value default to zero. Alternatively, the procedural method
described above can be used.

The default qualifier applies to most, but not all, unannotated types, Section 32.5.3 other defaulting rules are
automatically added to every checker. Also, Section 32.5 describes other meta-annotations used to specify default
annotations.

36.5.5 Relevant Java types
Sometimes, a checker is only relevant to certain Java types. The @RelevantJavaTypes annotation on the checker class
indicates that its qualifiers may only be written on those types and no others. All irrelevant types are defaulted to the
top annotation and this annotation cannot be changed.

If a type is relevant, so are all its supertypes including Object. The reason for this is to prevent qualifiers from being
lost via an assignment to a supertype. For example, in this code, x and z have the same type qualifiers if @SomeAnn is
relevant to MyClass:

@SomeAnn MyClass x = ...;
Object y = x;
MyClass z = (MyClass) y;

As an example of relevant types, the Format String Checker is relevant only to CharSequence and its subtypes
such as String. You cannot write @Format on a List or a Number. As another example, the Index Checker and the
Signedness Checker are only relevant to integral numeric types. You cannot write @Positive on a List or a float.

A checker may change the default, and it may differ from type to type. For example, the Signedness Checker treats
all types that are not numeric integral types as @Signed, but treats the char and Character types as @Unsigned.

Every annotation that is applicable to a non-primitive type is also applicable to all supertypes including Object.
That ensures that in code like this:

@SomeAnn MyClass x = ...;
Object y = x;
MyClass z = (MyClass) y;

variables x and z have the same type qualifiers, without them being lost via the assignment to Object.

36.5.6 Do not re-use type qualifiers
Every annotation should belong to only one type system. No annotation should be used by multiple type systems. This
is true even of annotations that are internal to the type system and are not intended to be written by the programmer.

Suppose that you have two type systems that both use the same type qualifier @Bottom. In a client program, a use
of type T may require type qualifier @Bottom for one type system but a different qualifier for the other type system.
There is no annotation that a programmer can write to make the program type-check under both type systems.

245

../api/org/checkerframework/framework/qual/DefaultQualifierInHierarchy.html
../api/org/checkerframework/framework/type/GenericAnnotatedTypeFactory.html#addCheckedCodeDefaults(org.checkerframework.framework.util.defaults.QualifierDefaults)
../api/org/checkerframework/framework/qual/RelevantJavaTypes.html
../api/org/checkerframework/checker/formatter/qual/Format.html
../api/org/checkerframework/checker/index/qual/Positive.html
../api/org/checkerframework/checker/signedness/qual/Signed.html
../api/org/checkerframework/checker/signedness/qual/Unsigned.html

This also applies to type qualifiers that a programmer does not write, because the compiler outputs .class files that
contain an explicit type qualifier on every type — a defaulted or inferred type qualifier if the programmer didn’t write a
type qualifier explicitly.

36.5.7 Completeness of the qualifier hierarchy
When you define a type system, its qualifier hierarchy must be a lattice: every set of qualifiers has a unique least upper
bound and a unique greatest lower bound. This implies that there must be a top qualifier that is a supertype of all other
qualifiers, and there must be a bottom qualifier that is a subtype of all other qualifiers. Furthermore, the top qualifier and
bottom qualifier should be defined specifically for the type system. Don’t reuse an existing qualifier from the Checker
Framework such as @Unqualified.

It is possible that a single type-checker checks multiple qualifier hierarchies. An example is the Nullness Checker,
which has three separate qualifier hierarchies, one each for nullness, initialization, and map keys. In this case, each
qualifier hierarchy would have its own top qualifier and its own bottom qualifier; they don’t all have to share a single
top qualifier or a single bottom qualifier.

Bottom qualifier Your qualifier hierarchy must have a bottom qualifier — a qualifier that is a (direct or indirect)
subtype of every other qualifier.

null has the bottom type. Because the only value with type Void is null, uses of the type Void are also bottom.
(The only exception is if the type system has special treatment for null values, as the Nullness Checker does. In that
case, add the meta-annotation @QualifierForLiterals(LiteralKind.NULL) to the correct qualifier.) This legal
code will not type-check unless null has the bottom type:

<T> T f() {
return null;

}

Some type systems have a special bottom type that is used only for the null value, and for dead code and other
erroneous situations. In this case, users should only write the bottom qualifier on explicit bounds. In this case, the
definition of the bottom qualifier should be meta-annotated with:

@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
@TargetLocations({TypeUseLocation.EXPLICIT_LOWER_BOUND, TypeUseLocation.EXPLICIT_UPPER_BOUND})

Furthermore, by convention the name of such a qualifier ends with “Bottom”.
The hierarchy shown in Figure 3.5 lacks a bottom qualifier, but the actual implementation does contain a (non-user-

visible) bottom qualifier.

Top qualifier Your qualifier hierarchy must have a top qualifier — a qualifier that is a (direct or indirect) supertype
of every other qualifier. Here is one reason. The default type for local variables is the top qualifier (that type is then
flow-sensitively refined depending on what values are stored in the local variable). If there is no single top qualifier,
then there is no unambiguous choice to make for local variables.

36.5.8 Annotations whose argument is a Java expression (dependent type annotations)
Sometimes, an annotation needs to refer to a Java expression. Section 32.8 gives examples of such annotations and also
explains what Java expressions can and cannot be referred to.

This section explains how to implement a dependent type annotation.
A “dependent type annotation” must have one attribute, value, that is an array of strings. The Checker Framework

verifies that the annotation’s arguments are valid expressions according to the rules of Section 32.8. If the expression is
not valid, an error is issued and the string in the annotation is changed to indicate that the expression is not valid.

The Checker Framework standardizes the expression strings. For example, a field f can be referred to as either
“f” or “this.f”. If the programmer writes “f”, the Checker Framework treats it as if the programmer had written

246

../api/org/checkerframework/framework/qual/QualifierForLiterals.html

“this.f”. An advantage of this canonicalization is that comparisons, such as isSubtype, can be implemented as string
comparisons.

The Checker Framework viewpoint-adapts type annotations on method, constructor, and field declarations at uses
for those methods. For example, given the following class

class MyClass {
Object field = ...;
@Anno("this.field") Object field2 = ...;

}

and assuming the variable myClass is of type MyClass, then the type of myClass.field is viewpoint-adapted to
@Anno("myClass.field").

To use this built-in functionality, add a @JavaExpression annotation to any annotation element that should be inter-
preted as a Java expression. The type of the element must be an array of Strings. If your checker requires special handling
of Java expressions, your checker implementation should override GenericAnnotatedTypeFactory.createDependentTypesHelper
to return a subclass of DependentTypesHelper.

Given a specific expression in the program (of type Tree or Node), a checker may need to obtain its canonical string
representation. This enables the checker to create an dependent type annotation that refers to it, or to compare to the
string expression of an existing expression annotation. To obtain the string, first create a JavaExpression object by
calling fromTree(ExpressionTree) or fromNode(Node). Then, call toString() on the JavaExpression object.

36.5.9 Repeatable annotations
Some pre- and post-condition annotations that have multiple elements (that is, annotations that take multiple arguments)
should be repeatable, so that programmers can specify them more than once. An example is @EnsuresNonNullIf; it
could not be defined with each of its elements being a list, as (for example) @KeyFor is.

Make an annotation A repeatable by defining a nested annotation (within A’s definition) named List, and writing
@Repeatable(A.List.class) on A’s definition.

36.6 The checker class: Compiler interface
A checker’s entry point is a subclass of SourceChecker, and is usually a direct subclass of either BaseTypeChecker
or AggregateChecker. This entry point, which we call the checker class, serves two roles: an interface to the compiler
and a factory for constructing type-system classes.

Because the Checker Framework provides reasonable defaults, oftentimes the checker class has no work to do. Here
are the complete definitions of the checker classes for the Interning Checker and the Nullness Checker:

package my.package;
import org.checkerframework.common.basetype.BaseTypeChecker;
@SupportedLintOptions({"dotequals"})
public final class InterningChecker extends BaseTypeChecker {}

package my.package;
import org.checkerframework.common.basetype.BaseTypeChecker;
@SupportedLintOptions({"flow", "cast", "cast:redundant"})
public class NullnessChecker extends BaseTypeChecker {}

(The @SupportedLintOptions annotation is optional, and many checker classes do not have one.)
The checker class bridges between the Java compiler and the checker. It invokes the type-rule check visitor on every

Java source file being compiled. The checker uses SourceChecker.reportError and SourceChecker.reportWarning
to issue errors.

247

../api/org/checkerframework/framework/qual/JavaExpression.html
../api/org/checkerframework/framework/type/GenericAnnotatedTypeFactory.html#createDependentTypesHelper()
../api/org/checkerframework/dataflow/expression/JavaExpression.html
../api/org/checkerframework/dataflow/expression/JavaExpression.html#fromTree(com.sun.source.tree.ExpressionTree)
../api/org/checkerframework/dataflow/expression/JavaExpression.html#fromNode(org.checkerframework.dataflow.cfg.node.Node)
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html
../api/org/checkerframework/checker/nullness/qual/KeyFor.html
../api/org/checkerframework/framework/source/SourceChecker.html
../api/org/checkerframework/common/basetype/BaseTypeChecker.html
../api/org/checkerframework/framework/source/AggregateChecker.html
../api/org/checkerframework/framework/source/SupportedLintOptions.html
../api/org/checkerframework/framework/source/SourceChecker.html#reportError(java.lang.Object,java.lang.String,java.lang.Object...)
../api/org/checkerframework/framework/source/SourceChecker.html#reportWarning(java.lang.Object,java.lang.String,java.lang.Object...)

Also, the checker class follows the factory method pattern to construct the concrete classes (e.g., visitor, factory) and
annotation hierarchy representation. It is a convention that, for a type system named Foo, the compiler interface (checker),
the visitor, and the annotated type factory are named as FooChecker, FooVisitor, and FooAnnotatedTypeFactory.
BaseTypeChecker uses the convention to reflectively construct the components. Otherwise, the checker writer must
specify the component classes for construction.

A checker can customize the default error messages through a Properties-loadable text file named
messages.properties that appears in the same directory as the checker class. The property file keys are the
strings passed to reportError and reportWarning (like "type.incompatible") and the values are the strings to be
printed ("cannot assign ..."). The messages.properties file only need to mention the new messages that the
checker defines. It is also allowed to override messages defined in superclasses, but this is rarely needed. Section 33.1.3
(page 213) discusses best practices when using a message key in a @SuppressWarnings annotation.

36.6.1 Indicating supported annotations
A checker must indicate the annotations that it supports (that make up its type hierarchy).

By default, a checker supports all type annotations located in a subdirectory called qual that’s located in the
same directory as the checker (unless you are creating multiple distribution artifacts, one for your checker and
one for its qualifiers). A type annotation is meta-annotated with either @Target(ElementType.TYPE_USE) or
@Target(ElementType.TYPE_USE, ElementType.TYPE_PARAMETER).

To indicate support for annotations that are located outside of the qual subdirectory, annotations that have other
ElementType values, checker writers can override the createSupportedTypeQualifiers method (see its Javadoc
for details). It is required to define createSupportedTypeQualifiers if you are mixing qualifiers from multiple
directories (including when extending an existing checker that has its own qualifiers) and when using the Buck build
tool, whose class loader cannot find the qualifier directory.

An aggregate checker (which extends AggregateChecker) does not need to specify its type qualifiers, but each of
its component checkers should do so.

36.6.2 Bundling multiple checkers
Sometimes, multiple checkers work together and should always be run together. There are two different ways to bundle
multiple checkers together, by creating either an “aggregate checker” or a “compound checker”.

1. An aggregate checker runs multiple independent, unrelated checkers. There is no communication or cooperation
among them.
The effect is the same as if a user passes multiple processors to the -processor command-line option, except
the error messages are interleaved such that all errors about a line of code appear together.
For example, instead of a user having to run

javac -processor DistanceUnitChecker,VelocityUnitChecker,MassUnitChecker MyFile.java

the user can write

javac -processor MyUnitCheckers MyFile.java

if you define an aggregate checker class. Extend AggregateChecker and override the getSupportedCheckers
method, like the following:

public class MyUnitCheckers extends AggregateChecker {
@Override
protected Collection<Class<? extends SourceChecker>> getSupportedCheckers() {

Collection<Class<? extends SourceChecker>> checkers = new ArrayList<>(3);
Collections.addAll(
checkers,
DistanceUnitChecker.class, VelocityUnitChecker.class, MassUnitChecker.class);

return checkers;

248

../api/org/checkerframework/common/basetype/BaseTypeChecker.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Properties.html
../api/org/checkerframework/framework/source/SourceChecker.html#reportError(java.lang.Object,java.lang.String,java.lang.Object...)
../api/org/checkerframework/framework/source/SourceChecker.html#reportWarning(java.lang.Object,java.lang.String,java.lang.Object...)
../api/org/checkerframework/framework/type/AnnotatedTypeFactory.html#createSupportedTypeQualifiers()
../api/org/checkerframework/framework/source/AggregateChecker.html
../api/org/checkerframework/framework/source/AggregateChecker.html

}
}

An example of an aggregate checker is I18nChecker (see Chapter 17.2, page 130), which consists of I18nSubchecker
and LocalizableKeyChecker.

2. Use a compound checker to express dependencies among checkers. Suppose it only makes sense to run
MyChecker if MyHelperChecker has already been run; that might be the case if MyHelperChecker computes
some information that MyChecker needs to use.
Override MyChecker.getImmediateSubcheckerClasses to return a list of the checkers that MyChecker de-
pends on. Every one of them will be run before MyChecker is run. One of MyChecker’s subcheckers may itself
be a compound checker, and multiple checkers may declare a dependence on the same subchecker. The Checker
Framework will run each checker once, and in an order consistent with all the dependences.
A checker obtains information from its subcheckers (those that ran before it) by querying their AnnotatedTypeFactory
to determine the types of variables. Obtain the AnnotatedTypeFactory by calling getTypeFactoryOfSubcheckerOrNull.
An example of a compound checker is SignednessChecker (see Chapter 21, page 144) for which ValueChecker
is a subchecker.

36.6.3 Providing command-line options
A checker can provide two kinds of command-line options: boolean flags and named string values (the standard
annotation processor options).

Boolean flags

To specify a simple boolean flag, add:

@SupportedLintOptions({"myflag"})

to your checker subclass. The value of the flag can be queried using

checker.getLintOption("myflag", false)

The second argument sets the default value that should be returned.
To pass a flag on the command line, call javac as follows:

javac -processor mypackage.MyChecker -Alint=myflag

Named string values

For more complicated options, one can use the standard @SupportedOptions annotation on the checker, as in:

@SupportedOptions({"myoption"})

The value of the option can be queried using

checker.getOption("myoption")

To pass an option on the command line, call javac as follows:

javac -processor mypackage.MyChecker -Amyoption=p1,p2

The value is returned as a single string and you have to perform the required parsing of the option.

249

../api/org/checkerframework/checker/i18n/I18nChecker.html
../api/org/checkerframework/checker/i18n/I18nSubchecker.html
../api/org/checkerframework/checker/i18n/LocalizableKeyChecker.html
../api/org/checkerframework/framework/source/SourceChecker.html#getImmediateSubcheckerClasses()
../api/org/checkerframework/framework/type/AnnotatedTypeFactory.html
../api/org/checkerframework/common/basetype/BaseTypeChecker.html#getTypeFactoryOfSubcheckerOrNull(java.lang.Class)
../api/org/checkerframework/checker/signedness/SignednessChecker.html
../api/org/checkerframework/common/value/ValueChecker.html
../api/org/checkerframework/framework/source/SupportedLintOptions.html
../api/org/checkerframework/framework/source/SupportedOptions.html

Default Options

The default options passed to a custom checker may be customized by overriding the getOptions method in the custom
checker class.

For example, to ignore the introduce.eliminate warnings raised by the Optional Checker (Chapter 5), override
getOptions as follows:

@Override
public Map<String, String> getOptions() {

Map<String, String> options = new HashMap<>(super.getOptions());
options.put("suppressWarnings", "optional:introduce.eliminate");
return options;

}

in the OptionalChecker class.

36.7 Visitor: Type rules
A type system’s rules define which operations on values of a particular type are forbidden. These rules must be defined
procedurally, not declaratively. Put them in a file MyCheckerVisitor.java that extends BaseTypeVisitor.

BaseTypeVisitor performs type-checking at each node of a source file’s AST. It uses the visitor design pattern to
traverse Java syntax trees as provided by Oracle’s jdk.compiler API, and it issues a warning (by calling reportError
or reportWarning) whenever the type system is violated.

Most type-checkers override only a few methods in BaseTypeVisitor. A checker’s visitor overrides one method
in the base visitor for each special rule in the type qualifier system. The last line of the overridden version is “return
super.visitTreeType(node, p);”. If the method didn’t raise any error, the superclass implementation can
perform standard checks.

By default, BaseTypeVisitor performs subtyping checks that are similar to Java subtype rules, but taking the type
qualifiers into account. BaseTypeVisitor issues these errors:

• invalid assignment (type.incompatible) for an assignment from an expression type to an incompatible type. The
assignment may be a simple assignment, or pseudo-assignment like return expressions or argument passing in a
method invocation
In particular, in every assignment and pseudo-assignment, the left-hand side of the assignment is a supertype of
(or the same type as) the right-hand side. For example, this assignment is not permitted:

@Nullable Object myObject;
@NonNull Object myNonNullObject;
...
myNonNullObject = myObject; // invalid assignment

• invalid generic argument (type.argument) when a type is bound to an incompatible generic type variable
• invalid method invocation (method.invocation) when a method is invoked on an object whose type is incompatible

with the method receiver type
• invalid overriding parameter type (override.param) when a parameter in a method declaration is incompatible

with that parameter in the overridden method’s declaration
• invalid overriding return type (override.return) when the return type in a method declaration is incompatible with

the return type in the overridden method’s declaration
• invalid overriding receiver type (override.receiver) when a receiver in a method declaration is incompatible with

that receiver in the overridden method’s declaration

250

../api/org/checkerframework/common/basetype/BaseTypeChecker.html#getOptions()
../api/org/checkerframework/common/basetype/BaseTypeChecker.html#getOptions()
../api/org/checkerframework/checker/optional/OptionalChecker.html
../api/org/checkerframework/common/basetype/BaseTypeVisitor.html
https://docs.oracle.com/en/java/javase/17/docs/api/jdk.compiler/module-summary.html
../api/org/checkerframework/framework/source/SourceChecker.html#reportError(java.lang.Object,java.lang.String,java.lang.Object...)
../api/org/checkerframework/framework/source/SourceChecker.html#reportWarning(java.lang.Object,java.lang.String,java.lang.Object...)
../api/org/checkerframework/common/basetype/BaseTypeVisitor.html
../api/org/checkerframework/common/basetype/BaseTypeVisitor.html
../api/org/checkerframework/common/basetype/BaseTypeVisitor.html

36.7.1 AST traversal
The Checker Framework needs to do its own traversal of the AST even though it operates as an ordinary annotation
processor [Dar06]. Java provides a visitor for Java code that is intended to be used by annotation processors, but that
visitor only visits the public elements of Java code, such as classes, fields, methods, and method arguments — it does
not visit code bodies or various other locations. The Checker Framework hardly uses the built-in visitor — as soon as
the built-in visitor starts to visit a class, then the Checker Framework’s visitor takes over and visits all of the class’s
source code.

Because there is no standard API for the AST of Java code1, the Checker Framework uses the javac implementation.
This is why the Checker Framework is not deeply integrated with Eclipse or IntelliJ IDEA, but runs as an external tool
(see Section 38.8).

36.7.2 Avoid hardcoding
If a method’s contract is expressible in the type system’s annotation syntax, then you should write annotations, in a stub
file or annotated JDK (Chapter 35).

If the contract is not expressible, you can create a declaration annotation, and your checker can treat methods with
that annotation specially. An example is the @FormatMethod annotation; see Section 15.5.

A final alternative is to write a type-checking rule for method invocation, where your rule checks the (class and)
name of the method being called and then treats the method in a special way.

36.8 Type factory: Type introduction rules
The annotated type of expressions and types are defined via type introduction rules in the type factory. For most
expressions and types, these rules are the same regardless of the type system. For example, the type of a method
invocation expression is the return type of the invoked method, viewpoint-adapted for the call site. The framework
implements these rules so that all type systems automatically use them. For other expressions, such as string literals,
their (annotated) types depend on the type system, so the framework provides way to specify what qualifiers should
apply to these expressions.

Defaulting rules are type introduction rules for computing the annotated type for an unannotated type; these rules
are explained in Section 36.5.4. The meta-annotation @QualifierForLiterals can be written on an annotation
declaration to specify that the annotation should be applied to the type of literals listed in the meta-annotation.

36.8.1 Procedurally specifying type introduction rules
If the meta-annotations are not sufficiently expressive, then you can write your own type introduction rules. There
are three ways to do so. Each makes changes to an AnnotatedTypeMirror, which is the Checker Framework’s
representation of an annotated type.

1. Define a subclass of TreeAnnotator, typically as a private inner class of your AnnotatedTypeFactory. There
is a method of TreeAnnotator for every AST node, and the visitor has access to both the tree (the AST node)
and its type.
A TreeAnnotator is best suited to changing the type of an expression. Don’t try to use a TreeAnnotator to
change the type of a variable or method declaration, because that change will not generally be seen at uses of the
variable or method.
After defining your TreeAnnotator, override createTreeAnnotator (in your subclass of AnnotatedTypeFactory)
to return a ListTreeAnnotator containing your new TreeAnnotator, as in:

1Actually, there is a standard API for Java ASTs — JSR 198 (Extension API for Integrated Development Environments) [Cro06]. If tools were
to implement it (which would just require writing wrappers or adapters), then the Checker Framework and similar tools could be portable among
different compilers and IDEs.

251

../api/org/checkerframework/checker/formatter/qual/FormatMethod.html
../api/org/checkerframework/framework/qual/QualifierForLiterals.html
../api/org/checkerframework/framework/type/AnnotatedTypeMirror.html
../api/org/checkerframework/framework/type/treeannotator/TreeAnnotator.html

@Override
protected TreeAnnotator createTreeAnnotator() {

return new ListTreeAnnotator(super.createTreeAnnotator(), new MyTreeAnnotator(this));
}

In code like the above, you might choose to put your TreeAnnotator first. Several tree annotators are run by
default, and among them, PropagationTreeAnnotator adds annotations to AnnotatedTypeMirrors that do
not have an annotation, but has no effect on those that have an annotation.

2. Define a subclass of a TypeAnnotator, typically as a private inner class of your AnnotatedTypeFactory. There
is a method of TypeAnnotator for every kind of type, and the visitor has access to only the type. In your subclass
of AnnotatedTypeFactory, override createTypeAnnotator to return a ListTypeAnnotator containing that
annotator, as in

@Override
protected TypeAnnotator createTypeAnnotator() {

return new ListTypeAnnotator(new MyTypeAnnotator(this), super.createTypeAnnotator());
}

(or put your TypeAnnotator last).
3. Create a subclass of AnnotatedTypeFactory and override two addComputedTypeAnnotations methods:

addComputedTypeAnnotations(Tree,AnnotatedTypeMirror) (or addComputedTypeAnnotations(Tree,AnnotatedTypeMirror,boolean)
if extending GenericAnnotatedTypeFactory) and addComputedTypeAnnotations(Element,AnnotatedTypeMirror).
The methods can make arbitrary changes to the annotations on a type.
Recall that AnnotatedTypeFactory, when given a program expression, returns the expression’s type. This
should include not only the qualifiers that the programmer explicitly wrote in the source code, but also default
annotations and type refinement (see Section 32.4 for explanations of these concepts).
The approach of overriding addComputedTypeAnnotations is a last resort, if your logic cannot be imple-
mented using a TreeAnnotator or a TypeAnnotator. The implementation of addComputedTypeAnnotations in
GenericAnnotatedTypeFactory calls the tree annotator and the type annotator (in that order), but by overriding
the method you can cause your logic to be run even earlier or even later.

36.8.2 Recursion in TreeAnnotators
A subclass of TreeAnnotator should not, in general, call getAnnotatedType() more than once. This is primarily a
concern for visitBinary() and visitCompoundAssignment(). For example, the implementation of visitBinary()
should not start with

AnnotatedTypeMirror lExpr = getAnnotatedType(tree.getLeftOperand());
AnnotatedTypeMirror rExpr = getAnnotatedType(tree.getRightOperand());

The reason is that PropagationTreeAnnotator already does such recursion. If two TreeAnnotators do so, then
expressions at the base of a large binary tree will be visited exponentially many times, leading to slowdowns or the
appearance of an infinite loop.

One approach is to not call getAnnotatedType() in visitBinary(); this is what UpperBoundAnnotatedTypeFactory
does.

Another approach is to disable PropagationTreeAnnotator, doing all work in a different TreeAnnotator. Create
a subclass of PropagationTreeAnnotator whose visitBinary() method does no work, and use that subclass in
place of PropagationTreeAnnotator itself. This is what RegexAnnotatedTypeFactory and UnitsAnnotatedTypeFactory
do.

36.9 Dataflow: enhancing flow-sensitive type refinement
By default, every checker performs flow-sensitive type refinement, as described in Section 32.7.

252

../api/org/checkerframework/framework/type/typeannotator/TypeAnnotator.html
../api/org/checkerframework/framework/type/AnnotatedTypeFactory.html
../api/org/checkerframework/framework/type/AnnotatedTypeFactory.html#addComputedTypeAnnotations(com.sun.source.tree.Tree,org.checkerframework.framework.type.AnnotatedTypeMirror)
../api/org/checkerframework/framework/type/GenericAnnotatedTypeFactory.html#addComputedTypeAnnotations(com.sun.source.tree.Tree,org.checkerframework.framework.type.AnnotatedTypeMirror,boolean)
../api/org/checkerframework/framework/type/AnnotatedTypeFactory.html#addComputedTypeAnnotations(javax.lang.model.element.Element,org.checkerframework.framework.type.AnnotatedTypeMirror)

This section of the manual explains how to enhance the Checker Framework’s built-in type refinement. Most
commonly, you will inform the Checker Framework about a run-time test that gives information about the type qualifiers
in your type system. Section 32.7.4 (page 203) gives examples of type systems with and without run-time tests.

The steps to customizing type refinement are:

1. §36.9.1 Determine which expressions will be refined.
2. §36.9.2 Create required class and configure its use.
3. §36.9.3 Override methods that handle Nodes of interest.
4. §36.9.4 Implement the refinement.

The Regex Checker’s dataflow customization for the RegexUtil.asRegex run-time check is used as a running
example.

If needed, you can find more details about the implementation of type refinement, and the control flow graph (CFG)
data structure that it uses, in the Dataflow Manual.

36.9.1 Determine expressions to refine the types of
A run-time check or run-time operation involves multiple expressions (arguments, results). Determine which expression
the customization will refine. This is usually specific to the type system and run-time test. There is no code to write in
this step; you are merely determining the design of your type refinement.

For the program operation op(a,b), you can refine the types in either or both of the following ways:

1. Change the result type of the entire expression op(a,b).
As an example (and as the running example of implementing a dataflow refinement), the RegexUtil.asRegex
method is declared as:
@Regex(0) String asRegex(String s, int groups) { ... }

This annotation is sound and conservative: it says that an expression such as RegexUtil.asRegex(myString,
myInt) has type @Regex(0) String. However, this annotation is imprecise. When the group argument is
known at compile time, a better estimate can be given. For example, RegexUtil.asRegex(myString, 2) has
type @Regex(2) String.

2. Change the type of some other expression, such as a or b.
As an example, consider an equality test in the Nullness type system:

@Nullable String s;
if (s != null) {

...
} else {

...
}

The type of s != null is always boolean. However, in the true branch, the type of s can be refined to @NonNull
String.

If you are refining the types of arguments or the result of a method call, then you may be able to implement your
flow-sensitive refinement rules by just writing @EnsuresQualifier and/or @EnsuresQualifierIf annotations. When
this is possible, it is the best approach.

Sections 36.9.2–36.9.4 explain how to create a transfer class when the @EnsuresQualifier and @EnsuresQualifierIf
annotations are insufficient.

36.9.2 Create required class
In the same directory as MyCheckerChecker.java, create a class named MyCheckerTransfer that extends
CFTransfer.

Leave the class body empty for now, except for a constructor:

253

../api/org/checkerframework/dataflow/cfg/node/Node.html
../api/org/checkerframework/checker/regex/util/RegexUtil.html#asRegex(java.lang.String)
https://checkerframework.org/manual/checker-framework-dataflow-manual.pdf
../api/org/checkerframework/framework/qual/EnsuresQualifier.html
../api/org/checkerframework/framework/qual/EnsuresQualifierIf.html
../api/org/checkerframework/framework/qual/EnsuresQualifier.html
../api/org/checkerframework/framework/qual/EnsuresQualifierIf.html
../api/org/checkerframework/framework/flow/CFTransfer.html

public MyCheckerTransfer(CFAnalysis analysis) {
super(analysis);

}

Your class will add functionality by overriding methods of CFTransfer, which performs the default Checker Framework
type refinement.

As an example, the Regex Checker’s extended CFTransfer is RegexTransfer.
(If you disregard the instructions above and choose a different name or a different directory for your MyCheckerTransfer

class, you will also need to override the createFlowTransferFunction method in your type factory to return a new
instance of the class.)

(As a reminder, use of @EnsuresQualifier and @EnsuresQualifierIf may obviate the need for a transfer class.)

36.9.3 Override methods that handle Nodes of interest
Decide what source code syntax is relevant to the run-time checks or run-time operations you are trying to support.
The CFG (control flow graph) represents source code as Node, a node in the abstract syntax tree of the program being
checked (see Section 36.9.3).

In your extended CFTransfer override the visitor method that handles the Nodes relevant to your run-time check or
run-time operation. Leave the body of the overriding method empty for now.

For example, the Regex Checker refines the type based on a call to the RegexUtil.isRegex method. A method call
is represented by a MethodInvocationNode. Therefore, RegexTransfer overrides the visitMethodInvocation
method:
public TransferResult<CFValue, CFStore> visitMethodInvocation(
MethodInvocationNode n, TransferInput<CFValue, CFStore> in) { ... }

Program representation

The Node subclasses can be found in the org.checkerframework.dataflow.cfg.node package. Some examples
are EqualToNode, LeftShiftNode, VariableDeclarationNode.

A Node is basically equivalent to a javac compiler Tree.
See Section 36.14 for more information about Trees. As an example, the statement String a = ""; is represented

as this abstract syntax tree:

VariableTree:
name: "a"
type:

IdentifierTree
name: String

initializer:
LiteralTree

value: ""

36.9.4 Implement the refinement
Each visitor method in CFAbstractTransfer returns a TransferResult. A TransferResult represents the refined
information that is known after an operation. It has two components: the result type for the Node being evaluated, and a
map from expressions in scope to estimates of their types (a Store). Each of these components is relevant to one of the
two cases in Section 36.9.1:

1. Changing the TransferResult’s result type changes the type that is returned by the AnnotatedTypeFactory
for the tree corresponding to the Node that was visited. (Remember that BaseTypeVisitor uses the
AnnotatedTypeFactory to look up the type of a Tree, and then performs checks on types of one or more
Trees.)

254

../api/org/checkerframework/framework/flow/CFTransfer.html
../api/org/checkerframework/checker/regex/RegexTransfer.html
../api/org/checkerframework/framework/qual/EnsuresQualifier.html
../api/org/checkerframework/framework/qual/EnsuresQualifierIf.html
../api/org/checkerframework/dataflow/cfg/node/Node.html
../api/org/checkerframework/framework/flow/CFTransfer.html
../api/org/checkerframework/dataflow/cfg/node/Node.html
../api/org/checkerframework/dataflow/cfg/node/MethodInvocationNode.html
../api/org/checkerframework/checker/regex/RegexTransfer.html
../api/org/checkerframework/dataflow/cfg/node/Node.html
../api/org/checkerframework/dataflow/cfg/node/EqualToNode.html
../api/org/checkerframework/dataflow/cfg/node/LeftShiftNode.html
../api/org/checkerframework/dataflow/cfg/node/VariableDeclarationNode.html
../api/org/checkerframework/dataflow/cfg/node/Node.html
https://docs.oracle.com/en/java/javase/17/docs/api/jdk.compiler/com/sun/source{}/tree/Tree.html?is-external=true
https://docs.oracle.com/en/java/javase/17/docs/api/jdk.compiler/com/sun/source{}/tree/Tree.html?is-external=true
../api/org/checkerframework/framework/flow/CFAbstractTransfer.html
../api/org/checkerframework/dataflow/analysis/TransferResult.html
../api/org/checkerframework/dataflow/analysis/TransferResult.html
../api/org/checkerframework/dataflow/cfg/node/Node.html
../api/org/checkerframework/dataflow/analysis/Store.html
../api/org/checkerframework/dataflow/analysis/TransferResult.html
../api/org/checkerframework/framework/type/AnnotatedTypeFactory.html
../api/org/checkerframework/dataflow/cfg/node/Node.html
../api/org/checkerframework/common/basetype/BaseTypeVisitor.html
../api/org/checkerframework/framework/type/AnnotatedTypeFactory.html
https://docs.oracle.com/en/java/javase/17/docs/api/jdk.compiler/com/sun/source{}/tree/Tree.html?is-external=true
https://docs.oracle.com/en/java/javase/17/docs/api/jdk.compiler/com/sun/source{}/tree/Tree.html?is-external=true

For example, When RegexTransfer evaluates a RegexUtils.asRegex invocation, it updates the TransferResult’s
result type. This changes the type of the RegexUtils.asRegex invocation when its Tree is looked up by the
AnnotatedTypeFactory. See below for details.

2. Updating the Store treats an expression as having a refined type for the remainder of the method or conditional
block. For example, when the Nullness Checker’s dataflow evaluates myvar != null, it updates the Store to
specify that the variable myvar should be treated as having type @NonNull for the rest of the then conditional
block. Not all kinds of expressions can be refined; currently method return values, local variables, fields, and
array values can be stored in the Store. Other kinds of expressions, like binary expressions or casts, cannot be
stored in the Store.

The rest of this section details implementing the visitor method RegexTransfer.visitMethodInvocation for
the RegexUtil.asRegex run-time test. You can find other examples of visitor methods in LockTransfer and
FormatterTransfer.

1. Determine if the visited Node is of interest
A visitor method is invoked for all instances of a given Node kind in the program. The visitor must inspect the Node
to determine if it is an instance of the desired run-time test or operation. For example, visitMethodInvocation
is called when dataflow processes any method invocation, but the RegexTransfer should only refine the result
of RegexUtils.asRegex invocations:
@Override
public TransferResult<CFValue, CFStore> visitMethodInvocation(...)
...
MethodAccessNode target = n.getTarget();
ExecutableElement method = target.getMethod();
Node receiver = target.getReceiver();
if (receiver instanceof ClassNameNode) {
String receiverName = ((ClassNameNode) receiver).getElement().toString();

// Is this a call to static method isRegex(s, groups) in a class named RegexUtil?
if (receiverName.equals("RegexUtil")

&& ElementUtils.matchesElement(method,
"isRegex", String.class, int.class)) {

...

2. Determine the refined type
Sometimes the refined type is dependent on the parts of the operation, such as arguments passed to it.
For example, the refined type of RegexUtils.asRegex is dependent on the integer argument to the method
call. The RegexTransfer uses this argument to build the resulting type @Regex(i), where i is the value of the
integer argument. For simplicity the below code only uses the value of the integer argument if the argument was
an integer literal. It could be extended to use the value of the argument if it was any compile-time constant or was
inferred at compile time by another analysis, such as the Constant Value Checker (Chapter 23, page 150).
AnnotationMirror regexAnnotation;
Node count = n.getArgument(1);
if (count instanceof IntegerLiteralNode) {
// argument is a literal integer
IntegerLiteralNode iln = (IntegerLiteralNode) count;
Integer groupCount = iln.getValue();
regexAnnotation = factory.createRegexAnnotation(groupCount);

} else {
// argument is not a literal integer; fall back to @Regex(), which is the same as @Regex(0)
regexAnnotation = AnnotationBuilder.fromClass(factory.getElementUtils(), Regex.class);

}

3. Return a TransferResult with the refined types
Recall that the type of an expression is refined by modifying the TransferResult returned by a visitor method.
Since the RegexTransfer is updating the type of the run-time test itself, it will update the result type and not the
Store.
A CFValue is created to hold the type inferred. CFValue is a wrapper class for values being inferred by dataflow:

255

../api/org/checkerframework/checker/regex/RegexTransfer.html
../api/org/checkerframework/dataflow/analysis/TransferResult.html
https://docs.oracle.com/en/java/javase/17/docs/api/jdk.compiler/com/sun/source{}/tree/Tree.html?is-external=true
../api/org/checkerframework/framework/type/AnnotatedTypeFactory.html
../api/org/checkerframework/dataflow/analysis/Store.html
../api/org/checkerframework/dataflow/analysis/Store.html
../api/org/checkerframework/dataflow/analysis/Store.html
../api/org/checkerframework/dataflow/analysis/Store.html
../api/org/checkerframework/checker/lock/LockTransfer.html
../api/org/checkerframework/checker/formatter/FormatterTransfer.html
../api/org/checkerframework/dataflow/cfg/node/Node.html
../api/org/checkerframework/dataflow/cfg/node/Node.html
../api/org/checkerframework/dataflow/cfg/node/Node.html
../api/org/checkerframework/checker/regex/RegexTransfer.html
../api/org/checkerframework/checker/regex/RegexTransfer.html
../api/org/checkerframework/dataflow/analysis/TransferResult.html
../api/org/checkerframework/dataflow/analysis/TransferResult.html
../api/org/checkerframework/checker/regex/RegexTransfer.html
../api/org/checkerframework/dataflow/analysis/Store.html
../api/org/checkerframework/framework/flow/CFValue.html
../api/org/checkerframework/framework/flow/CFValue.html

CFValue newResultValue = analysis.createSingleAnnotationValue(regexAnnotation,
result.getResultValue().getType().getUnderlyingType());

Then, RegexTransfer’s visitMethodInvocation creates and returns a TransferResult using newResultValue
as the result type.
return new RegularTransferResult<>(newResultValue, result.getRegularStore());

As a result of this code, when the Regex Checker encounters a RegexUtils.asRegex method call, the checker
will refine the return type of the method if it can determine the value of the integer parameter at compile time.

36.9.5 Further customizing flow-sensitive inference
By default, the Checker Framework assumes that modifications to an object’s fields do not change its type qualifiers.
This is true for all provenance-based type systems (see Section 32.7.4), for all value-based type systems over immutable
values, and for some other type systems. To indicate that side effects can change a value’s type qualifiers, write
sideEffectsUnrefineAliases = true; in the type factory constructor, before the call to this.postInit();. Note
that this setting may lead to large numbers of false positive warnings. You can reduce the number of false positive
warnings by writing more precise side effect annotations.

In the uncommon case that you wish to disable the Checker Framework’s built-in flow inference in your checker
(this is different than choosing not to extend it as described in Section 36.9), put the following two lines at the beginning
of the constructor for your subtype of BaseAnnotatedTypeFactory:

// disable flow inference
super(checker, /*useFlow=*/ false);

36.10 Annotated JDK and other annotated libraries
You will need to supply annotations for relevant parts of the JDK; otherwise, your type-checker may produce spurious
warnings for code that uses the JDK. You have two options:

• Write JDK annotations in a fork of https://github.com/typetools/jdk.
If your checker is written in a fork of https://github.com/typetools/jdk, then use the same fork name
(GitHub organization) and branch name; this is necessary so that the CI jobs use the right annotated JDK.
Clone the JDK and the Checker Framework in the same place; that is, your working copy of the JDK (a
jdk directory) should be a sibling of your working copy of the Checker Framework (a checker-framework
directory).
Here are some tips:

– Add an @AnnotatedFor annotation to each file you annotate.
– Whenever you add a file, fully annotate it, as described in Section 35.1.
– If you are only annotating fields and method signatures (but not ensuring that method bodies type-check),

then you don’t need to suppress warnings, because the JDK is not type-checked.

• Write JDK annotations as stub files (partial Java source files).
Create a file jdk.astub in the checker’s main source directory. You can also create jdkN.astub files that
contain methods or classes that only exist in certain JDK versions. The JDK stub files will be automatically used
by the checker, unless the user supplies the command-line option -Aignorejdkastub.
You can also supply .astub files in that directory for other libraries. You should list those other libraries in a
@StubFiles annotation on the checker’s main class, so that they will also be automatically used.
When a stub file should be used by multiple checkers (for example, if it contains purity annotations that are
needed by multiple distinct checkers), the stub file should appear in directory checker/src/main/resources/.
In the distribution, it will appear at the top level of the checker.jar file. It will not be used automatically; a user
must pass the -Astubs=checker.jar/stubfilename.astub command-line argument (see Section 2.2.1)
While creating a stub file, you may find the debugging options described in Section 35.5.7 useful.

256

../api/org/checkerframework/dataflow/analysis/TransferResult.html
../api/org/checkerframework/common/basetype/BaseAnnotatedTypeFactory.html
https://github.com/typetools/jdk
https://github.com/typetools/jdk
../api/org/checkerframework/framework/qual/AnnotatedFor.html
../api/org/checkerframework/framework/qual/StubFiles.html

36.11 Testing framework
The Checker Framework provides a convenient way to write tests for your checker. Each test case is a Java file, with
inline indications of what errors and warnings (if any) a checker should emit. An example is

class MyNullnessTest {
void method() {

Object nullable = null;
// :: error: (dereference.of.nullable)
nullable.toString();

}
}

When the Nullness Checker is run on the above code, it should produce exactly one error, whose message key is
dereference.of.nullable, on the line following the “// ::” comment.

The testing infrastructure is extensively documented in file checker-framework/checker/tests/README.
If your checker’s source code is within a fork of the Checker Framework repository, then you can copy the testing

infrastructure used by some existing type system.

36.12 Debugging options
The Checker Framework provides debugging options that can be helpful when implementing a checker. These are
provided via the standard javac “-A” switch, which is used to pass options to an annotation processor.

36.12.1 Amount of detail in messages
• -AprintAllQualifiers: print all type qualifiers, including qualifiers meta-annotated with @InvisibleQualifier,

which are usually not shown.
• -AprintVerboseGenerics: print more information about type parameters and wildcards when they appear in

warning messages. Supplying this also implies -AprintAllQualifiers.
• -Anomsgtext: use message keys (such as “type.invalid”) rather than full message text when reporting errors

or warnings. This is used by the Checker Framework’s own tests, so they do not need to be changed if the English
message is updated.

• -AnoPrintErrorStack: don’t print a stack trace when an internal Checker Framework error occurs. Setting this
option is rare. You should only do it if you have discovered a bug in a checker, you have already reported the bug,
and you want to continue using the checker on a large codebase without being inundated in stack traces.

• -AnoWarnMemoryConstraints: when memory constraints are impeding performance, issue a note rather than a
warning. This prevents the message from being elevated to an error by -Werror.

• -AdumpOnErrors: Outputs a stack trace when reporting errors or warnings.
• -AexceptionLineSeparator: Controls what line separator is used when printing exceptions. This is useful

when tools, such as Maven, only display the first line of exception messsages. For example, -AexceptionLineSeparator="
".

36.12.2 Format of output
• -Adetailedmsgtext: Output error/warning messages in a stylized format that is easy for tools to parse. This is

useful for tools that run the Checker Framework and parse its output, such as IDE plugins. See the source code of
SourceChecker.java for details about the format.

The javac-diagnostic-wrapper (https://github.com/eisopux/javac-diagnostics-wrapper) tool can trans-
form javac’s textual output into other formats, such as JSON in LSP (Language Server Protocol) format.

257

https://github.com/typetools/checker-framework/blob/master/checker/tests/README
../api/org/checkerframework/framework/qual/InvisibleQualifier.html
https://github.com/eisopux/javac-diagnostics-wrapper

36.12.3 Stub and JDK libraries
• -Aignorejdkastub: ignore the jdk.astub and jdkN.astub files in the checker directory. Files passed through

the -Astubs option are still processed. This is useful when experimenting with an alternative stub file.
• -ApermitMissingJdk: don’t issue an error if no annotated JDK can be found.
• -AparseAllJdk: parse all JDK files at startup rather than as needed.
• -AstubDebug: Print debugging messages while processing stub files. Section 35.5.7 describes more diagnostic

command-line arguments.

36.12.4 Progress tracing
• -Afilenames: print the name of each file before type-checking it. This can be useful for determining that a long

compilation job is making progress.
This option can also help to keep a Travis CI job alive (since Travis CI terminates any job that does not produce
output for 10 minutes). This does not work if you are using Maven, because it does not print the full output
of the Java compiler (see https://github.com/codehaus-plexus/plexus-compiler/issues/149). (Also,
maven-compiler-plugin is buggy: it sometimes doesn’t print any output if it cannot parse it.)

• -Ashowchecks: print debugging information for each pseudo-assignment check (commonAssignmentCheck)
performed by BaseTypeVisitor; see Section 36.7.

• -AshowWpiFailedInferences: print debugging information about failed inference steps during whole-program
inference. Must be used with -Ainfer; see Section 34.2.

If the Checker Framework is in an infinite loop, you can use -Afilenames and -Ashowchecks (which is very
verbose) to determine what source code triggers the infinite loop.

While the Checker Framework is in its infinite loop (no more progress is being made), get a traceback (stack trace)
from from each Java thread, using any of the following four techniques:

• From a different shell than the Checker Framework is running in (running just jcmd gives a list of pids or process
ids):

– jstack pid
– jcmd pid Thread.print
– kill -QUIT pid

• From the same shell that the Checker Framework is running in:

– Press ctrl-\

36.12.5 Saving the command-line arguments to a file
• -AoutputArgsToFile: This saves the final command-line parameters as passed to the compiler in a file. The file

can be used as a script to re-execute the same compilation command. (The script file must be marked as executable
on Unix, or must have a .bat extension on Windows.) Example usage: -AoutputArgsToFile=$HOME/scriptfile
The -AoutputArgsToFile command-line argument is processed by CheckerMain, not by the annotation pro-
cessor. That means that it can be supplied only when you use the Checker Framework compiler (the “Checker
Framework javac wrapper”), and it cannot be written in a file containing command-line arguments passed to the
compiler using the @argfile syntax.

36.12.6 Visualizing the dataflow graph
To understand control flow in your program and the resulting type refinement, you can create a graphical representation
of the CFG.

Typical use is:

258

https://github.com/codehaus-plexus/plexus-compiler/issues/149
../api/org/checkerframework/common/basetype/BaseTypeVisitor.html

javacheck -processor mypackage.MyProcessor -Aflowdotdir=. MyClass.java
for dotfile in *.dot; do dot -Tpdf -o "$dotfile.pdf" "$dotfile"; done

or (for more verbose output)

javacheck -processor mypackage.MyProcessor -Acfgviz=org.checkerframework.dataflow.cfg.visualize.DOTCFGVisualizer,outdir=.,verbose MyClass.java
for dotfile in *.dot; do dot -Tpdf -o "$dotfile.pdf" "$dotfile"; done

where the first command creates file MyClass.dot that represents the CFG, and the second command writes the CFG
to a PDF file. The dot program is part of Graphviz.

In the output, conditional basic blocks are represented as octagons with two successors. Special basic blocks are
represented as ovals (e.g., the entry and exit point of the method).

Creating a CFG while running a type-checker

To create a CFG while running a type-checker, use the following command-line options.
(See above for typical usage.)

• -Aflowdotdir=somedir: Specify directory for .dot files visualizing the CFG. Shorthand for
-Acfgviz=org.checkerframework.dataflow.cfg.visualize.DOTCFGVisualizer,outdir=somedir. The
directory must already exist.

• -Averbosecfg: Enable additional output in the CFG visualization. Equivalent to passing verbose to cfgviz,
e.g. as in -Acfgviz=MyVisualizer,verbose

• -Acfgviz=VizClassName[,opts,...]: Mechanism to visualize the control flow graph (CFG) of all the
methods and code fragments analyzed by the dataflow analysis (Section 36.9). The graph also contains information
about flow-sensitively refined types of various expressions at many program points.
The argument is a comma-separated sequence. The first element is the fully-qualified name of the org.checkerframework.dataflow.cfg.visualize.CFGVisualizer
implementation that should be used. Currently, the possibilities are:

– org.checkerframework.dataflow.cfg.visualize.DOTCFGVisualizer
– org.checkerframework.dataflow.cfg.visualize.StringCFGVisualizer

The remaining keys or key–value pairs are passed to CFGVisualizer.init. Supported keys include

– verbose outputs the store after each basic block (in addition to before); shows transfer result values, unique
IDs, and the processing order

– outdir directory into which to write files
– checkerName

Creating a CFG by running CFGVisualizeLauncher

You can also use CFGVisualizeLauncher to generate a DOT or String representation of the control flow graph of a
given method in a given class. The CFG is generated and output, but no dataflow analysis is performed.

• With JDK 8:
java -Xbootclasspath/p:$CHECKERFRAMEWORK/checker/dist/javac.jar \
-cp $CHECKERFRAMEWORK/checker/dist/checker.jar \
org.checkerframework.dataflow.cfg.visualize.CFGVisualizeLauncher \
MyClass.java --class MyClass --method test --pdf

• With JDK 11 or later:
java -cp $CHECKERFRAMEWORK/checker/dist/checker.jar \
org.checkerframework.dataflow.cfg.visualize.CFGVisualizeLauncher \
MyClass.java --class MyClass --method test --pdf

The above command will generate the corresponding .dot and .pdf files for the method test in the class MyClass in
the project directory. To generate a string representation of the graph to standard output, remove -pdf but add -string.
For example (with JDK 8):

259

http://www.graphviz.org
../api/org/checkerframework/dataflow/cfg/visualize/CFGVisualizer.html
../api/org/checkerframework/dataflow/cfg/visualize/DOTCFGVisualizer.html
../api/org/checkerframework/dataflow/cfg/visualize/StringCFGVisualizer.html
../api/org/checkerframework/dataflow/cfg/visualize/CFGVisualizeLauncher.html

java -Xbootclasspath/p:$CHECKERFRAMEWORK/checker/dist/javac.jar \
-cp $CHECKERFRAMEWORK/checker/dist/checker.jar \
org.checkerframework.dataflow.cfg.visualize.CFGVisualizeLauncher \
MyClass.java --class MyClass --method test --string

For more details about invoking CFGVisualizeLauncher, run it with no arguments.

36.12.7 Miscellaneous debugging options
• -AresourceStats: Whether to output resource statistics at JVM shutdown.
• -AatfDoNotCache: If provided, the Checker Framework will not cache results but will recompute them. This

makes the Checker Framework run slower. If the Checker Framework behaves differently with and without this
flag, then there is a bug in its caching code. Please report that bug.

• -AatfCacheSize: The size of the Checker Framework’s internal caches. Ignored if -AatfDoNotCache is
provided. Most users have no need to set this.

36.12.8 Examples
The following example demonstrates how these options are used:
$ javac -processor org.checkerframework.checker.interning.InterningChecker \

docs/examples/InternedExampleWithWarnings.java -Ashowchecks -Anomsgtext -Afilenames

[InterningChecker] InterningExampleWithWarnings.java
success (line 18): STRING_LITERAL "foo"

actual: DECLARED @org.checkerframework.checker.interning.qual.Interned java.lang.String
expected: DECLARED @org.checkerframework.checker.interning.qual.Interned java.lang.String

success (line 19): NEW_CLASS new String("bar")
actual: DECLARED java.lang.String

expected: DECLARED java.lang.String
docs/examples/InterningExampleWithWarnings.java:21: (not.interned)

if (foo == bar) {
^

success (line 22): STRING_LITERAL "foo == bar"
actual: DECLARED @org.checkerframework.checker.interning.qual.Interned java.lang.String

expected: DECLARED java.lang.String
1 error

36.12.9 Using an external debugger
You can use any standard debugger to observe the execution of your checker.

You can also set up remote (or local) debugging using the following command as a template:

java -jar "$CHECKERFRAMEWORK/checker/dist/checker.jar" \
-J-Xdebug -J-Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=5005 \
-processor org.checkerframework.checker.nullness.NullnessChecker \
src/sandbox/FileToCheck.java

36.13 Documenting the checker
This section describes how to write a chapter for this manual that describes a new type-checker. This is a prerequisite to
having your type-checker distributed with the Checker Framework, which is the best way for users to find it and for it
to be kept up to date with Checker Framework changes. Even if you do not want your checker distributed with the
Checker Framework, these guidelines may help you write better documentation.

When writing a chapter about a new type-checker, see the existing chapters for inspiration. (But recognize that the
existing chapters aren’t perfect: maybe they can be improved too.)

260

../api/org/checkerframework/dataflow/cfg/visualize/CFGVisualizeLauncher.html

A chapter in the Checker Framework manual should generally have the following sections:

Chapter: Belly Rub Checker The text before the first section in the chapter should state the guarantee that the checker
provides and why it is important. It should give an overview of the concepts. It should state how to run the
checker.

Section: Belly Rub annotations This section includes descriptions of the annotations with links to the Javadoc.
Separate type annotations from declaration annotations, and put any type annotations that a programmer may not
write (they are only used internally by the implementation) last within variety of annotation.
Draw a diagram of the type hierarchy. A textual description of the hierarchy is not sufficient; the diagram really
helps readers to understand the system. The diagram will appear in directory docs/manual/figures/; see its
README file for tips.
The Javadoc for the annotations deserves the same care as the manual chapter. Each annotation’s Javadoc
comment should use the @checker_framework.manual Javadoc taglet to refer to the chapter that describes the
checker, and the polymorphic qualifier’s Javadoc should also refer to the qualifier-polymorphism section.
For example, in PolyPresent.java:

* @checker_framework.manual #optional-checker Optional Checker
* @checker_framework.manual #qualifier-polymorphism Qualifier polymorphism

Section: What the Belly Rub Checker checks This section gives more details about when an error is issued, with
examples. This section may be omitted if the checker does not contain special type-checking rules — that is, if
the checker only enforces the usual Java subtyping rules.

Section: Examples Code examples.

Sometimes you can omit some of the above sections. Sometimes there are additional sections, such as tips on
suppressing warnings, comparisons to other tools, and run-time support.

You will create a new belly-rub-checker.tex file, then \input it at a logical place in manual.tex (not
necessarily as the last checker-related chapter). Also add two references to the checker’s chapter: one at the beginning
of chapter 1, and identical text in the appropriate part of Section 32.7.4. Add the new file to docs/manual/Makefile.
Keep the lists in the same order as the manual chapters, to help us notice if anything is missing.

For a chapter or (sub)*section, use \sectionAndLabel{Section title}{section-label}. Section labels
should start with the checker name (as in bellyrub-examples) and not with “sec:”. Figure labels should start with
“fig-checkername” and not with “fig:”. These conventions are for the benefit of the Hevea program that produces the
HTML version of the manual. Use \begin{figure} for all figures, including those whose content is a table, in order
to have a single consistent numbering for all figures.

Don’t forget to write Javadoc for any annotations that the checker uses. That is part of the documentation and is
the first thing that many users may see. The documentation for any annotation should include an example use of the
annotation. Also ensure that the Javadoc links back to the manual, using the @checker_framework.manual custom
Javadoc tag.

36.14 javac implementation survival guide
Since this section of the manual was written, the useful “The Hitchhiker’s Guide to javac” has become available at
https://openjdk.org/groups/compiler/doc/hhgtjavac/index.html. See it first, and then refer to this section.
(This section of the manual should be revised, or parts eliminated, in light of that document.)

A checker built using the Checker Framework makes use of a few interfaces from the underlying compiler (Oracle’s
OpenJDK javac). This section describes those interfaces.

36.14.1 Checker access to compiler information
The compiler uses and exposes three hierarchies to model the Java source code and classfiles.

261

https://openjdk.org/groups/compiler/doc/hhgtjavac/index.html

Types — Java Language Model API

A TypeMirror represents a Java type.
There is a TypeMirror interface to represent each type kind, e.g., PrimitiveType for primitive types,

ExecutableType for method types, and NullType for the type of the null literal.
TypeMirror does not represent annotated types though. A checker should use the Checker Framework types API,

AnnotatedTypeMirror, instead. AnnotatedTypeMirror parallels the TypeMirror API, but also presents the type
annotations associated with the type.

The Checker Framework and the checkers use the types API extensively.

Elements — Java Language Model API

An Element represents a potentially-public declaration that can be accessed from elsewhere: classes, interfaces,
methods, constructors, and fields. Element represents elements found in both source code and bytecode.

There is an Element interface to represent each construct, e.g., TypeElement for classes/interfaces, ExecutableElement
for methods/constructors, and VariableElement for local variables and method parameters.

If you need to operate on the declaration level, always use elements rather than trees (see below). This allows the
code to work on both source and bytecode elements.

Example: retrieve declaration annotations, check variable modifiers (e.g., strictfp, synchronized)

Trees — Compiler Tree API

A Tree represents a syntactic unit in the source code, such as a method declaration, statement, block, for loop, etc.
Trees only represent source code to be compiled (or found in -sourcepath); no tree is available for classes read from
bytecode.

There is a Tree interface for each Java source structure, e.g., ClassTree for class declaration, MethodInvocationTree
for a method invocation, and ForEachTree for an enhanced for statement (also known as a foreach loop).

You should limit your use of trees. A checker uses Trees mainly to traverse the source code and retrieve the
types/elements corresponding to them. Then, the checker performs any needed checks on the types/elements instead.

To obtain the position (line number and column number) of a Tree, cast the Tree to a com.sun.tools.javac.tree.JCTree
and then use one of its methods, such as pos() which returns a JCDiagnostic.DiagnosticPosition. com.sun.source.tree.CompilationUnitTree
has a LineMap that lets you convert positions to line numbers.

Using the APIs

The three APIs use some common idioms and conventions; knowing them will help you to create your checker.
Type-checking: Do not use instanceof Subinterface to determine which kind of TypeMirror or Element an

expression is, because some of the classes that implement the TypeMirror and Element subinterfaces implement multiple
subinterfaces. For example, type instanceof DeclaredType and type instanceof UnionType both return true
if type is an com.sun.tools.javac.code.Type.UnionClassType object.

Instead, use the TypeMirror.getKind() or Element.getKind() method. For example, if type is an com.sun.tools.javac.code.Type.UnionClassType
object, then expr.getKind() == TypeKind.DECLARED is false and expr.getKind() == TypeKind.UNION is true.

For Trees, you can use either Tree.getKind() or instanceof.
Visitors and Scanners: The compiler and the Checker Framework use the visitor pattern extensively. For example,

visitors are used to traverse the source tree (BaseTypeVisitor extends TreePathScanner) and for type checking
(TreeAnnotator implements TreeVisitor).

Utility classes: Some useful methods appear in a utility class. The OpenJDK convention is that the utility class
for a Foo hierarchy is Foos (e.g., Types, Elements, and Trees). The Checker Framework uses a common Utils
suffix to distinguish the class names (e.g., TypesUtils, TreeUtils, ElementUtils), with one notable exception:
AnnotatedTypes.

262

https://docs.oracle.com/en/java/javase/17/docs/api/java.compiler/javax/lang/model{}/type/TypeMirror.html?is-external=true
../api/org/checkerframework/framework/type/AnnotatedTypeMirror.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.compiler/javax/lang/model{}/element/Element.html?is-external=true
https://docs.oracle.com/en/java/javase/17/docs/api/jdk.compiler/com/sun/source{}/tree/Tree.html?is-external=true
https://docs.oracle.com/en/java/javase/17/docs/api/java.compiler/javax/lang/model/type/TypeMirror.html#getKind()
https://docs.oracle.com/en/java/javase/17/docs/api/java.compiler/javax/lang/model/element/Element.html#getKind()
../api/org/checkerframework/common/basetype/BaseTypeVisitor.html
https://docs.oracle.com/en/java/javase/17/docs/api/jdk.compiler/com/sun/source{}/util/TreePathScanner.html?is-external=true
../api/org/checkerframework/framework/type/treeannotator/TreeAnnotator.html
https://docs.oracle.com/en/java/javase/17/docs/api/jdk.compiler/com/sun/source{}/tree/TreeVisitor.html?is-external=true
https://docs.oracle.com/en/java/javase/17/docs/api/java.compiler/javax/lang/model{}/util/Types.html?is-external=true
https://docs.oracle.com/en/java/javase/17/docs/api/java.compiler/javax/lang/model{}/util/Elements.html?is-external=true
https://docs.oracle.com/en/java/javase/17/docs/api/jdk.compiler/com/sun/source{}/util/Trees.html?is-external=true
../api/org/checkerframework/javacutil/TypesUtils.html
../api/org/checkerframework/javacutil/TreeUtils.html
../api/org/checkerframework/javacutil/ElementUtils.html
../api/org/checkerframework/framework/util/AnnotatedTypes.html

Equality for annotations

AnnotationMirror is an interface that is implemented both by javac and the Checker Framework. The documentation
of AnnotationMirror says, “Annotations should be compared using the equals method. There is no guarantee that any
particular annotation will always be represented by the same object.” The second sentence is true, but the first sentence
is wrong. You should never compare AnnotationMirrors using equals(), which (for some implementations) is
reference equality. AnnotationUtils has various methods that should be used instead. Also, AnnotationMirrorMap
and AnnotationMirrorSet can be used.

36.14.2 How a checker fits in the compiler as an annotation processor
The Checker Framework builds on the Annotation Processing API introduced in Java 6. A type-checking annotation
processor is one that extends AbstractTypeProcessor; it gets run on each class source file after the compiler confirms
that the class is valid Java code.

The most important methods of AbstractTypeProcessor are typeProcess and getSupportedSourceVersion.
The former class is where you would insert any sort of method call to walk the AST, and the latter just returns a constant
indicating that we are targeting version 8 of the compiler. Implementing these two methods should be enough for a
basic plugin; see the Javadoc for the class for other methods that you may find useful later on.

The Checker Framework uses Oracle’s Tree API to access a program’s AST. The Tree API is specific to the
Oracle OpenJDK, so the Checker Framework only works with the OpenJDK javac, not with Eclipse’s compiler ecj.
This also limits the tightness of the integration of the Checker Framework into other IDEs such as IntelliJ IDEA. An
implementation-neutral API would be preferable. In the future, the Checker Framework can be migrated to use the Java
Model AST of JSR 198 (Extension API for Integrated Development Environments) [Cro06], which gives access to the
source code of a method. But, at present no tools implement JSR 198. Also see Section 36.7.1.

Learning more about javac

Sun’s javac compiler interfaces can be daunting to a newcomer, and its documentation is a bit sparse. The Checker
Framework aims to abstract a lot of these complexities. You do not have to understand the implementation of javac
to build powerful and useful checkers. Beyond this document, other useful resources include the Java Infrastructure
Developer’s guide at https://netbeans.apache.org/wiki/main/javahowto/Java_DevelopersGuide/ and the
compiler mailing list archives at https://mail.openjdk.org/pipermail/compiler-dev/ (subscribe at https:
//mail.openjdk.org/mailman/listinfo/compiler-dev).

36.15 Integrating a checker with the Checker Framework
To integrate a new checker with the Checker Framework release, perform the following:

• Make sure check-compilermsgs and check-purity run without warnings or errors.

263

https://docs.oracle.com/en/java/javase/17/docs/api/java.compiler/javax/lang/model{}/element/AnnotationMirror.html?is-external=true
../api/org/checkerframework/javacutil/AnnotationUtils.html
../api/org/checkerframework/framework/util/AnnotationMirrorMap.html
../api/org/checkerframework/framework/util/AnnotationMirrorSet.html
../api/org/checkerframework/javacutil/AbstractTypeProcessor.html
../api/org/checkerframework/javacutil/AbstractTypeProcessor.html
https://www.jetbrains.com/idea/
https://netbeans.apache.org/wiki/main/javahowto/Java_DevelopersGuide/
https://mail.openjdk.org/pipermail/compiler-dev/
https://mail.openjdk.org/mailman/listinfo/compiler-dev
https://mail.openjdk.org/mailman/listinfo/compiler-dev

Chapter 37

Building an accumulation checker

This chapter describes how to build a checker for an accumulation analysis. If you want to use an existing checker, you
do not need to read this chapter.

An accumulation analysis is a program analysis where the analysis abstraction is a monotonically increasing set —
that is, the analysis learns new facts, and facts are never retracted. Typically, some operation in code is legal only when
the set is large enough — that is, the estimate has accumulated sufficiently many facts.

The Called Methods Checker (Chapter 7, page 69) is an accumulation analysis. The Test Accumulation Checker is
a simplified version of the Called Methods Checker that you can also use as a model.

Accumulation analysis is a special case of typestate analysis in which (1) the order in which operations are performed
does not affect what is subsequently legal, and (2) the accumulation does not add restrictions; that is, as more operations
are performed, more operations become legal. Unlike a traditional typestate analysis, an accumulation analysis does not
require an alias analysis for soundness. It can therefore be implemented as a flow-sensitive type system.

The rest of this chapter assumes you have read how to create a checker (Chapter 36, page 238).

Defining type qualifiers Define 2 or 3 type qualifiers.

• The “accumulator” type qualifier has a single argument: a String[] named value that defaults to the an empty
array. Note that the Checker Framework’s support for accumulation analysis requires you to accumulate a string
representation of whatever you are accumulating. For example, when accumulating which methods have been
called, you might choose to accumulate method names.
The accumulator qualifier should have no supertypes (@SubtypeOf()) and should be the default qualifier in the
hierarchy (@DefaultQualifierInHierarchy).
An example of such a qualifier can be found in the Checker Framework’s tests: TestAccumulation.java.

• Define a bottom type, analogous to TestAccumulationBottom.java. It should take no arguments, and should be a
subtype of the accumulator type you defined earlier.

• Optionally, define a predicate annotation, analogous to TestAccumulationPredicate.java. It must have a single
argument named value of type String. The predicate syntax supports

– || disjunctions
– && conjunctions
– ! logical complement. "!x" means “it is not true that x was definitely accumulated” or, equivalently, “there

is no path on which x was accumulated”. Note that this does not mean “x was not accumulated” — it is not
a violation of the specification "!x" if x is accumulated on some paths, but not others.

– (...) parentheses for precedence

Setting up the checker Define a new class that extends AccumulationChecker. It does not need any content.
Define a new class that extends AccumulationAnnotatedTypeFactory. You must create a new constructor

whose only argument is a BaseTypeChecker. Your constructor should call one of the super constructors defined in
AccumulationAnnotatedTypeFactory (which one depends on whether or not you defined a predicate annotation).

264

https://github.com/typetools/checker-framework/blob/master/framework/src/test/java/org/checkerframework/framework/testchecker/testaccumulation/TestAccumulationChecker.java
https://github.com/typetools/checker-framework/blob/master/framework/src/test/java/org/checkerframework/framework/testchecker/testaccumulation/qual/TestAccumulation.java
https://github.com/typetools/checker-framework/blob/master/framework/src/test/java/org/checkerframework/framework/testchecker/testaccumulation/qual/TestAccumulationBottom.java
https://github.com/typetools/checker-framework/blob/master/framework/src/test/java/org/checkerframework/framework/testchecker/testaccumulation/qual/TestAccumulationPredicate.java
../api/org/checkerframework/common/accumulation/AccumulationChecker.html
../api/org/checkerframework/common/accumulation/AccumulationAnnotatedTypeFactory.html
../api/org/checkerframework/common/basetype/BaseTypeChecker.html
../api/org/checkerframework/common/accumulation/AccumulationAnnotatedTypeFactory.html

Adding accumulation logic Define a class that extends AccumulationTransfer. To update the estimate of what
has been accumulated, override some method in CFAbstractTransfer to call accumulate.

For example, to accumulate the names of methods called, a checker would override CFAbstractTransfer.visitMethodInvocation
to: call super to get a TransferResult, compute the method name from the MethodInvocationNode, and then call
accumulate.

Enforcing program properties At this point, your checker ensures that all annotations are consistent with one
another and the source code, and it flow-sensitively refines the annotations. Te enforce properties in the code being
type-checked, write type rules (Section 36.7) that are specific to your type system.

37.1 Publications
The paper “Accumulation Analysis” [KSSE22] describes theoretical properties of accumulation analysis. The papers
“Verifying Object Construction” [KRS+20] and “Lightweight and modular resource leak verification” [KSSE21]
describe specific accumulation analyses.

265

../api/org/checkerframework/common/accumulation/AccumulationTransfer.html
../api/org/checkerframework/framework/flow/CFAbstractTransfer.html
../api/org/checkerframework/common/accumulation/AccumulationTransfer.html#accumulate(org.checkerframework.dataflow.cfg.node.Node,org.checkerframework.dataflow.analysis.TransferResult,java.lang.String...)
../api/org/checkerframework/framework/flow/CFAbstractTransfer.html#visitMethodInvocation(org.checkerframework.dataflow.cfg.node.MethodInvocationNode,org.checkerframework.dataflow.analysis.TransferInput)
https://homes.cs.washington.edu/~mernst/pubs/accumulation-analysis-ecoop2022.pdf
https://homes.cs.washington.edu/~mernst/pubs/object-construction-icse2020.pdf
https://homes.cs.washington.edu/~mernst/pubs/resource-leak-esecfse2021.pdf

Chapter 38

Integration with external tools

This chapter discusses how to run a checker from the command line, from a build system, or from an IDE. You can skip
to the appropriate section:

• Android (Section 38.1)
• Android Gradle Plugin (Section 38.2)
• Ant (Section 38.3)
• Bazel (Section 38.4)
• Buck (Section 38.5)
• Command line, via Checker Framework javac wrapper (Section 38.6)
• Command line, via JDK javac (Section 38.7)
• Eclipse (Section 38.8)
• Gradle (Section 38.9)
• IntelliJ IDEA (Section 38.10)
• javac Diagnostics Wrapper (Section 38.11)
• Lombok (Section 38.12)
• Maven (Section 38.13)
• NetBeans (Section 38.14)
• sbt (Section 38.15)
• tIDE (Section 38.16)

If your build system or IDE is not listed above, you should customize how it runs the javac command on your
behalf. See your build system or IDE documentation to learn how to customize it, adapting the instructions for javac in
Section 38.7. If you make another tool support running a checker, please inform us via the mailing list or issue tracker
so we can add it to this manual.

All examples in this chapter are in the public domain, with no copyright nor licensing restrictions.

38.1 Android
When creating an Android app, you may wish to use checker-qual-android whenever this document mentions
checker-qual. This can lead to smaller dex files (smaller distributed apps).

The checker-qual-android artifact is identical to the checker-qual artifact, except that in checker-qual-android
annotations have classfile retention. The default Android Gradle plugin retains types annotated with runtime-retention
annotations in the main dex, but strips out class-retention annotations.

266

https://groups.google.com/forum/#!forum/checker-framework-discuss
https://github.com/typetools/checker-framework/issues

38.2 Android Studio and the Android Gradle Plugin
Android Studio 3.0 and later, and Android Gradle Plugin 3.0.0 and later, support type annotations. (See https://
developer.android.com/studio/write/java8-support for more details.) This section explains how to configure
your Android project to use the Checker Framework. All the changes should be made to the module’s build.gradle
file — not the project’s build.gradle file.

Different changes are required for JDK 8 (Section 38.2.1) and for JDK 9+ (Section 38.2.2).

38.2.1 JDK 8
This section shows what changes to make if you are using JDK 8.

1. In your module’s build.gradle file, set the source and target compatibility to JavaVersion.VERSION_1_8:

android {
...
compileOptions {

sourceCompatibility JavaVersion.VERSION_1_8
targetCompatibility JavaVersion.VERSION_1_8

}
}

2. Add a build variant for running checkers:

android {
...

buildTypes {
...
checkTypes {

javaCompileOptions.annotationProcessorOptions.
classNames.add("org.checkerframework.checker.nullness.NullnessChecker")

// You can pass options like so:
// javaCompileOptions.annotationProcessorOptions.arguments.put("warns", "")

}
}

}

3. Add a dependency configuration for the Java 9 compiler:
configurations {

errorproneJavac {
description = ’Java 9 compiler; required to run the Checker Framework under JDK 8.’

}
}

4. Declare the Checker Framework dependencies:
dependencies {

... existing dependencies...
ext.checkerFrameworkVersion = ’3.49.5’
implementation "org.checkerframework:checker-qual-android:${checkerFrameworkVersion}"
// or if you use no annotations in source code the above line could be
// compileOnly "org.checkerframework:checker-qual-android:${checkerFrameworkVersion}"
annotationProcessor "org.checkerframework:checker:${checkerFrameworkVersion}"
errorproneJavac ’com.google.errorprone:javac:9+181-r4173-1’

}

5. Direct all tasks of type JavaCompile used by the checkTypes build variant to use the Error Prone compiler:

267

https://developer.android.com/studio/write/java8-support
https://developer.android.com/studio/write/java8-support

gradle.projectsEvaluated {
tasks.withType(JavaCompile).all { compile ->

if (compile.name.contains("CheckTypes")) {
options.fork = true
options.forkOptions.jvmArgs += ["-Xbootclasspath/p:${configurations.errorproneJavac.asPath}".toString()]

}
}

}

6. To run the checkers, build using the checkTypes variant:

gradlew assembleCheckTypes

38.2.2 JDK 11+
This section shows what changes to make if you are using JDK 11 or later.

1. In your module’s build.gradle file, set the source and target compatibility to JavaVersion.VERSION_1_8:

android {
...
compileOptions {

sourceCompatibility JavaVersion.VERSION_1_8
targetCompatibility JavaVersion.VERSION_1_8

}
}

2. Add a build variant for running checkers:

android {
...

buildTypes {
...
checkTypes {

javaCompileOptions.annotationProcessorOptions.
classNames.add("org.checkerframework.checker.nullness.NullnessChecker")

// You can pass options like so:
// javaCompileOptions.annotationProcessorOptions.arguments.put("warns", "")

}
}

}

3. Declare the Checker Framework dependencies:
dependencies {

... existing dependencies...
ext.checkerFrameworkVersion = ’3.49.5’
implementation "org.checkerframework:checker-qual-android:${checkerFrameworkVersion}"
// or if you use no annotations in source code the above line could be
// compileOnly "org.checkerframework:checker-qual-android:${checkerFrameworkVersion}"
annotationProcessor "org.checkerframework:checker:${checkerFrameworkVersion}"

}

4. To run the checkers, build using the checkTypes variant:

gradlew assembleCheckTypes

38.3 Ant task
If you use the Ant build tool to compile your software, then you can add an Ant task that runs a checker. We assume
that your Ant file already contains a compilation target that uses the javac task, and that the CHECKERFRAMEWORK

268

https://ant.apache.org/

environment variable is set.

1. Set the cfJavac property:
<property environment="env"/>
<property name="checkerframework" value="${env.CHECKERFRAMEWORK}" />
<condition property="cfJavac" value="javac.bat" else="javac">
<os family="windows" />

</condition>
<presetdef name="cf.javac">
<javac fork="yes" executable="${checkerframework}/checker/bin/${cfJavac}" >
<compilerarg value="-version"/>
<compilerarg value="-implicit:class"/>

</javac>
</presetdef>

2. Duplicate the compilation target, then modify it slightly as indicated in this example:
<target name="check-nullness"

description="Check for null pointer dereferences"
depends="clean,...">

<!-- use cf.javac instead of javac -->
<cf.javac ... >
<compilerarg line="-processor org.checkerframework.checker.nullness.NullnessChecker"/>
<!-- optional, to not check uses of library methods:

<compilerarg value="-AskipUses=^(java\.awt\.|javax\.swing\.)"/>
-->
<compilerarg line="-Xmaxerrs 10000"/>
...

</cf.javac>
</target>

Fill in each ellipsis (. . .) from the original compilation target. However, do not copy any fork= setting from the
original <javac> task invocation.
If your original compilation target set the bootclasspath, then you cannot use the javac wrapper script as the above
instructions do. You should edit your Ant buildfile to make invocations similar to those described in Section 38.7,
but accommodating your bootclasspath.
In the example, the target is named check-nullness, but you can name it whatever you like.

38.3.1 Explanation
This section explains each part of the Ant task.

1. Definition of cf.javac:
The fork field of the javac task ensures that an external javac program is called. Otherwise, Ant will run
javac via a Java method call, and there is no guarantee that it will get correct version of javac.
The -version compiler argument is just for debugging; you may omit it.
The -implicit:class compiler argument causes annotation processing to be performed on implicitly compiled
files. (An implicitly compiled file is one that was not specified on the command line, but for which the source
code is newer than the .class file.) This is the default, but supplying the argument explicitly suppresses a
compiler warning.

2. The check-nullness target:
The target assumes the existence of a clean target that removes all .class files. That is necessary because Ant’s
javac target doesn’t re-compile .java files for which a .class file already exists.
The -processor ... compiler argument indicates which checker to run. You can supply additional arguments
to the checker as well.

38.4 Bazel
Bazel is a build system maintained by Google.

269

To run the Checker Framework, see Stack Overflow discussion 48555320 (https://stackoverflow.com/
questions/48555320/).

38.5 Buck
Buck is a build system maintained by Meta.

Buck has support for annotation processors, but that support is undocumented because the Buck maintainers
may change the syntax in the future and they don’t wish to ever change anything that is documented. You can learn
more about Buck and annotation processors at these URLs: https://stackoverflow.com/questions/32915721/
documentation-for-annotation-processors-buck, https://github.com/facebook/buck/issues/85.

In order to use Checker Framework with Buck on JDK 8, you first need to place the Error Prone JDK 9 compiler in
Buck’s bootclasspath (further explanation in Section 38.7.1). To do so, follow the instructions on this page:
https://github.com/uber/okbuck/wiki/Using-Error-Prone-with-Buck-and-OkBuck#using-error-prone-javac-on-jdk-8
You only need to follow the instructions to use Error Prone javac on that page, not the instructions to enable Error Prone.

Here is an example BUCK build file showing how to enable the Checker Framework:

prebuilt_jar(
name = ’checker-framework’,
binary_jar = ’checker-3.49.5.jar’,
visibility = [’PUBLIC’]

)

prebuilt_jar(
name = ’checker-qual’,
binary_jar = ’checker-qual-3.49.5.jar’,
visibility = [’PUBLIC’]

)

java_library (
name = ’hello’,
srcs = glob([’src/main/java/**/*.java’]),
java_version = ’1.8’,
provided_deps = [’:checker-framework’, ’:checker-qual’],

To add annotation processing
annotation_processors = [’org.checkerframework.checker.units.UnitsChecker’],
annotation_processor_deps = [’:checker-framework’, ’:checker-qual’],

)

38.5.1 Troubleshooting
Use -verbose 8 to see diagnostic output including a command line that ought to be equivalent to Buck’s use of an
in-process Java compiler. For example, you might run

./buck clean

./buck fetch //...

./buck build --verbose 8 //app:main

However, the command lines that buck prints with -v 8 is not what Buck actually executes. Buck’s invocation
of the Checker Framework may produce errors that cannot be reproduced from the command line. This is because
Buck uses in-process compilation, potentially multi-threaded, and because Buck may use multiple classloaders that are
cached.

270

https://stackoverflow.com/questions/48555320/
https://stackoverflow.com/questions/48555320/
https://stackoverflow.com/questions/32915721/documentation-for-annotation-processors-buck
https://stackoverflow.com/questions/32915721/documentation-for-annotation-processors-buck
https://github.com/facebook/buck/issues/85
https://github.com/uber/okbuck/wiki/Using-Error-Prone-with-Buck-and-OkBuck#using-error-prone-javac-on-jdk-8
https://github.com/facebook/buck/blob/main/src/com/facebook/buck/jvm/java/Jsr199Javac.java
https://github.com/facebook/buck/blob/main/src/com/facebook/buck/util/ClassLoaderCache.java

You can force Buck to run an external javac, thus behaving exactly like the command line that its diagnostics print.
Use the configuration flag -c tools.javac=path-to-javac, for example:

./buck clean && ./buck fetch //... && ./buck build //app:main -c tools.javac=$(which javac)

38.6 Command line, via Checker Framework javac wrapper
To perform pluggable type-checking from the command line, run the javac command that ships with the Checker
Framework. This is called the “Checker Framework compiler” or the “Checker Framework javac wrapper”. It is
exactly the same as the OpenJDK javac compiler, with one small difference: it includes the Checker Framework jar
file on its classpath.

You cannot use the javac wrapper if you wish to set the bootclasspath.
There are three ways to use the Checker Framework compiler from the command line. You can use any one of them.

However, if you are using the Windows command shell, you must use the last one. Adjust the pathnames if you have
installed the Checker Framework somewhere other than $HOME/checker-framework-3.49.5/.

• Option 1: Add directory .../checker-framework-3.49.5/checker/bin to your path, before any other
directory that contains a javac executable.
If you are using the bash shell, a way to do this is to add the following to your ~/.profile (or alternately
~/.bash_profile or ~/.bashrc) file:

export CHECKERFRAMEWORK=${HOME}/checker-framework-3.49.5
export PATH=${CHECKERFRAMEWORK}/checker/bin:${PATH}

After editing the file, log out and back in to ensure that the environment variable setting takes effect.
• Option 2: Whenever this document tells you to run javac, instead run
$CHECKERFRAMEWORK/checker/bin/javac.
You can simplify this by introducing an alias javacheck. Then, whenever this document tells you to run javac,
instead run javacheck. Here is the syntax for your ~/.bashrc, ~/.profile, or ~/.bash_profile file:

export CHECKERFRAMEWORK=${HOME}/checker-framework-3.49.5
alias javacheck=’$CHECKERFRAMEWORK/checker/bin/javac’

After editing the file, log out and back in to ensure that the environment variable setting and alias take effect.
• Option 3: Whenever this document tells you to run javac, instead run checker.jar via java (not javac) as in:

java -jar "$CHECKERFRAMEWORK/checker/dist/checker.jar" -cp "myclasspath" -processor nullness MyFile.java

You can simplify the above command by introducing an alias javacheck. Then, whenever this document tells
you to run javac, instead run javacheck. For example:

Unix
export CHECKERFRAMEWORK=${HOME}/checker-framework-3.49.5
alias javacheck=’java -jar "$CHECKERFRAMEWORK/checker/dist/checker.jar"’

Windows
set CHECKERFRAMEWORK = C:\Program Files\checker-framework-3.49.5\
doskey javacheck=java -jar "%CHECKERFRAMEWORK%\checker\dist\checker.jar" $*

(Explanation for advanced users: More generally, anywhere that you would use javac.jar, you can substitute
$CHECKERFRAMEWORK/checker/dist/checker.jar; the result is to use the Checker Framework compiler
instead of the regular javac.)

38.7 Command line, via JDK javac
This section explains how to use the Checker Framework with the OpenJDK or OracleJDK javac, rather than with the
javac wrapper script described in Section 38.6.

271

This section assumes you have downloaded the Checker Framework release zip and set the environment variable
CHECKERFRAMEWORK to point to the unzipped directory. Alternately, you can get all of the jars mentioned in this section
from Maven Central:

• javac.jar: https://search.maven.org/artifact/com.google.errorprone/javac/9%2B181-r4173-1/
jar

• checker-qual.jar: https://repo1.maven.org/maven2/org/checkerframework/checker-qual/3.49.
5/checker-qual-3.49.5.jar

• checker-util.jar: https://repo1.maven.org/maven2/org/checkerframework/checker-util/3.49.
5/checker-util-3.49.5.jar

• checker.jar: https://repo1.maven.org/maven2/org/checkerframework/checker/3.49.5/checker-3.
49.5-all.jar

Different arguments to javac are required for JDK 8 (Section 38.7.1) and for JDK 9+ (Section 38.7.2).

38.7.1 JDK 8
This section shows what arguments to pass to the OpenJDK or OracleJDK javac (not the javac wrapper script of
Section 38.6) to run the Checker Framework, if you are using JDK 8.

javac \
-J-Xbootclasspath/p:$CHECKERFRAMEWORK/checker/dist/javac.jar \
-cp $CHECKERFRAMEWORK/checker/dist/checker-qual.jar \
-processorpath $CHECKERFRAMEWORK/checker/dist/checker.jar \
-processor org.checkerframework.checker.nullness.NullnessChecker \
-source 8 -target 8

Below is an explanation of each argument.

1. -J-Xbootclasspath/p:$CHECKERFRAMEWORK/checker/dist/javac.jar: even when running under JDK 8,
a Java 9+ compiler (either the Error Prone compiler or the OpenJDK Java compiler (version 9 or later) must be
on the JVM bootclasspath. The -J indicates that this is a JVM argument rather than a compiler argument.
The following exception is thrown if this argument is missing:

error: SourceChecker.typeProcessingStart: unexpected Throwable (NoSuchMethodError);
message: com.sun.tools.javac.code.Type.stripMetadata()Lcom/sun/tools/javac/code/Type;

If you are compiling your own checker, the following exception is thrown if this argument is missing:

java.lang.NoSuchFieldError: ANNOTATION_PROCESSOR_MODULE_PATH

2. -cp $CHECKERFRAMEWORK/checker/dist/checker-qual.jar: checker-qual.jar must be on the compila-
tion classpath.

3. -processorpath $CHECKERFRAMEWORK/checker/dist/checker.jar: checker.jar must be on the proces-
sor path. Using this option means that the processor path, not the classpath, will be searched for annotation
processors and for classes that they load.

4. -processor org.checkerframework.checker.nullness.NullnessChecker: Choose which checker to run
by passing its fully qualified name as a processor. (Note, using this option means that javac will not search for
annotation processors, but rather will run only those specified here.)

5. -source 8 -target 8: Because the build is using a Java 9 compiler, these options ensure that the source code
is Java 8 and that Java 8 bytecode is created.

38.7.2 JDK 11+
This section shows what arguments to pass to the OpenJDK or OracleJDK javac (not the javac wrapper script of
Section 38.6) to run the Checker Framework. These instructions should work on JDK 9 or later, but we only test with
supported versions of Java: JDK 11, JDK 17, and JDK 21.

272

https://search.maven.org/artifact/com.google.errorprone/javac/9%2B181-r4173-1/jar
https://search.maven.org/artifact/com.google.errorprone/javac/9%2B181-r4173-1/jar
https://repo1.maven.org/maven2/org/checkerframework/checker-qual/3.49.5/checker-qual-3.49.5.jar
https://repo1.maven.org/maven2/org/checkerframework/checker-qual/3.49.5/checker-qual-3.49.5.jar
https://repo1.maven.org/maven2/org/checkerframework/checker-util/3.49.5/checker-util-3.49.5.jar
https://repo1.maven.org/maven2/org/checkerframework/checker-util/3.49.5/checker-util-3.49.5.jar
https://repo1.maven.org/maven2/org/checkerframework/checker/3.49.5/checker-3.49.5-all.jar
https://repo1.maven.org/maven2/org/checkerframework/checker/3.49.5/checker-3.49.5-all.jar

Non-modularized code

To compile non-modularized code:

javac \
-J--add-exports=jdk.compiler/com.sun.tools.javac.api=ALL-UNNAMED \
-J--add-exports=jdk.compiler/com.sun.tools.javac.code=ALL-UNNAMED \
-J--add-exports=jdk.compiler/com.sun.tools.javac.file=ALL-UNNAMED \
-J--add-exports=jdk.compiler/com.sun.tools.javac.main=ALL-UNNAMED \
-J--add-exports=jdk.compiler/com.sun.tools.javac.model=ALL-UNNAMED \
-J--add-exports=jdk.compiler/com.sun.tools.javac.processing=ALL-UNNAMED \
-J--add-exports=jdk.compiler/com.sun.tools.javac.tree=ALL-UNNAMED \
-J--add-exports=jdk.compiler/com.sun.tools.javac.util=ALL-UNNAMED \
-J--add-opens=jdk.compiler/com.sun.tools.javac.comp=ALL-UNNAMED \
-processorpath $CHECKERFRAMEWORK/checker/dist/checker.jar \
-cp $CHECKERFRAMEWORK/checker/dist/checker-qual.jar \
-processor org.checkerframework.checker.nullness.NullnessChecker

The arguments are explained above, except for two of them:

1. -J-add-opens=jdk.compiler/com.sun.tools.javac.comp=ALL-UNNAMED which opens the jdk.compiler/com.sun.tools.java.comp
package. This is required because the Checker Framework reflectively accesses private members of this package.

2. -J-add-exports=...=ALL-UNNAMED which exports the listed packages. This is required with JDK 17+ because
the Checker Framework accesses non-exported members of these packages. (These are also required with JDK
11 if -illegal-access is set to deny.)

If this option is missing, javac may issue one of the below warnings:

WARNING: An illegal reflective access operation has occurred
WARNING: Illegal reflective access by org.checkerframework.javacutil.Resolver

(file:$CHECKERFRAMEWORK/checker/dist/checker.jar) to method com.sun.tools.javac.comp.Resolve.findMethod(...)
WARNING: Please consider reporting this to the maintainers of org.checkerframework.javacutil.Resolver
WARNING: Use --illegal-access=warn to enable warnings of further illegal reflective access operations
WARNING: All illegal access operations will be denied in a future release

java.lang.IllegalAccessError: class org.checkerframework.javacutil.AbstractTypeProcessor
(in unnamed module ...) cannot access class com.sun.tools.javac.processing.JavacProcessingEnvironment
(in module jdk.compiler) because module jdk.compiler does not export com.sun.tools.javac.processing
to unnamed module ...

Modularized code

To compile a module, first add requires org.checkerframework.checker.qual; to your module-info.java.
The Checker Framework inserts inferred annotations into bytecode even if none appear in source code, so you must do
this even if you write no annotations in your code.

javac \
-J--add-exports=jdk.compiler/com.sun.tools.javac.api=ALL-UNNAMED \
-J--add-exports=jdk.compiler/com.sun.tools.javac.code=ALL-UNNAMED \
-J--add-exports=jdk.compiler/com.sun.tools.javac.file=ALL-UNNAMED \
-J--add-exports=jdk.compiler/com.sun.tools.javac.main=ALL-UNNAMED \
-J--add-exports=jdk.compiler/com.sun.tools.javac.model=ALL-UNNAMED \
-J--add-exports=jdk.compiler/com.sun.tools.javac.processing=ALL-UNNAMED \
-J--add-exports=jdk.compiler/com.sun.tools.javac.tree=ALL-UNNAMED \

273

-J--add-exports=jdk.compiler/com.sun.tools.javac.util=ALL-UNNAMED \
-J--add-opens=jdk.compiler/com.sun.tools.javac.comp=ALL-UNNAMED \
-processorpath $CHECKERFRAMEWORK/checker/dist/checker.jar \
--module-path $CHECKERFRAMEWORK/checker/dist/checker-qual.jar \
-processor org.checkerframework.checker.nullness.NullnessChecker

checker-qual.jar must be on the module path rather than the class path, but do not put checker.jar on the
processor module path as it is not modularized.

38.8 Eclipse
You need to run the Checker Framework via a build tool (Ant, Gradle, Maven, etc.), rather than by supplying the
-processor command-line option to the ejc compiler, which is also known as eclipsec. The reason is that the
Checker Framework is built upon javac, and ejc represents the Java program differently. (If both javac and ejc
implemented JSR 198 [Cro06], then it would be possible to build an annotation processor that works with both
compilers.)

There is no dedicated Eclipse plug-in for running the Checker Framework, but it’s still easy to run the Checker
Framework. First, create a target/task in your build system to run the Checker Framework. Then, run the target/task
from Eclipse. Section 38.8.1 gives details for Ant, but other build systems are similar.

38.8.1 Using an Ant task
Add an Ant target as described in Section 38.3. You can run the Ant target by executing the following steps (in-
structions copied from https://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.platform.doc.
user%2FgettingStarted%2Fqs-84_run_ant.htm):

1. Select build.xml in one of the navigation views and choose Run As > Ant Build... from its context menu.
2. A launch configuration dialog is opened on a launch configuration for this Ant buildfile.
3. In the Targets tab, select the new ant task (e.g., check-interning).
4. Click Run.
5. The Ant buildfile is run, and the output is sent to the Console view.

38.8.2 Troubleshooting Eclipse
Eclipse issues an “Unhandled Token in @SuppressWarnings” warning if you write a @SuppressWarnings annotation
containing a string that Eclipse does not know about. Unfortunately, Eclipse hard-codes this list.

To eliminate the warnings: disable all “Unhandled Token in @SuppressWarnings” warnings in Eclipse. Look under
the menu headings “Java→ Compiler→ Errors/Warnings→ Annotations→ Unhandled Token in ’@SuppressWarn-
ings’,” and set it to ignore.

38.9 Gradle
To run a checker on a project that uses the Gradle build system, use the Checker Framework Gradle plugin (https:
//github.com/kelloggm/checkerframework-gradle-plugin). Its documentation explains how to use it.

38.10 IntelliJ IDEA
This section tells you how to make IntelliJ IDEA automatically run a checker on every compile for Java projects and/or
modules.

274

https://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2FgettingStarted%2Fqs-84_run_ant.htm
https://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2FgettingStarted%2Fqs-84_run_ant.htm
https://bugs.eclipse.org/bugs/show_bug.cgi?id=122475
https://gradle.org/
https://github.com/kelloggm/checkerframework-gradle-plugin
https://github.com/kelloggm/checkerframework-gradle-plugin

If your project uses a build tool (Ant, Gradle, Maven, etc.), do not use the instructions in this section. Follow the
instructions for that build tool instead (they are in a different section of this chapter). To compile your project, run the
build tool (possibly from within IntelliJ IDEA, possibly not).

38.10.1 Running a checker on every IntelliJ compilation
If your project does not use a build tool, use the following instructions to run a checker within IntelliJ IDEA on every
compile:

1. Change the project SDK to 11 or later, as explained at https://www.jetbrains.com/help/idea/sdk.html#
change-project-sdk.

2. Make sure the language level for your project is 8 or higher, as explained at https://www.jetbrains.com/
help/idea/project-page.html.

3. Create and configure an annotation profile, following the instructions at https://www.jetbrains.com/help/
idea/annotation-processors-support.html. When configuring the profile:

(a) Add .../checker-framework/checker/dist/checker.jar to the processor path.
(b) Add checkers to be run during compilation by writing the fully-qualified name of the checker in the “Proces-

sor FQ Name” section. An example of a fully-qualified checker name is “org.checkerframework.checker.nullness.NullnessChecker”.

4. Add .../checker-framework/checker/dist/checker-qual.jar, as a dependency to all modules you wish
to type check. (They should all have been associated with the annotation profile above.) Instructions appear at
https://www.jetbrains.com/help/idea/creating-and-managing-projects.html.

Now, when you compile your code, the checker will be run.
It is necessary to manually inform the IDE via a plugin if an annotation system adds any dependencies beyond

those that normally exist in Java. For information about the extension points, see https://youtrack.jetbrains.
com/issue/IDEA-159286.

38.10.2 Running a checker on every IntelliJ change or save
To make IntelliJ compile on every change or save, follow the instructions at https://www.jetbrains.com/help/
idea/compiling-applications.html#auto-build.

You can also configure IntelliJ to automatically save (and thus automatically compile) your work periodically.
Instructions appear at https://www.jetbrains.com/help/idea/system-settings.html#sync.

38.11 javac diagnostics wrapper
The javac diagnostics wrapper project can post-process the javac diagnostics output into other formats, such as the LSP
(Language Server Protocol) JSON style.

38.12 Lombok
Project Lombok (https://projectlombok.org/) is a library that generates getter, setter, and builder methods, among
other features. For example, if you declare a field:

@Getter @Setter
private @Regex String role;

then Lombok will generate getter and setter methods:

public @Regex String getRole() { return role; }
public void setRole(@Regex String role) { this.role = role; }

275

https://www.jetbrains.com/help/idea/sdk.html#change-project-sdk
https://www.jetbrains.com/help/idea/sdk.html#change-project-sdk
https://www.jetbrains.com/help/idea/project-page.html
https://www.jetbrains.com/help/idea/project-page.html
https://www.jetbrains.com/help/idea/annotation-processors-support.html
https://www.jetbrains.com/help/idea/annotation-processors-support.html
https://www.jetbrains.com/help/idea/creating-and-managing-projects.html
https://youtrack.jetbrains.com/issue/IDEA-159286
https://youtrack.jetbrains.com/issue/IDEA-159286
https://www.jetbrains.com/help/idea/compiling-applications.html#auto-build
https://www.jetbrains.com/help/idea/compiling-applications.html#auto-build
https://www.jetbrains.com/help/idea/system-settings.html#sync
https://github.com/eisopux/javac-diagnostics-wrapper
https://projectlombok.org/

38.12.1 Annotations on generated code
As illustrated in the example above, Lombok copies type annotations from fields to generated methods, when the user
writes Lombok’s @Getter, @Setter, and @Builder annotations. Lombok does so only for certain type annotations
(including all annotations in the Checker Framework distribution); see variable BASE_COPYABLE_ANNOTATIONS in file
HandlerUtil.java.

To make Lombok copy other type annotations from fields to generated code, add those type annotations to the
lombok.copyableAnnotations configuration key in your lombok.config file. For example:

lombok.copyableAnnotations += my.checker.qual.MyTypeAnnotation

Directory docs/examples/lombok contains an example Gradle project that augments the configuration key.

38.12.2 Type-checking code with Lombok annotations
If you run the Checker Framework and Lombok in the same javac invocation, the Checker Framework cannot
type-check a class that contains Lombok annotations. The way that Lombok changes the class prevents the Checker
Framework from seeing any of the class. (The Checker Framework works fine on classes that do not contain Lombok
annotations, including if they call Lombok-generated code.)

Therefore, you must run the Checker Framework in a postpass after the javac that runs Lombok has completed.
Use the Delombok tool (distributed with Lombok) to generate Java source code, then run the Checker Framework on
that. The Checker Framework Gradle plugin does this for you automatically.

38.12.3 Maven Projects using Lombok
Lombok Maven Plugin can be used to delombok source code for Maven projects. The Lombok Maven Plugin FAQ
discusses how to configure the plugin when code using Lombok is mixed with standard Java code. Once the Lombok
Maven plugin is configured correctly, the Checker Framework Maven configuration can be added independently.

38.13 Maven
If you use the Maven tool, then you can enable Checker Framework checkers by following the instructions below. These
instructions have been tested with Maven 3.9.3, and they should work with any 3.x version of Maven.

See the directory docs/examples/MavenExample/ for examples of the use of Maven build files. This example
can be used to verify that Maven is correctly downloading the Checker Framework from the Maven Central Repository
and executing it.

Please note that the -AoutputArgsToFile command-line option (see Section 36.12.5) and shorthands for built-in
checkers (see Section 2.2.4) are not available when following these instructions. Both these features are available only
when a checker is launched via checker.jar such as when $CHECKERFRAMEWORK/checker/bin/javac is run. The
instructions in this section bypass checker.jar and cause the compiler to run a checker as an annotation processor
directly.

Debugging your Maven configuration can be tricky because of a bug in maven-compiler-plugin versions before
3.10.1, and still affecting some users with 3.11.0 (https://issues.apache.org/jira/browse/MCOMPILER-434):
Maven does not report annotation processor exceptions, even when the -X command-line argument is passed.

1. Declare a dependency on the Checker Framework artifacts from Maven Central. Find the existing <dependencies>
section (not within <dependencyManagement>, but somewhere else) and add the following new <dependency>
items:
<dependencies>

... existing <dependency> items ...

<!-- Annotations from the Checker Framework: nullness, interning, locking, ... -->

276

https://github.com/projectlombok/lombok/blob/master/src/core/lombok/core/handlers/HandlerUtil.java
https://projectlombok.org/features/delombok
https://github.com/kelloggm/checkerframework-gradle-plugin
http://anthonywhitford.com/lombok.maven/lombok-maven-plugin/
http://anthonywhitford.com/lombok.maven/lombok-maven-plugin/faq.html#alt-src-setup
https://maven.apache.org/
https://search.maven.org/search?q=org.checkerframework
https://issues.apache.org/jira/browse/MCOMPILER-434

<dependency>
<groupId>org.checkerframework</groupId>
<artifactId>checker-qual</artifactId>
<version>3.49.5</version>

</dependency>
</dependencies>

Periodically update to the most recent version, to obtain the latest bug fixes and new features:

mvn versions:use-latest-versions -Dincludes="org.checkerframework:*"

2. Direct the Maven compiler plugin to use the desired checkers by creating three new profiles as shown below (the
example uses the Nullness Checker). If you do not use Java 8, then you only need two of the profiles, or you can
combine them into one profile.
If your POM file does not already use the maven-compiler-plugin plugin, you can use the text below as is. If
your POM file already uses the plugin, copy and edit the first profile to incorporate the existing configuration. If
the existing configuration uses proc:none, you need to remove that or comment it out.
<profiles>
<profile>
<id>checkerframework</id>
<!-- If you omit the activation block, run mvn with "-P checkerframework" to run checkers. -->
<activation>
<jdk>[1.8,)</jdk>

</activation>
<build>
<plugins>
<plugin>

<artifactId>maven-compiler-plugin</artifactId>
<version>3.11.0</version>
<configuration>
<fork>true</fork> <!-- Must fork or else JVM arguments are ignored. -->
<annotationProcessorPaths>

<path>
<groupId>org.checkerframework</groupId>
<artifactId>checker</artifactId>
<version>3.49.5</version>

</path>
</annotationProcessorPaths>
<annotationProcessors>

<!-- Add all the checkers you want to enable here -->
<annotationProcessor>org.checkerframework.checker.nullness.NullnessChecker</annotationProcessor>

</annotationProcessors>
<compilerArgs>

<arg>-Xmaxerrs</arg>
<arg>10000</arg>
<arg>-Xmaxwarns</arg>
<arg>10000</arg>
<!-- <arg>-Awarns</arg> --> <!-- -Awarns turns type-checking errors into warnings. -->

</compilerArgs>
</configuration>

</plugin>
</plugins>

</build>
</profile>

<profile>
<id>checkerframework-jdk8</id>
<activation>
<jdk>1.8</jdk>

</activation>
<!-- using github.com/google/error-prone-javac is required when running on JDK 8 -->
<properties>
<javac.version>9+181-r4173-1</javac.version>

</properties>

277

<build>
<plugins>
<plugin>

<!-- This plugin execution will copy the com.google.errorprone:javac jar file to
your project’s output directory without adding that jar as an explicit
dependency. -->

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-dependency-plugin</artifactId>
<executions>
<execution>

<goals>
<goal>copy</goal>

</goals>
<phase>process-sources</phase>
<configuration>
<artifact>com.google.errorprone:javac:${javac.version}:jar</artifact>
<outputDirectory>${project.build.directory}/javac</outputDirectory>

</configuration>
</execution>

</executions>
</plugin>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<compilerArgs combine.children="append">

<arg>-J-Xbootclasspath/p:${project.build.directory}/javac/javac-${javac.version}.jar</arg>
</compilerArgs>

</configuration>
</plugin>

</plugins>
</build>

</profile>

<profile>
<id>checkerframework-jdk9orlater</id>
<activation>
<jdk>[9,)</jdk>

</activation>
<build>
<plugins>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<compilerArgs combine.children="append">

<arg>-J--add-exports=jdk.compiler/com.sun.tools.javac.api=ALL-UNNAMED</arg>
<arg>-J--add-exports=jdk.compiler/com.sun.tools.javac.code=ALL-UNNAMED</arg>
<arg>-J--add-exports=jdk.compiler/com.sun.tools.javac.file=ALL-UNNAMED</arg>
<arg>-J--add-exports=jdk.compiler/com.sun.tools.javac.main=ALL-UNNAMED</arg>
<arg>-J--add-exports=jdk.compiler/com.sun.tools.javac.model=ALL-UNNAMED</arg>
<arg>-J--add-exports=jdk.compiler/com.sun.tools.javac.processing=ALL-UNNAMED</arg>
<arg>-J--add-exports=jdk.compiler/com.sun.tools.javac.tree=ALL-UNNAMED</arg>
<arg>-J--add-exports=jdk.compiler/com.sun.tools.javac.util=ALL-UNNAMED</arg>
<arg>-J--add-opens=jdk.compiler/com.sun.tools.javac.comp=ALL-UNNAMED</arg>

</compilerArgs>
</configuration>

</plugin>
</plugins>

</build>
</profile>

</profiles>

The need for the com.google.errorprone:javac artifact when running under JDK 8 is explained in Sec-
tion 38.7.1.

278

Now, building with Maven will run the checkers during every compilation that uses JDK 8 or higher.
If you wish to run checkers while compiling your source code but not your tests, wrap the <configuration>...</configuration>
within

<executions>
<execution>

<id>default-compile</id>
...

</execution>
</executions>

To compile without using the Checker Framework, pass -P ’!checkerframework’ on the Maven command
line.
Warning: adding
<compilerArgs>
...
<arg>-verbose</arg>

may suppress warnings from the stub parser.

If you use animal-sniffer-maven-plugin, you must upgrade to version 1.20 or later. Version 1.19 and earlier
are broken. If necessary, you can disable animal sniffer by modifying your POM file’s properties:

<properties>
... existing <property> items ...

<!-- Needed for animal-sniffer-maven-plugin version 1.19 which is broken (version 1.20 is fixed). -->
<animal.sniffer.skip>true</animal.sniffer.skip>

</properties>

38.13.1 Maven, with a locally-built version of the Checker Framework
To use a locally-built version of the Checker Framework, first run:

./gradlew publishToMavenLocal

Then use the Maven instructions, but modify the version number for the Checker Framework artifacts. Instead of
3.49.5, use the version number that is output when you run ./gradlew version.

38.14 NetBeans
There are two approaches to running a checker in NetBeans: via modifying the project properties, or via a custom ant
target.

Note: The “compile and save” action in NetBeans 8.1 automatically runs the Checker Framework, but this
functionality has not yet been incorporated into NetBeans 8.2. Additionally, JDK annotations are currently unavailable
on NetBeans 8.1 and 8.2.

38.14.1 Adding a checker via the Project Properties window
1. Add the Checker Framework libraries to your project’s library. First, right click on the project in the Projects

panel, and select “Properties” in the drop-down menu. Then, in the “Project Properties” window, navigate to the
“Libraries” tab.

2. Add checker-qual.jar to the compile-time libraries. To do so, select the “Compile” tab, click the “Add
JAR/Folder” button on the right and browse to add $CHECKERFRAMEWORK/checker/dist/checker-qual.jar.

3. Add checker.jar to the processor-path libraries. To do so, select the “Processor” tab, click the “Add JAR/Folder”
button on the right and browse to add $CHECKERFRAMEWORK/checker/dist/checker.jar.

279

4. Enable annotation processor underlining in the editor. Go to “Build>Compiling” and check the box “Enable
Annotation Processing,” and under that, “Enable Annotation Processing in Editor.”

5. Add the checker to run, by clicking “Add” next to the box labeled “Annotation Processors” and enter the fully
qualified name of the checker (for example, org.checkerframework.checker.nullness.NullnessChecker)
and click “OK” to add.

The selected checker should be run on the project either on a save (if Compile on Save is enabled), or when the
project is built, and annotation processor output will appear in the editor.

38.14.2 Adding a checker via an ant target
1. Set the cfJavac property:

<property environment="env"/>
<property name="checkerframework" value="${env.CHECKERFRAMEWORK}" />
<condition property="cfJavac" value="javac.bat" else="javac">
<os family="windows" />

</condition>
<presetdef name="cf.javac">
<javac fork="yes" executable="${checkerframework}/checker/bin/${cfJavac}" >
<compilerarg value="-version"/>
<compilerarg value="-implicit:class"/>

</javac>
</presetdef>

2. Override the -init-macrodef-javac-with-processors target to use cf.javac instead of javac and to run
the checker. In this example, a nullness checker is run:
<target depends="-init-ap-cmdline-properties" if="ap.supported.internal"

name="-init-macrodef-javac-with-processors">
<echo message = "${checkerframework}"/>
<macrodef name="javac" uri="http://www.netbeans.org/ns/j2se-project/3">

<attribute default="${src.dir}" name="srcdir"/>
<attribute default="${build.classes.dir}" name="destdir"/>
<attribute default="${javac.classpath}" name="classpath"/>
<attribute default="${javac.processorpath}" name="processorpath"/>
<attribute default="${build.generated.sources.dir}/ap-source-output" name="apgeneratedsrcdir"/>
<attribute default="${includes}" name="includes"/>
<attribute default="${excludes}" name="excludes"/>
<attribute default="${javac.debug}" name="debug"/>
<attribute default="${empty.dir}" name="sourcepath"/>
<attribute default="${empty.dir}" name="gensrcdir"/>
<element name="customize" optional="true"/>
<sequential>

<property location="${build.dir}/empty" name="empty.dir"/>
<mkdir dir="${empty.dir}"/>
<mkdir dir="@{apgeneratedsrcdir}"/>
<cf.javac debug="@{debug}" deprecation="${javac.deprecation}"

destdir="@{destdir}" encoding="${source.encoding}"
excludes="@{excludes}" fork="${javac.fork}"
includeantruntime="false" includes="@{includes}"
source="${javac.source}" sourcepath="@{sourcepath}"
srcdir="@{srcdir}" target="${javac.target}"
tempdir="${java.io.tmpdir}">

<src>
<dirset dir="@{gensrcdir}" erroronmissingdir="false">

<include name="*"/>
</dirset>

</src>
<classpath>

<path path="@{classpath}"/>
</classpath>
<compilerarg line="${endorsed.classpath.cmd.line.arg}"/>
<compilerarg line="${javac.profile.cmd.line.arg}"/>

280

<compilerarg line="${javac.compilerargs}"/>
<compilerarg value="-processorpath"/>
<compilerarg path="@{processorpath}:${empty.dir}"/>
<compilerarg line="${ap.processors.internal}"/>
<compilerarg line="${annotation.processing.processor.options}"/>
<compilerarg value="-s"/>
<compilerarg path="@{apgeneratedsrcdir}"/>
<compilerarg line="${ap.proc.none.internal}"/>
<compilerarg line="-processor org.checkerframework.checker.nullness.NullnessChecker"/>
<compilerarg line="-Xmaxerrs 10000"/>
<compilerarg line="-Xmaxwarns 10000"/>
<customize/>

</cf.javac>
</sequential>

</macrodef>
</target>
<target name="-post-jar">
</target>

When Build and Clean Project is used, the output of the checker will now appear in the build console. However,
annotation processor output will not appear in the editor.

38.15 sbt
sbt is a build tool for Scala, Java, and more.

Adjust the -processor command-line argument for the processor(s) you wish to run (see Section 2.2).

38.15.1 JDK 8
javacOptions ++= Seq(

"-J-Xbootclasspath/p:$CHECKERFRAMEWORK/checker/dist/javac.jar",
"-cp $CHECKERFRAMEWORK/checker/dist/checker-qual.jar",
"-processorpath $CHECKERFRAMEWORK/checker/dist/checker.jar",
"-processor org.checkerframework.checker.nullness.NullnessChecker",
"-source 8", "-target 8"

)

38.15.2 JDK 11 and later, for non-modularized code
javacOptions ++= Seq(

"-J--add-exports=jdk.compiler/com.sun.tools.javac.api=ALL-UNNAMED",
"-J--add-exports=jdk.compiler/com.sun.tools.javac.code=ALL-UNNAMED",
"-J--add-exports=jdk.compiler/com.sun.tools.javac.file=ALL-UNNAMED",
"-J--add-exports=jdk.compiler/com.sun.tools.javac.main=ALL-UNNAMED",
"-J--add-exports=jdk.compiler/com.sun.tools.javac.model=ALL-UNNAMED",
"-J--add-exports=jdk.compiler/com.sun.tools.javac.processing=ALL-UNNAMED",
"-J--add-exports=jdk.compiler/com.sun.tools.javac.tree=ALL-UNNAMED",
"-J--add-exports=jdk.compiler/com.sun.tools.javac.util=ALL-UNNAMED",
"-J--add-opens=jdk.compiler/com.sun.tools.javac.comp=ALL-UNNAMED",
"-processorpath $CHECKERFRAMEWORK/checker/dist/checker.jar",
"-cp $CHECKERFRAMEWORK/checker/dist/checker-qual.jar",
"-processor org.checkerframework.checker.nullness.NullnessChecker"

)

281

https://www.scala-sbt.org/

38.15.3 For modularized code
For compiling modularized code:
javacOptions ++= Seq(

"-J--add-exports=jdk.compiler/com.sun.tools.javac.api=ALL-UNNAMED",
"-J--add-exports=jdk.compiler/com.sun.tools.javac.code=ALL-UNNAMED",
"-J--add-exports=jdk.compiler/com.sun.tools.javac.file=ALL-UNNAMED",
"-J--add-exports=jdk.compiler/com.sun.tools.javac.main=ALL-UNNAMED",
"-J--add-exports=jdk.compiler/com.sun.tools.javac.model=ALL-UNNAMED",
"-J--add-exports=jdk.compiler/com.sun.tools.javac.processing=ALL-UNNAMED",
"-J--add-exports=jdk.compiler/com.sun.tools.javac.tree=ALL-UNNAMED",
"-J--add-exports=jdk.compiler/com.sun.tools.javac.util=ALL-UNNAMED",
"-J--add-opens=jdk.compiler/com.sun.tools.javac.comp=ALL-UNNAMED",
"-processorpath $CHECKERFRAMEWORK/checker/dist/checker.jar",
"--module-path $CHECKERFRAMEWORK/checker/dist/checker-qual.jar",
"-processor org.checkerframework.checker.nullness.NullnessChecker"

)

38.16 tIDE
tIDE, an open-source Java IDE, supports the Checker Framework. You can download it from https://sourceforge.
net/projects/tide/.

38.17 Type inference tools
A type inference tool infers type annotations for a program’s method signatures and fields, so that the programmer does
not need to manually annotate the program’s source code. Section 34.1 lists type inference tools.

282

https://sourceforge.net/projects/tide/
https://sourceforge.net/projects/tide/

Chapter 39

Frequently Asked Questions (FAQs)

These are some common questions about the Checker Framework and about pluggable type-checking in general. Feel
free to suggest improvements to the answers, or other questions to include here.

Contents:

39.1: Motivation for pluggable type-checking
39.1.1: I don’t make type errors, so would pluggable type-checking help me?
39.1.2: Should I use pluggable types (type qualifiers), or should I use Java subtypes?

39.2: Getting started
39.2.1: How do I get started annotating an existing program?
39.2.2: Which checker should I start with?
39.2.3: How can I join the checker-framework-dev mailing list?

39.3: Usability of pluggable type-checking
39.3.1: Are type annotations easy to read and write?
39.3.2: Will my code become cluttered with type annotations?
39.3.3: Will using the Checker Framework slow down my program? Will it slow down the compiler?
39.3.4: How do I shorten the command line when invoking a checker?
39.3.5: Method pre-condition contracts, including formal parameter annotations, make no sense for public methods.

39.4: How to handle warnings
39.4.1: What should I do if a checker issues a warning about my code?
39.4.2: Why does a checker issue a warning even though the code checks a property?
39.4.3: What does a certain Checker Framework warning message mean?
39.4.4: What do square brackets mean in a Checker Framework warning message?
39.4.5: Can a pluggable type-checker guarantee that my code is correct?
39.4.6: What guarantee does the Checker Framework give for concurrent code?
39.4.7: How do I make compilation succeed even if a checker issues errors?
39.4.8: Why does the checker always say there are 100 errors or warnings?
39.4.9: Why does the Checker Framework report an error regarding a type I have not written in my program?
39.4.10: Why does the Checker Framework accept code on one line but reject it on the next?
39.4.11: How can I do run-time monitoring of properties that were not statically checked?

283

39.5: False positive warnings
39.5.1: What is a “false positive” warning?
39.5.2: How can I improve the Checker Framework to eliminate a false positive warning?
39.5.3: Why doesn’t the Checker Framework infer types for fields and method return types?
39.5.4: Why doesn’t the Checker Framework track relationships between variables?
39.5.5: Why isn’t the Checker Framework path-sensitive?

39.6: Syntax of type annotations
39.6.1: What is a “receiver”?
39.6.2: What is the meaning of an annotation after a type, such as @NonNull Object @Nullable?
39.6.3: What is the meaning of array annotations such as @NonNull Object @Nullable []?
39.6.4: What is the meaning of varargs annotations such as @English String @NonEmpty ...?
39.6.5: What is the meaning of a type qualifier at a class declaration?
39.6.6: How are type qualifiers written on upper and lower bounds?
39.6.7: Why shouldn’t a qualifier apply to both types and declarations?
39.6.8: How do I annotate a fully-qualified type name?
39.6.9: What is the difference between type annotations and declaration annotations?
39.6.10: How should type annotations be formatted in source code? Where should I write type annotations?
39.6.11: How does the Checker Framework handle obsolete declaration annotations?
39.6.12: How do I convert from other tools’ declaration annotations to type annotations?

39.7: Semantics of type annotations
39.7.1: How can I handle typestate, or phases of my program with different data properties?
39.7.2: Why are explicit and implicit bounds defaulted differently?
39.7.3: How should I annotate code that uses generics?
39.7.4: Why are type annotations declared with @Retention(RetentionPolicy.RUNTIME)?

39.8: Creating a new checker
39.8.1: How do I create a new checker?
39.8.2: What properties can and cannot be handled by type-checking?
39.8.3: Why is there no declarative syntax for writing type rules?

39.9: Tool questions
39.9.1: How does pluggable type-checking work?
39.9.2: What classpath is needed to use an annotated library?
39.9.3: Why do .class files contain more annotations than the source code?
39.9.4: Is there a type-checker for managing checked and unchecked exceptions?
39.9.5: The Checker Framework runs too slowly
39.9.6: What does the Checker Framework version number mean?

39.10: Relationship to other tools
39.10.1: Why not just use a bug detector (like SpotBugs or Error Prone)?
39.10.2: How does the Checker Framework compare with Eclipse’s Null Analysis?
39.10.3: How does the Checker Framework compare with NullAway?
39.10.4: How does the Checker Framework compare with JSpecify?
39.10.5: How does the Checker Framework compare with the EISOP Checker Framework?
39.10.6: How does the Checker Framework compare with the JDK’s Optional type?
39.10.7: How does pluggable type-checking compare with JML?
39.10.8: Is the Checker Framework an official part of Java?
39.10.9: What is the relationship between the Checker Framework and JSR 305?
39.10.10: What is the relationship between the Checker Framework and JSR 308?

284

39.1 Motivation for pluggable type-checking

39.1.1 I don’t make type errors, so would pluggable type-checking help me?
Occasionally, a developer says that he makes no errors that type-checking could catch, or that any such errors are
unimportant because they have low impact and are easy to fix. When I investigate the claim, I invariably find that the
developer is mistaken.

Very frequently, the developer has underestimated what type-checking can discover. Not every type error leads to an
exception being thrown; and even if an exception is thrown, it may not seem related to classical types. Remember that a
type system can discover null pointer dereferences, incorrect side effects, security errors such as information leakage
or SQL injection, partially-initialized data, wrong units of measurement, and many other errors. Every programmer
makes errors sometimes and works with other people who do. Even where type-checking does not discover a problem
directly, it can indicate code with bad smells, thus revealing problems, improving documentation, and making future
maintenance easier.

There are other ways to discover errors, including extensive testing and debugging. You should continue to use these.
But type-checking is a good complement to these. Type-checking is more effective for some problems, and less effective
for other problems. It can reduce (but not eliminate) the time and effort that you spend on other approaches. There are
many important errors that type-checking and other automated approaches cannot find; pluggable type-checking gives
you more time to focus on those.

39.1.2 Should I use pluggable types (type qualifiers), or should I use Java subtypes?
In brief, use subtypes when you can, and use type qualifiers when you cannot use subtypes.

For some programming tasks, you can use either a Java subtype (interfaces or subclasses) or a type qualifier. As
an example, suppose that your code currently uses String to represent an address. You could use Java subclasses
by creating a new Address class and refactor your code to use it, or you could use type qualifiers by creating an
@Address annotation and applying it to some uses of String in your code. As another example, suppose that your code
currently uses MyClass in two different ways that should not interact with one another. You could use Java subclasses
by changing MyClass into an interface or abstract class, defining two subclasses, and ensuring that neither subclass ever
refers to the other subclass nor to the parent class.

If Java subclasses solve your problem, then that is probably better. We do not encourage you to use type qualifiers
as a poor substitute for classes. An advantage of using classes is that the Java type-checker runs every time you compile
your code; by contrast, it is possible to forget to run the pluggable type-checker. However, sometimes type qualifiers are
a better choice; here are some reasons:

Backward compatibility Using a new class may make your code incompatible with existing libraries or clients. You
may need to write a conversion at every call to and return from a library call; these conversions add clutter,
reduce performance, and (by creating new objects) break object equality properties. Brian Goetz also notes some
problems in an article on the pseudo-typedef antipattern [Goe06].
It is possible to add annotations to code you do not maintain or cannot change; for example, you can write library
annotations (see Chapter 35).

Composability A Java object has just one class at run time. You care about multiple correctness properties, then
using the Java type system requires a combinatorial number of classes (all possible combinations). By contrast,
arbitrary type qualifiers can be used at the same time.

No new bugs A code change may introduce bugs, whereas adding annotations does not change the run-time behavior.
Broader applicability Type annotations can be applied to primitives and to final classes such as String, which cannot

be subclassed.
Richer semantics and new supertypes Type qualifiers permit you to remove operations, with a compile-time guar-

antee. More generally, type qualifiers permit creating a new supertype, not just a subtype, of an existing Java
type.

More precise type-checking The Checker Framework is able to verify the correctness of code that the Java type-
checker would reject. Here are a few examples.

285

• It uses a dataflow analysis to determine a more precise type for variables after conditional tests or assign-
ments.

• It treats certain Java constructs more precisely, such as reflection (see Chapter 25).
• It includes special-case logic for type-checking specific methods, such as the Nullness Checker’s treatment

of Map.get.

Partial annotation You can add type annotations to just part of your code, and suppress warnings at entry points to the
annotated portion. By contrast, using a new Java type requires using it everywhere or writing conversion routines
at every entry point.

Efficiency Type qualifiers have no run-time representation. Therefore, there is no space overhead for separate classes
or for wrapper classes for primitives. There is no run-time overhead for due to extra dereferences or dynamic
dispatch for methods that could otherwise be statically dispatched.

Less code clutter The programmer does not have to convert primitive types to wrappers, which would make the code
both uglier and slower. Thanks to defaults and type refinement (Section 32.5), you may be able to write and think
in terms of the original Java type, rather than having to explicitly write one of the subtypes in all locations.

For more details, see Section 39.1.2.

39.2 Getting started

39.2.1 How do I get started annotating an existing program?
See Section 2.4.2.

39.2.2 Which checker should I start with?
You should start with a property that matters to you. Think about what aspects of your code cause the most errors, or
cost the most time during maintenance, or are the most common to be incorrectly-documented. Focusing on what you
care about will give you the best benefits.

When you first start out with the Checker Framework, it’s usually best to get experience with an existing type-checker
before you write your own new checker.

Many users are tempted to start with the Nullness Checker (see Chapter 3, page 31), since null pointer errors are
common and familiar. The Nullness Checker works very well, but be warned of three facts that make the absence of
null pointer exceptions challenging to verify.

1. Dereferences happen throughout your codebase, so there are a lot of potential problems. By contrast, fewer lines
of code are related to locking, regular expressions, etc., so those properties are easier to check.

2. Programmers use null for many different purposes. More seriously, programmers write run-time tests against
null, and those are difficult for any static analysis to capture.

3. The Nullness Checker interacts with initialization and map keys.

If null pointer exceptions are most important to you, then by all means use the Nullness Checker. But if you just
want to try some type-checker, there are others that are easier to use.

We do not recommend indiscriminately running all the checkers on your code. The reason is that each one has a
cost — not just at compile time, but also in terms of code clutter and human time to maintain the annotations. If the
property is important to you, is difficult for people to reason about, or has caused problems in the past, then you should
run that checker. For other properties, the benefits may not repay the effort to use it. You will be the best judge of this
for your own code, of course.

Some of the third-party checkers (see Chapter 30, page 177) have known bugs that limit their usability. (Report the
ones that affect you, so the developers will prioritize fixing them.)

286

39.2.3 How can I join the checker-framework-dev mailing list?
The checker-framework-dev@googlegroups.com mailing list is for Checker Framework developers. Anyone is
welcome to join checker-framework-dev, after they have had several pull requests accepted.

Anyone is welcome to send mail to the checker-framework-dev@googlegroups.com mailing list — for imple-
mentation details it is generally a better place for discussions than the general checker-framework-discuss@googlegroups.com
mailing list.

Anyone is welcome to join checker-framework-discuss@googlegroups.com and send mail to it. This list is
for user-focused discussions. It is not for submitting bug reports, which should use the issue tracker (Section 40.2).

39.3 Usability of pluggable type-checking

39.3.1 Are type annotations easy to read and write?
The papers “Practical pluggable types for Java” [PAC+08] and “Building and using pluggable type-checkers” [DDE+11]
discuss case studies in which programmers found type annotations to be natural to read and write. The code continued
to feel like Java, and the type-checking errors were easy to comprehend and often led to real bugs.

You don’t have to take our word for it, though. You can try the Checker Framework for yourself.
The difficulty of adding and verifying annotations depends on your program. If your program is well-designed and

-documented, then skimming the existing documentation and writing type annotations is extremely easy. Otherwise,
you may find yourself spending a lot of time trying to understand, reverse-engineer, or fix bugs in your program, and
then just a moment writing a type annotation that describes what you discovered. This process inevitably improves your
code. You must decide whether it is a good use of your time. For code that is not causing trouble now and is unlikely to
do so in the future (the code is bug-free, and you do not anticipate changing it or using it in new contexts), then the
effort of writing type annotations for it may not be justified.

39.3.2 Will my code become cluttered with type annotations?
In summary: annotations do not clutter code; they are used much less frequently than generic types, which Java
programmers find acceptable; and they reduce the overall volume of documentation that a codebase needs.

As with any language feature, it is possible to write ugly code that over-uses annotations. However, in normal use,
very few annotations need to be written. Figure 1 of the paper Practical pluggable types for Java [PAC+08] reports data
for over 350,000 lines of type-annotated code:

• 1 annotation per 62 lines for nullness annotations (@NonNull, @Nullable, etc.)
• 1 annotation per 1736 lines for interning annotations (@Interned)

These numbers are for annotating existing code. New code that is written with the type annotation system in mind
is cleaner and more correct, so it requires even fewer annotations.

Each annotation that a programmer writes replaces a sentence or phrase of English descriptive text that would
otherwise have been written in the Javadoc. So, use of annotations actually reduces the overall size of the documentation,
at the same time as making it machine-processable and less ambiguous.

39.3.3 Will using the Checker Framework slow down my program? Will it slow down the
compiler?

Using the Checker Framework has no impact on the execution of your program: the javac compiler emits identical
bytecodes whether or not the Checker Framework is used, so there is no run-time effect. Because there is no run-time
representation of type qualifiers, there is no way to use reflection to query the qualifier on a given object, though you
can use reflection to examine a class/method/field declaration.

Using the Checker Framework does increase compilation time. It can increase the compilation time by 2–10 times
— or more, if you run many pluggable type-checkers at once. For workarounds, see Section 39.9.5.

287

https://groups.google.com/forum/#!forum/checker-framework-dev
https://groups.google.com/forum/#!forum/checker-framework-discuss
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-issta2008-abstract.html
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-icse2011-abstract.html
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-issta2008-abstract.html

39.3.4 How do I shorten the command line when invoking a checker?
The compile options to javac can be long to type; for example, javac -processor
org.checkerframework.checker.nullness.NullnessChecker You can use shorthand for built-in
checkers, such as javac -processor nullness ... (see Section 2.2.4), or you can use auto-discovery to eliminate
the need for the -processor command-line option (see Section 2.2.3).

39.3.5 Method pre-condition contracts, including formal parameter annotations, make no
sense for public methods

Some people go further and say that pre-condition contracts make no sense for any method. This objection is sometimes
stated as, "A method parameter should never be annotated as @NonNull. A client could pass any value at all, so the
method implementation cannot depend on the value being non-null. Furthermore, if a client passes an illegal value, it is
the method’s responsibility to immediately tell the client about the illegal value."

Here is an example that invalidates this general argument. Consider a binary search routine. Its specification requires
that clients pass in a sorted array.
/** Return index of the search key, if it is contained it the sorted array a; otherwise ... */
int binarySearch(Object @Sorted [] a, Object key)

The binarySearch routine is fast — it runs in O(log n) time where n is the length of the array. If the routine had
to validate that its input array is sorted, then it would run in O(n) time, negating all benefit of binary search. In other
words, binarySearch should not validate its input!

The nature of a contract is that if the caller violates its responsibilities by passing bad values, then the callee is
absolved of its responsibilities. It is polite for the callee to try to provide a useful diagnostic to the misbehaving caller
(for example, by raising a particular exception quickly), but it is not required. In such a situation, the callee has the
flexibility to do anything that is convenient.

In some cases a routine has a complete specification: the contract permits the caller to pass any value, and the callee
is required to throw particular exceptions for particular inputs. This approach is common for public methods, but it
is not required and is not always the right thing. As explained in section 2.4.3, even when a method has a complete
specification, the annotations should indicate normal behavior: behavior that will avoid exceptions.

39.4 How to handle warnings and errors

39.4.1 What should I do if a checker issues a warning about my code?
For a discussion of this issue, see Section 2.4.5.

39.4.2 Why does a checker issue a warning even though the code checks a property?
Suppose a checker issues a warning about a line of code. One way to eliminate a warning is to perform a run-time test
(Section 32.7.4), such as adding if (x != null) before a dereference of x to avoid a warning about a potential null
pointer dereference. However, sometimes the checker issues a warning even though the code contains a run-time test.
Two common reasons are non-determinism in the expression being tested and or side effects to the expression after the
run-time test. For details and examples, see Section 32.7.5.

39.4.3 What does a certain Checker Framework warning message mean?
Read the error message first; sometimes that is enough to clarify it.

Search through this manual for the text of the warning message or for words that appear in it.
If nothing else explains it, then open an issue (Section 40.2). Be sure to say what you think it means or what specific

part does not make sense to you, and what you have already done to try to understand it.

288

39.4.4 What do square brackets mean in a Checker Framework warning message?
In a message like this:

found : ? extends T extends @UnknownKeyFor Object
required: [extends @UnknownKeyFor Object super @UnknownKeyFor null]

the square brackets enclose the upper and lower bounds that the type parameter needs to be within.

39.4.5 Can a pluggable type-checker guarantee that my code is correct?
Each checker looks for certain errors. You can use multiple checkers to detect more errors in your code, but you will
never have a guarantee that your code is completely bug-free.

If the type-checker issues no warning, then you have a guarantee that your code is free of some particular error.
There are some limitations to the guarantee.

Most importantly, if you run a pluggable checker on only part of a program, then you only get a guarantee that those
parts of the program are error-free. For example, if your code uses a library that has not been type-checked, then the
library might be incorrect, or your code might misuse the library. As another example, suppose you have type-checked
a framework that clients are intended to extend. You should recommend that clients run the pluggable checker. There is
no way to force users to do so, so you may want to retain dynamic checks or use other mechanisms to detect errors.

Section 2.3 states other limitations to a checker’s guarantee, such as regarding concurrency. Java’s type system is
also unsound in certain situations, such as for arrays and casts (however, the Checker Framework is sound for arrays
and casts). Java uses dynamic checks is some places it is unsound, so that errors are thrown at run time. The pluggable
type-checkers do not currently have built-in dynamic checkers to check for the places they are unsound. Writing
dynamic checkers would be an interesting and valuable project.

Other types of dynamism in a Java application do not jeopardize the guarantee, because the type-checker is
conservative. For example, at a method call, dynamic dispatch chooses some implementation of the method, but
it is impossible to know at compile time which one it will be. The type-checker gives a guarantee no matter what
implementation of the method is invoked.

Even if a pluggable checker cannot give an ironclad guarantee of correctness, it is still useful. It can find errors,
exclude certain types of possible problems (e.g., restricting the possible class of problems), improve documentation,
and increase confidence in your software.

39.4.6 What guarantee does the Checker Framework give for concurrent code?
The Lock Checker (see Chapter 10) offers a way to detect and prevent certain concurrency errors.

By default, the Checker Framework assumes that the code that it is checking is sequential: that is, there are no
concurrent accesses from another thread. This means that the Checker Framework is unsound for concurrent code, in
the sense that it may fail to issue a warning about errors that occur only when the code is running in a concurrent setting.
For example, the Nullness Checker issues no warning for this code:

if (myobject.myfield != null) {
myobject.myfield.toString();

}

This code is safe when run on its own. However, in the presence of multithreading, the call to toString may fail
because another thread may set myobject.myfield to null after the nullness check in the if condition, but before the
if body is executed.

If you supply the -AconcurrentSemantics command-line option, then the Checker Framework assumes that any
field can be changed at any time. This limits the amount of type refinement (Section 32.7) that the Checker Framework
can do.

289

39.4.7 How do I make compilation succeed even if a checker issues errors?
Section 2.2 describes the -Awarns command-line option that turns checker errors into warnings, so type-checking
errors will not cause javac to exit with a failure status.

39.4.8 Why does the checker always say there are 100 errors or warnings?
By default, javac only reports the first 100 errors or warnings. Furthermore, once javac encounters an error, it doesn’t
try compiling any more files (but does complete compilation of all the ones that it has started so far).

To see more than 100 errors or warnings, use the javac options -Xmaxerrs and -Xmaxwarns. To convert Checker
Framework errors into warnings so that javac will process all your source files, use the option -Awarns. See Section 2.2
for more details.

39.4.9 Why does the Checker Framework report an error regarding a type I have not written
in my program?

Sometimes, a Checker Framework warning message will mention a type you have not written in your program. This
is typically because a default has been applied where you did not write a type; see Section 32.5. In other cases, this
is because type refinement has given an expression a more specific type than you wrote or than was defaulted; see
Section 32.7. Note that an invocation of an impure method may cause the loss of all information that was determined
via type refinement; see Section 32.7.5.

39.4.10 Why does the Checker Framework accept code on one line but reject it on the next?
Sometimes, the Checker Framework permits code on one line, but rejects the same code a few lines later:

if (myField != null) {
myField.hashCode(); // no warning
someMethod();
myField.hashCode(); // warning about potential NullPointerException

}

The reason is explained in the section on type refinement (Section 32.7), which also tells how to specify the side
effects of someMethod (Section 32.7.5).

39.4.11 How can I do run-time monitoring of properties that were not statically checked?
Some properties are not checked statically (see Chapter 33 for reasons that code might not be statically checked). In
such cases, it would be desirable to check the property dynamically, at run time. Currently, the Checker Framework has
no support for adding code to perform run-time checking.

Adding such support would be an interesting and valuable project. An example would be an option that causes the
Checker Framework to automatically insert a run-time check anywhere that static checking is suppressed. If you are
able to add run-time verification functionality, we would gladly welcome it as a contribution to the Checker Framework.

Some checkers have library methods that you can explicitly insert in your source code. Examples include the
Nullness Checker’s NullnessUtil.castNonNull method (see Section 3.4.1) and the Regex Checker’s RegexUtil
class (see Section 14.2.4). But, it would be better to have more general support that does not require the user to explicitly
insert method calls.

39.5 False positive warnings

290

../api/org/checkerframework/checker/nullness/util/NullnessUtil.html#castNonNull(T)

39.5.1 What is a “false positive” warning?
A “false positive” is when the tool reports a potential problem, but the code is actually correct and will never violate the
given property at run time.

The Checker Framework aims to be sound; that is, if the Checker Framework does not report any possible errors,
then your code is correct.

Every sound tool suffers false positive errors. Wherever the Checker Framework issues an error, you can think of it
as saying, “I can’t prove this code is safe,” but the code might be safe for some complex, tricky reason that is beyond
the capabilities of its analysis.

If you are sure that the warning is a false positive, you have several options. Perhaps you just need to write
annotations, especially on method signatures but perhaps within method bodies as well. Sometimes you can rewrite
the code in a clearer way that the Checker Framework can verify, and that might be easier for people to understand,
too. If these don’t work, then you can suppress the warning (Section 2.4.5). You also might want to report the false
positive in the Checker Framework issue tracker (Section 40.2), if it appears in real-world, well-written code. Finally,
you could improve the Checker Framework to make it more precise, so that it does not suffer that false positive (see
Section 39.5.2).

39.5.2 How can I improve the Checker Framework to eliminate a false positive warning?
As noted in Section 39.5.1, every sound analysis tool suffers false positives.

For any given false positive warning, it is theoretically possible to improve the Checker Framework to eliminate it.
(But, it’s theoretically impossible to eliminate all false positives. That is, there will always exist some programs that
don’t go wrong at run time but for which the Checker Framework issues a warning.)

Some improvements affect the implementation of the type system; they do not add any new types. Such an
improvement is invisible to users, except that the users suffer fewer false positive warnings. This type of improvement
to the type checker’s implementation is often worthwhile.

Other improvements change the type system or add a new type system. Defining new types is a powerful way to
improve precision, but it is costly too. A simpler type system is easier for users to understand, less likely to contain
bugs, and more efficient.

By design, each type system in the Checker Framework has limited expressiveness. Our goal is to implement
enough functionality to handle common, well-written real-world code, not to cover every possible situation.

When reporting bugs, please focus on realistic scenarios. We are sure that you can make up artificial code that
stymies the type-checker! Those bugs aren’t a good use of your time to report nor the maintainers’ time to evaluate and
fix. When reporting a bug, it’s very helpful to minimize it to give a tiny example that is easy to evaluate and fix, but
please also indicate how it arises in real-world, well-written code.

39.5.3 Why doesn’t the Checker Framework infer types for fields and method return types?
Consider the following code. A programmer can tell that all three invocations of format are safe — they never suffer
an IllegalFormatException exception at run time:

class MyClass {

final String field = "%d";

String method() {
return "%d";

}

void method m() {
String local = "%d";
String.format(local, 5); // Format String Checker verifies the call is safe

291

String.format(field, 5); // Format String Checker warns the call might not be safe
String.format(method(), 5); // Format String Checker warns the call might not be safe

}
}

However, the Format String Checker can only verify the first call. It issues a false positive warning about the second
and third calls.

The Checker Framework can verify all three calls, with no false positive warnings, if you annotate the type of field
and the return type of method as @Format(INT).

By default, the Checker Framework infers types for local variables (Section 32.7), but not for fields and method
return types. (The Checker Framework includes a whole-program type inference tool that infers field and method return
types; see Section 34.2.) There are several reasons for this design choice.

Separation of specification from implementation The designer of an API makes certain promises to clients; these
are codified in the API’s specification or contract. The implementation might return a more specific type today,
but the designer does not want clients to depend on that. For example, a string might happen to be a regular
expression because it contains no characters with special meaning in regexes, but that is not guaranteed to always
be true. It’s better for the programmer to explicitly write the intended specification.

Separate compilation To infer types for a non-final method, it is necessary to examine every overriding imple-
mentation, so that the method’s return type annotation is compatible with all values that are returned by any
overriding implementation. In general, examining all implementations is impossible, because clients may over-
ride the method. When possible, it is inconvenient to provide all that source code, and it would slow down the
type-checker.
A related issue is that determining which values can be returned by a method m requires analyzing m’s body,
which requires analyzing all the methods called by m, and so forth. This quickly devolves to analyzing the whole
program. Determining all possible values assigned to a field is equally hard.
Type-checking is modular — it works on one procedure at a time, examining that procedure and the specifications
(not implementations) of methods that it calls. Therefore, type-checking is fast and can work on partial programs.
The Checker Framework performs modular type-checking, not a whole-program analysis.

Order of compilation When the compiler is called on class Client and class Library, the programmer has no control
over which class is analyzed first. When the first class is compiled, it has access only to the signature of the
other class. Therefore, a programmer would see inconsistent results depending on whether Client was compiled
first and had access only to the declared types of Library, or the Library was compiled first and the compiler
refined the types of its methods and fields before Client looked them up.

Consistent behavior with or without pluggable type-checking The .class files produced with or without plug-
gable type-checking should specify the same types for all public fields and methods. If pluggable type-checking
changed the those types, then users would be confused. Depending on how a library was compiled, pluggable
type-checking of a client program would give different results.

39.5.4 Why doesn’t the Checker Framework track relationships between variables?
The Checker Framework estimates the possible run-time value of each variable, as expressed in a type system. In
general, the Checker Framework does estimate relationships between two variables, except for specific relationships
listed in Section 32.8.

For example, the Checker Framework does not track which variables are equal to one another. The Nullness Checker
issues a warning, “dereference of possibly-null reference y”, for expression y.toString():

void nullnessExample1(@Nullable Object x) {
Object y = x;
if (x != null) {

System.out.println(y.toString());
}

}

292

Code that checks one variable and then uses a different variable is confusing and is often considered poor style.
The Nullness Checker is able to verify the correctness of a small variant of the program, thanks to type refinement

(Section 32.7):

void nullnessExample12(@Nullable Object x) {
if (x != null) {

Object y = x;
System.out.println(y.toString());

}
}

The difference is that in the first example, nothing was known about x at the time y was set to it, and so the Nullness
Checker recorded no facts about y. In the second example, the Nullness Checker knew that x was non-null when y was
assigned to it.

In the future, the Checker Framework could be enriched by tracking which variables are equal to one another, a
technique called “copy propagation”.

This would handle the above examples, but wouldn’t handle other examples. For example, the following code is
safe:

void requiresPositive(@Positive int arg) {}

void intExample1(int x) {
int y = x*x;
if (x > 0) {

requiresPositive(y);
}

}

void intExample2(int x) {
int y = x*x;
if (y > 0) {

requiresPositive(x);
}

}

However, the Index Checker (Chapter 11, page 98), which defines the @Positive type qualifier, issues warnings saying
that it cannot prove that the arguments are @Positive.

A slight variant of intExample1 can be verified:

void intExample1a(int x) {
if (x > 0) {

int y = x*x;
requiresPositive(y);

}
}

No variant of intExample2 can be verified. It is not worthwhile to make the Checker Framework more complex and
slow by tracking rich properties such as arbitrary arithmetic.

As another example of a false positive warning due to arbitrary arithmetic properties, consider the following code:

void falsePositive2(int arg) {
Object o;
if (arg * arg >= arg) { // always true!

293

../api/org/checkerframework/checker/index/qual/Positive.html

o = new Object();
}
o.toString(); // Nullness Checker issues a false positive warning

}

39.5.5 Why isn’t the Checker Framework path-sensitive?
The Checker Framework is not path-sensitive. That is, it maintains one estimate for each variable, and it assumes at
every branch (such as if statement) that every choice could be taken.

In the following code, there are two if statements.

void falsePositive1(boolean b) {
Object o;
if (b) {

o = new Object();
}
if (b) {

o.toString(); // Nullness Checker issues a false positive warning
}

}

In general, if code has two if statements in succession, then there are 4 possible paths through the code: [true, true],
[true, false], [false, true], and [false, false]. However, for this code only two of those paths are feasible: namely, [true,
true] and [false, false].

The Checker Framework is not path-sensitive, so it issues a warning.
The lack of path-sensitivity can be viewed as special case of the fact that the Checker Framework maintains a single

estimate for each variable value, rather than tracking relationships between multiple variables (Section 39.5.4).
Making the Checker Framework path-sensitive would make it more powerful, but also much more complex and

much slower. We have not yet found this necessary.

39.6 Syntax of type annotations
There is also a separate FAQ for the type annotations syntax (https://checkerframework.org/jsr308/jsr308-faq.
html).

39.6.1 What is a “receiver”?
The receiver of a method is the this formal parameter, sometimes also called the “current object”. Within the method
declaration, this is used to refer to the receiver formal parameter. At a method call, the receiver actual argument is
written before a period and the method name.

The method compareTo takes two formal parameters. At a call site like x.compareTo(y), the two arguments are x
and y. It is desirable to be able to annotate the types of both of the formal parameters, and doing so is supported by both
Java’s type annotations syntax and by the Checker Framework.

A type annotation on the receiver is treated exactly like a type annotation on any other formal parameter. At each call
site, the type of the argument must be a consistent with (a subtype of or equal to) the declaration of the corresponding
formal parameter. If not, the type-checker issues a warning.

Here is an example. Suppose that @A Object is a supertype of @B Object in the following declaration:

class MyClass {
void requiresA(@A MyClass this) { ... }
void requiresB(@B MyClass this) { ... }

}

294

https://checkerframework.org/jsr308/jsr308-faq.html
https://checkerframework.org/jsr308/jsr308-faq.html

Then the behavior of four different invocations is as follows:

@A MyClass myA = ...;
@B MyClass myB = ...;

myA.requiresA() // OK
myA.requiresB() // compile-time error
myB.requiresA() // OK
myB.requiresB() // OK

The invocation myA.requiresB() does not type-check because the actual argument’s type is not a subtype of the
formal parameter’s type.

A top-level constructor does not have a receiver. An inner class constructor does have a receiver, whose type is the
same as the containing outer class. The receiver is distinct from the object being constructed. In a method of a top-level
class, the receiver is named this. In a constructor of an inner class, the receiver is named Outer.this and the result is
named this.

A method in an anonymous class has a receiver, but it is not possible to write the receiver in the formal parameter
list because there is no name for the type of this.

39.6.2 What is the meaning of an annotation after a type, such as @NonNull Object
@Nullable?

In a type such as @NonNull Object @Nullable [], it may appear that the @Nullable annotation is written after the
type Object. In fact, @Nullable modifies []. See the next FAQ, about array annotations (Section 39.6.3).

39.6.3 What is the meaning of array annotations such as @NonNull Object @Nullable
[]?

You should parse this as: (@NonNull Object) (@Nullable []). Each annotation precedes the component of the
type that it qualifies.

Thus, @NonNull Object @Nullable [] is a possibly-null array of non-null objects. Note that the first token in
the type, “@NonNull”, applies to the element type Object, not to the array type as a whole. The annotation @Nullable
applies to the array ([]).

Similarly, @Nullable Object @NonNull [] is a non-null array of possibly-null objects.
Some older tools have inconsistent semantics for annotations on array and varargs elements. Their semantics is

unfortunate and confusing; developers should convert their code to use type annotations instead. Section 39.6.10
explains how the Checker Framework handles declaration annotations in the meanwhile.

39.6.4 What is the meaning of varargs annotations such as @English String @NonEmpty ...?
Varargs annotations are treated similarly to array annotations. (A way to remember this is that when you write a varargs
formal parameter such as void method(String... x) {}, the Java compiler generates a method that takes an array
of strings; whenever your source code calls the method with multiple arguments, the Java compiler packages them up
into an array before calling the method.)

Either of these annotations

void method(String @NonEmpty [] x) {}
void method(String @NonEmpty ... x) {}

applies to the array: the method takes a non-empty array of strings, or the varargs list must not be empty.
Either of these annotations

295

void method(@English String [] x) {}
void method(@English String ... x) {}

applies to the element type. The annotation documents that the method takes an array of English strings.

39.6.5 What is the meaning of a type qualifier at a class declaration?
See Section 32.3.

39.6.6 How are type qualifiers written on upper and lower bounds?
See Section 31.1.2.

39.6.7 Why shouldn’t a qualifier apply to both types and declarations?
It is bad style for an annotation to apply to both types and declarations. In other words, every annotation should have a
@Target meta-annotation, and the @Target meta-annotation should list either only declaration locations or only type
annotations. (It’s OK for an annotation to target both ElementType.TYPE_PARAMETER and ElementType.TYPE_USE,
but no other declaration location along with ElementType.TYPE_USE.)

Sometimes, it may seem tempting for an annotation to apply to both type uses and (say) method declarations. Here
is a hypothetical example:

“Each Widget type may have a @Version annotation. I wish to prove that versions of widgets don’t get
assigned to incompatible variables, and that older code does not call newer code (to avoid problems when
backporting).

A @Version annotation could be written like so:

@Version("2.0") Widget createWidget(String value) { ... }

@Version("2.0") on the method could mean that the createWidget method only appears in the 2.0
version. @Version("2.0") on the return type could mean that the returned Widget should only be used
by code that uses the 2.0 API of Widget. It should be possible to specify these independently, such as a 2.0
method that returns a value that allows the 1.0 API method invocations.”

Both of these are type properties and should be specified with type annotations. No method annotation is necessary
or desirable. The best way to require that the receiver has a certain property is to use a type annotation on the receiver of
the method. (Slightly more formally, the property being checked is compatibility between the annotation on the type of
the formal parameter receiver and the annotation on the type of the actual receiver.) If you do not know what “receiver”
means, see Section 39.6.1.

Another example of a type-and-declaration annotation that represents poor design is JCIP’s @GuardedBy annota-
tion [GPB+06]. As discussed in Section 10.6.1, it means two different things when applied to a field or a method. To
reduce confusion and increase expressiveness, the Lock Checker (see Chapter 10) uses the @Holding annotation for
one of these meanings, rather than overloading @GuardedBy with two distinct meanings.

A final example of a type-and-declaration annotation is some @Nullable or @NonNull annotations that are intended
to work both with modern tools that process type annotations and with old tools that were written before Java had
type annotations. Such type-and-declaration annotations were a temporary measure, intended to be used until the tool
supported Java 8 (which was released in March 2014), and should not be necessary any longer.

296

39.6.8 How do I annotate a fully-qualified type name?
If you write a fully-qualified type name in your program, then the Java language requires you to write a type annotation
on the simple name part, such as

entity.hibernate. @Nullable User x;

If you try to write the type annotation before the entire fully-qualified name, such as

@Nullable entity.hibernate.User x; // illegal Java syntax

then you will get an error like one of the following:

error: scoping construct for static nested type cannot be annotated
error: scoping construct cannot be annotated with type-use annotation

39.6.9 What is the difference between type annotations and declaration annotations?
Java has two distinct varieties of annotation: type annotations and declaration annotations.

A type annotation can be written on any use of a type. It conceptually creates a new, more specific type. That is, it
describes what values the type represents.

As an example, the int type contains these values: ..., -2, -1, 0, 1, 2, ...
The @Positive int type contains these values: 1, 2, ...
Therefore, @Positive int is a subtype of int.

A declaration annotation can be written on any declaration (a class, method, or variable). It describes the thing
being declared, but does not describe run-time values. Here are examples of declaration annotations:

@Deprecated // programmers should not use this class
class MyClass { ... }

@Override // this method overrides a method in a supertype
void myMethod() { ... }

@SuppressWarnings(...) // compiler should not warn about the initialization expr
int myField = INITIALIZATION-EXPRESSION;

Here are examples that use both a declaration annotation and a type annotation:

@Override
@Regex String getPattern() { ... }

@GuardedBy("myLock")
@NonNull String myField;

Note that the type annotation describes the value, and the declaration annotation says something about the method
or use of the field.

As a matter of style, declaration annotations are written on their own line, and type annotations are written directly
before the type, on the same line.

39.6.10 How should type annotations be formatted in source code? Where should I write
type annotations?

The Java Language Specification, section 9.7.4 says: “It is customary, though not required, to write declaration
annotations before all other modifiers, and type annotations immediately before the type to which they apply.”

A type annotation should be written immediately before the type it qualifies, on the same line. There should not
be any modifiers (such as public) between them. This emphasizes that the type qualifier plus the Java basetype is a
logical unit, which aids people reading the code.

297

https://docs.oracle.com/javase/specs/jls/se8/html/jls-9.html#jls-9.7.4

// Wrong formatting
@Positive
public int numItems;

// Right
public @Positive int numItems;

// Wrong formatting
@Nullable
public Object getThing() {

...
}

// Right
public @Nullable Object getThing() {

...
}

By contrast, declaration annotations are conventionally written on their own line.

// Wrong formatting
@Deprecated URL toURL() {

...
}

// Right
@Deprecated
URL toURL() {

...
}

The preferred order of modifiers is

1. declaration annotations
2. keyword modifiers such as public and strictfp
3. type annotations
4. type

Here is an example of a declaration annotation and a type annotation on a class declaration:

@Deprecated
public @Interned class Level {

...
}

The popular google-java-format tool formats type annotations incorrectly, with type annotations on their own line in-
stead of on the same line with the type they modify. (Actually, you can see from method JavaInputAstVisitor.typeAnnotations()
that it handles two @Nullable annotations correctly, but all other type annotations incorrectly! This would be fixed by
merging pull request #802.) Until this bug in google-java-format is fixed, you have these options:

• Run google-java-format via Spotless and use the formatAnnotations step to correct the formatting of type
annotations.

• Run google-java-format via run-google-java-format

298

https://github.com/google/google-java-format

39.6.11 How does the Checker Framework handle obsolete declaration annotations?
When a declaration annotation is an alias for a type annotation, the Checker Framework may move the annotation
before replacing it by the canonical version. (If the declaration annotation is in an org.checkerframework package, it
is not moved.)

For example,

import android.support.annotation.NonNull;
...
@NonNull Object [] returnsArray();

is treated as if the programmer had written

import org.checkerframework.checker.nullness.qual.NonNull;
...
Object @NonNull [] returnsArray();

because Android’s @NonNull annotation is a declaration annotation, which is understood to apply to the top-level return
type of the annotated method.

When possible, you should use type annotations rather than declaration annotations, and write them in the correct
location (Section 39.6.10).

Users who are using old Java 5–7 declaration annotations (for instance, from the FindBugs tool, which has not been
maintained since 2015, and from its successor SpotBugs, which has not yet adopted type annotations, even though type
annotations were added to Java in 2014) can use annotations in package org.checkerframework.checker.nullness.compatqual
to avoid name conflicts. These are available in package checker-compat-qual on Maven Central. Once the users are
ready to upgrade to Java 8+ type annotations, those compatibility annotations are no longer necessary.

39.6.12 How do I convert from other tools’ declaration annotations to type annotations?
In order to convert from another tool’s declaration annotations to the Checker Framework’s type annotations, you need
to change imports, rename annotations, move annotations written on arrays (see Section 39.6.11), and move annotations
to simple type names.

For example, if a user writes

import android.support.annotation.Nullable;
...
@Nullable
public Map.Entry<Object, Object> intersects() { ... }

and then changes the import to org.checkerframework.checker.nullness.qual.Nullable, the code will not
compile. (See Section 40.1.3 for more details.) The user needs to also move the @Nullable annotation to a location
where Java permits type annotations:

import org.checkerframework.checker.nullness.qual.Nullable;
...
public Map.@Nullable Entry<Object, Object> intersects() { ... }

39.7 Semantics of type annotations

39.7.1 How can I handle typestate, or phases of my program with different data properties?
Sometimes, your program works in phases that have different behavior. For example, you might have a field that starts
out null and becomes non-null at some point during execution, such as after a method is called. You can express this
property as follows:

299

https://search.maven.org/search?q=a:checker-compat-qual

1. Annotate the field type as @MonotonicNonNull.
2. Annotate the method that sets the field as @EnsuresNonNull("myFieldName"). (If method m1 calls method

m2, which actually sets the field, then you would probably write this annotation on both m1 and m2.)
3. Annotate any method that depends on the field being non-null as @RequiresNonNull("myFieldName"). The

type-checker will verify that such a method is only called when the field isn’t null — that is, the method is only
called after the setting method.

You can also use a typestate checker (see Chapter 30.30, page 182), but they have not been as extensively tested.

39.7.2 Why are explicit and implicit bounds defaulted differently?
The following two bits of code have the same semantics under Java, but are treated differently by the Checker
Framework’s CLIMB-to-top defaulting rules (Section 32.5.3):

class MyClass<T> { ... }
class MyClass<T extends Object> { ... }

The difference is the annotation on the upper bound of the type argument T. They are treated in the following way.

class MyClass<T> == class MyClass<T extends @TOPTYPEANNO Object>
class MyClass<T extends Object> == class MyClass<T extends @DEFAULTANNO Object>

@TOPTYPEANNO is the top annotation in the type qualifier hierarchy. For example, for the nullness type system, the top
type annotation is @Nullable, as shown in Figure 3.1. @DEFAULTANNO is the default annotation for the type system.
For example, for the nullness type system, the default type annotation is @NonNull.

In some type systems, the top qualifier and the default are the same. For such type systems, the two code snippets
shown above are treated the same. An example is the regular expression type system; see Figure 14.1.

The CLIMB-to-top rule reduces the code edits required to annotate an existing program, and it treats types written
in the program consistently.

When a user writes no upper bound, as in class C<T> { ... }, then Java permits the class to be instantiated
with any type parameter. The Checker Framework behaves exactly the same, no matter what the default is for a
particular type system — and no matter whether the user has changed the default locally.

When a user writes an upper bound, as in class C<T extends OtherClass> { ... }, then the Checker
Framework treats this occurrence of OtherClass exactly like any other occurrence, and applies the usual defaulting
rules. Use of Object is treated consistently with all other types in this location and all other occurrences of Object in
the program.

Here are some style guidelines:

• Omit the extends clause when possible. To indicate no constraints on type qualifiers, write class MyClass<T>
rather than class MyClass<T extends @TOPTYPEANNO Object>.

• When you write an Object upper bound, give an explicit type annotation. That is, write class C<T extends
@DEFAULTANNO Object> { ... } even though it is equivalent to writing class C<T extends Object> {
... }.
If you write just extends Object, then someone who is reading the code might think that it is irrelevant (which
it is in plain Java). Also, some IDEs will suggest removing it.

39.7.3 How should I annotate code that uses generics?
Suppose unannotated code contains a declaration of a type parameter <T>. How should you annotate that declaration?

This is really a question about Java’s generic types, so if you understand Java generics, this question is moot.
However, Java generics can be hard to understand, so here is a brief explanation of some concrete annotations, using
nullness annotations for concreteness.

300

../api/org/checkerframework/checker/nullness/qual/MonotonicNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
../api/org/checkerframework/checker/nullness/qual/RequiresNonNull.html

<T> Any type argument may be supplied for T.
It is equivalent to <T extends @Nullable Object>, because @Nullable Object is the top type in the type
hierarchy.

<T extends @Nullable Object> Any type argument may be supplied for T.
It is equivalent to <T>, as noted above.

<T extends Object> T can be instantiated by any type whose qualifier is @NonNull.
The default annotation is @NonNull, and annotation defaults apply to type uses such as Object but not to type
variables such as T. Therefore, <T extends Object> is equivalent to <T extends @NonNull Object>. It
permits any type argument that is a subtype of @NonNull Object, which is any type argument whose qualifier is
@NonNull since @NonNull is the bottom type qualifier in the type qualifier hierarchy.

<T extends @NonNull Object> T can be instantiated by any type whose qualifier is @NonNull.
It is equivalent to <T extends Object>, as noted above.

<@Nullable T> T can be instantiated by any type whose qualifier is @Nullable.
The annotation @Nullable before T applies to T’s implicit lower bound. There is no explicit upper bound
(that is, no extends), so the upper bound is the top type, @Nullable Object, just as for <T>, which was
discussed above. Therefore, <@Nullable T> is the same as <T super @Nullable void extends @Nullable
Object>, except that the latter is not legal Java.

<T super @Nullable String> T can be instantiated by any supertype of @Nullable String, which is any
supertype of String (Object, Serializable, CharSequence, etc.) so long as its type qualifier is @Nullable.

<T super @NonNull String> T can be instantiated by any supertype of @NonNull String. Since @NonNull
is the bottom type qualifier, the instantiating type can have any type qualifier.

For more details about how the Checker Framework supports generics and polymorphism, see Chapter 31, page 183.

39.7.4 Why are type annotations declared with @Retention(RetentionPolicy.RUNTIME)?
Annotations such as @NonNull are declared with @Retention(RetentionPolicy.RUNTIME). In other words, these
type annotations are available to tools at run time. Such run-time tools could check the annotations (like an assert
statement), type-check dynamically-loaded code, check casts and instanceof operations, resolve reflection more
precisely, or other tasks that we have not yet thought of. Not many such tools exist today, but the annotation designers
wanted to accommodate them in the future.

RUNTIME retention has negligible costs (no run-time dependency, minimal increase in heap size). To avoid these
costs, a project can use the checker-qual-android dependency; as explained in Section 38.1, it is identical to
checker-qual, except that in checker-qual-android annotations have CLASS retention.

For the purpose of static checking at compile time, CLASS retention is sufficient. Note that SOURCE retention
would not be sufficient, because of separate compilation: when type-checking a class, the compiler needs to read the
annotations on libraries that it uses, and separately-compiled libraries are available to the compiler only as class files.

39.8 Creating a new checker

39.8.1 How do I create a new checker?
In addition to using the checkers that are distributed with the Checker Framework, you can write your own checker to
check specific properties that you care about. Thus, you can find and prevent the bugs that are most important to you.

Chapter 36 gives complete details regarding how to write a checker. It also suggests places to look for more help,
such as the Checker Framework API documentation (Javadoc) and the source code of the distributed checkers.

To whet your interest and demonstrate how easy it is to get started, here is an example of a complete, useful
type-checker.

@SubtypeOf(Unqualified.class)
@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
public @interface Encrypted {}

301

../api/org/checkerframework/checker/nullness/qual/NonNull.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/annotation/Retention.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/annotation/RetentionPolicy.html#RUNTIME
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/annotation/RetentionPolicy.html#CLASS
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/annotation/RetentionPolicy.html#CLASS
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/annotation/RetentionPolicy.html#SOURCE

Section 29.2 explains this checker and tells you how to run it.

39.8.2 What properties can and cannot be handled by type-checking?
In theory, any property about a program can be expressed and checked within a type system. In practice, types are a
good choice for some properties and a bad choice for others.

A type expresses the set of possible values for an expression. Therefore, types are a good choice for any property
that is about variable values or provenance.

Types are a poor choice for expressing properties about timing, such as that action B will happen within 10
milliseconds of action A. Types are not good for verifying the results of calculations; for example, they could ensure
that code always call an encrypt routine in the appropriate places, but not that the encrypt routine is correctly
implemented. Types are not a good solution for preventing infinite loops, except perhaps in special cases.

39.8.3 Why is there no declarative syntax for writing type rules?
A type system implementer can declaratively specify the type qualifier hierarchy (Section 36.5.2) and the type
introduction rules (Section 36.8). However, the Checker Framework uses a procedural syntax for specifying type-
checking rules (Section 36.7). A declarative syntax might be more concise, more readable, and more verifiable than a
procedural syntax.

We have not found the procedural syntax to be the most important impediment to writing a checker.
Previous attempts to devise a declarative syntax for realistic type systems have failed; see a technical paper [PAC+08]

for a discussion. When an adequate syntax exists, then the Checker Framework can be extended to support it.

39.9 Tool questions

39.9.1 How does pluggable type-checking work?
The Checker Framework enables you to define a new type system. It finds errors, or guarantees their absence, by
performing type-checking that is similar to that already performed by the Java compiler.

Type-checking examines each statement of your program in turn, one at a time.

• Expressions are processed bottom-up. Given types for each sub-expression, the type-checker determines whether
the types are legal for the expression’s operator and determines the type of the expression.

• An assignment is legal if the type of the right-hand side is a subtype of the declared type of the left-hand side.
• At a method call, the arguments are legal if they can be assigned to the formal parameters (this is called a

“pseudo-assignment” and it follows the normal rules for assignment). The type of the method call is the declared
type of the return type, where the method is declared. If the method declaration is not annotated, then a default
annotation is used.

• Suppose that method Sub.m overrides method Super.m. The return type of Sub.m must be equal to or a subtype
of the return type of Super.m (this is called “covariance”). The type of formal parameter i of Sub.m must be
equal to or a supertype of the type of formal parameter i in Super.m (this is called “contravariance”).

39.9.2 What classpath is needed to use an annotated library?
Suppose that you distribute a library, which contains Checker Framework annotations such as @Nullable. This enables
clients of the library to use the Checker Framework to type-check their programs. To do so, they must have the Checker
Framework annotations on their classpath, for instance by using the Checker Framework Compiler.

Clients who do not wish to perform pluggable type-checking do not need to have the Checker Framework annotations
(checker-qual.jar) in their classpath, either when compiling or running their programs.

The JVM does not issue a link error if an annotation is not found when a class is loaded. (By contrast, the JVM
does issue a link error if a superclass, or a parameter/return/field type, is not found.) Likewise, there is no problem

302

compiling against a library even if the library’s annotations are not on the classpath. These are properties of Java, and
are not specific to the Checker Framework’s annotations.

39.9.3 Why do .class files contain more annotations than the source code?
A .class file contains an annotation on every type, as computed by defaulting rules; see Section 32.4.

When an overridden method has a side effect annotation, the overriding method must have one too. However,
if the side effect annotation is declared with the @InheritedAnnotation meta-annotation, the Checker Framework
automatically adds the missing annotation. This is the case for most side effect annotations — these annotations are
propagated from annotated libraries, such as the JDK, to your code.

39.9.4 Is there a type-checker for managing checked and unchecked exceptions?
It is possible to annotate exception types, and any type-checker built on the Checker Framework enforces that type
annotations are consistent between throw statements and catch clauses that might catch them.

The Java compiler already enforces that all checked exceptions are caught or are declared to be passed through, so
you would use annotations to express other properties about exceptions.

Checked exceptions are an example of a “type and effect” system, which is like a type system but also accounts for
actions/behaviors such as side effects. The GUI Effect Checker (Chapter 19, page 135) is a type-and-effect system that
is distributed with the Checker Framework.

39.9.5 The Checker Framework runs too slowly
Using a pluggable type-checker increases compile times by a factor of 2–10. Slow compilation speed is probably the
worst thing about the Checker Framework.

To improve performance:

• Ensure that the Checker Framework has enough memory. The Checker Framework uses more memory than
javac does, and Java’s default heap limit is so small that the Checker Framework might spend most of its time
in garbage collection. (If this is the case, the Checker Framework will issue a warning “Garbage collection
consumed over 25% of CPU during the past minute.") To permit the Checker Framework to use up to 3GB of
memory, pass an argument like -Xmx3g or set an environment variable like export _JAVA_OPTIONS=-Xmx3g.
Also consider upgrading to a more recent release of Java, because older versions of Java (especially 8 and 11, but
also 17) have worse memory management.

• Set your build system to perform incremental compilation. When compiling just a few source files (the size
of a typical edit or commit), you won’t notice the slowdown even if the Checker Framework is very slow. If
you compile all files in a large project, you will definitely notice a slowdown. You should structure your build
system to make compiling all files rare, by declaring dependencies and using caching. (Note: Maven lacks
dependency-driven build and caching. If your project uses Maven, consider switching to a more capable build
system such as Gradle.)

• Write generic type arguments. Often, generic type inference is the slowest part of type-checking. You can
significantly speed up type-checking by explicitly writing a few generic type arguments. To determine where to
write them, temporarily set -AslowTypecheckingSeconds to a small value, such as 1. Write type arguments
where slow.typechecking warnings are issued.

If the Checker Framework is still too slow for you to run on every compilation, you can run it periodically, such as
in a Git commit hook or in continuous integration.

The Checker Framework team does not currently have the resources to fix performance problems, but we welcome
community contributions.

Here are some reasons that the Checker Framework is slow.

• It has to do all the same work as the compiler does, such as resolving overloading and overriding, inferring
generics, and type-checking.

303

../api/org/checkerframework/framework/qual/InheritedAnnotation.html

• Its analysis is general; it interprets user-defined type systems whereas javac hard-codes one type system and
integrates it with other processing.

• Its analysis are much richer. javac can take certain shortcuts that are not correct for all possible type systems.
• It builds a control flow graph and performs a fixpoint analysis on it, which javac does not do.
• It manipulates multiple representations of data, including javac’s internal representation, source code, control

flow graph, and its own internal representation. These transformations and lookups take time.
• It switches between dataflow analysis and type analysis, and this sometimes causes it to redo work.
• When running a compound or aggregate checker, it computes the control flow graph multiple times, and it makes

multiple passes over the program rather than just one.

39.9.6 What does the Checker Framework version number mean?
As explained in Section 1.3, a change in the middle number of the Checker Framework version string indicates a
possible incompatibility.

Another policy is “semantic versioning” as defined at https://semver.org/. This version number policy,
unfortunately, does not define key terms, such as “backwards compatible bug fixes”. It includes an escape hatch,
“Semantic Versioning is all about conveying meaning by how the version number changes.” It has not been updated in
over a decade (since January 2013), has only ever been updated once (from 1.0.0 to 2.0.0), and has about 100 open
issues. It is a proposal, not a standard nor an official definition. Projects that claim to follow it often do so loosely.

If the Checker Framework strictly used semver.org’s definition, every release would be a new major version, and the
current version string would be past version 200.0.0. Always incrementing the major version number would not convey
meaning to its users — for example, it would not indicate major new functionality or important behavior differences.

39.10 Relationship to other tools

39.10.1 Why not just use a bug detector (like SpotBugs or Error Prone)?
A pluggable type-checker is a verification tool that prevents or detects all errors of a given variety. If it issues no
warnings, your code has no errors of a given variety (for details about the guarantee, see Section 2.3).

An alternate approach is to use a bug detector such as Error Prone, FindBugs [HP04, HSP05], SpotBugs,
Jlint [Art01], PMD [Cop05], or the tools built into Eclipse (see Section 39.10.2) and IntelliJ. The NullAway and
Eradicate tools are more like sound type-checking than bug detection, but all of those tools accept unsoundness — that
is, false negatives or missed warnings — in exchange for analysis speed.

A pluggable type-checker or verifier differs from a bug detector in several ways:

• A type-checker reports all errors in your code. If a type-checker reports no warnings, then you have a guarantee
(a proof) of correctness (Section 39.4.5).
A bug detector aims to find some of the most obvious errors. Even if a bug detector reports no warnings, there
may still be errors in your code.

• A type-checker requires you to annotate your code with type qualifiers, or to run an inference tool that does so
for you. That is, it requires you to write a specification, then it verifies that your code meets its specification.
Some bug detectors do not require annotations. This means that it may be easier to get started running a bug
detector. The tool makes guesses about the intended behavior of your code, leading to false alarms or missed
alarms.

• A verification tool may issue more warnings for a programmer to investigate. Some bug detectors internally
generate many warnings, then use heuristics to discard some of them. The cost is missed alarms, when the tool’s
heuristics classified the warnings as likely false positives and discarded them.

• A type-checker uses a more sophisticated and precise analysis. For example, it can take advantage of method
annotations and annotations on generic type parameters, such as List<@NonNull String>. An example specific
to the Nullness Checker (Section 3, no other tool correctly handles map keys or initialization.
A bug detector does a more lightweight analysis. This means that a bug detector usually runs faster, giving
feedback to the programmer more rapidly and avoiding slowdowns. Its analysis is often narrow, avoiding

304

https://semver.org/
https://errorprone.info/
https://findbugs.sourceforge.net/
https://github.com/spotbugs/spotbugs
https://jlint.sourceforge.net/
https://pmd.github.io/
https://github.com/uber/NullAway
https://fbinfer.com/docs/1.1.0/checker-eradicate/

properties that are tricky to reason about or that might lead to false alarms. The cost is missed alarms, when
analysis is too weak to find the errors.

• Neither type checking nor bug detection subsumes the other. A type-checker finds problems that a bug detector
cannot. A bug detector finds problems that a type-checker does not: there is no need for the type-checker to
address style rules, when a bug detector is adequate.
If your code is important to you, it is advantageous to run both types of tools.

For a case study that compared the nullness analysis of FindBugs (equivalent to SpotBugs), Jlint, PMD, and the
Checker Framework, see section 6 of the paper “Practical pluggable types for Java” [PAC+08]. The case study was
on a well-tested program in daily use. The Checker Framework tool found 8 nullness errors (that is, null pointer
dereferences). None of the other tools found any errors. A follow-up 10 years later found that Eclipse’s nullness
analysis found 0 of the errors, and IntelliJ’s nullness analyses found 3 of the errors, that the Nullness Checker found.

The JSR 308 [Ern08b] documentation also contains a discussion of related work.

39.10.2 How does the Checker Framework compare with Eclipse’s null analysis?
Eclipse comes with a null analysis that can detect potential null pointer errors in your code. Eclipse’s built-in analysis
differs from the Checker Framework in several respects.

The Checker Framework’s Nullness Checker (see Chapter 3, page 31) is more precise: it does a deeper semantic
analysis, so it issues fewer false positives than Eclipse. Eclipse’s nullness analysis is missing many features that
the Checker Framework supports, such as handling of map keys, partially-initialized objects, method pre- and post-
conditions, polymorphism, and a powerful dataflow analysis. These are essential for practical verification of real-world
code without poor precision. Furthermore, Eclipse by default ignores unannotated code (even unannotated parameters
within a method that contains other annotations). As a result, Eclipse is more useful for bug-finding than for verification,
and that is what the Eclipse documentation recommends.

Eclipse assumes by default that all code is multi-threaded, which cripples its local type inference. (This default can
be turned off, however.) The Checker Framework allows the user to specify whether code will be run concurrently or
not via the -AconcurrentSemantics command-line option (see Section 39.4.6).

The Checker Framework builds on javac, so it is easier to run in integration scripts or in environments where not all
developers have installed Eclipse.

Eclipse handles only nullness properties and is not extensible, whereas the Checker Framework comes with over 20
type-checkers (for a list, see Chapter 1, page 15) and is extensible to more properties.

There are also some benefits to Eclipse’s null analysis. It is faster than the Checker Framework, in part because it is
less featureful. It is built into Eclipse, so you do not have to add it to your build scripts. Its IDE integration is tighter
and slicker.

In a case study, the Nullness Checker found 9 errors in a program, and Eclipse’s analysis found 0.

39.10.3 How does the Checker Framework compare with NullAway?
NullAway is a lightweight, unsound type-checker whose aim is similar to that of the Nullness Checker (Chapter 3,
page 31). For both tools, the user writes nullness annotations, and then the tool checks them.

NullAway is faster than the Nullness Checker and requires fewer annotations.
NullAway is unsound: even if NullAway issues no warnings, your code might crash with a null pointer exception.

Two differences are that NullAway makes unchecked assumptions about getter methods and NullAway assumes all
objects are always fully initialized. NullAway forces all generic arguments to be non-null, which is not an unsoundness
but is less flexible than the Nullness Checker.

39.10.4 How does the Checker Framework compare with JSpecify?
JSpecify defines the two annotations @NonNull and @Nullable. This is one more possibility in addition to the other
definitions of those annotations listed in Section 3.7. JSpecify is not an official standard.

305

https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-issta2008.pdf
https://checkerframework.org/jsr308/
https://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Ftasks%2Ftask-using_null_annotations.htm
https://github.com/uber/NullAway

You can use the JSpecify annotations or the Checker Framework ones, whichever you prefer. All nullness checkers
we know of (e.g., Eclipse, EISOP, IntelliJ, Nullaway, the Nullness Checker, SpotBugs) recognize the JSpecify and
Nullness Checker versions of those two type annotations, so there is no tooling reason to prefer one over the other.
JSpecify has only nullness annotations, and none for the dozens of other type-checkers that the Checker Framework
supports.

The JSpecify specification language is weaker than what the Nullness Checker supports. For example, JSpecify
lacks a polymorphic qualifier such as@PolyNull, and it lacks method specifications (Section 3.2.2). It lacks annotations
for initialization (Section 3.8, but you could consider that a benefit, if you always suppress all initialization warnings,
opting for convenience and simplicity over sound checking). Even if your code does not use all the specification power
of the Nullness Checker, you will benefit from expressive specifications on libraries that your code uses.

If you want precise, sound type-checking, you will need to use some Nullness Checker annotations. You can mix
two sets of annotations (those of JSpecify and of the Nullness Checker), or you can use just those of the Nullness
Checker. Both approaches work.

JSpecify contains a notion of “unspecified nullness”. It is typically used for warning suppression in unannotated code,
but doing so has two problems. First, it makes your specification tool-dependent, because a JSpecify-compliant tool may
have any behavior (including issuing warnings or not issuing warnings) for code that uses “unspecified nullness” or use
a library that uses “unspecified nullness”. Second, it mixes notions of nullness specification and warning suppression,
which are separate concepts. The Checker Framework has well-defined behavior for all specifications, and it has rich
facilities for warning suppression (Chapter 33). For example, the -Askipuses command-line option (Section 33.4)
suppresses warnings relating to uses of unannotated libraries.

The Checker Framework does not need JSpecify’s @NullMarked, which makes a checker treat unannotated
references as @NonNull. The Nullness Checker by default treats unannotated references as @NonNull. The Checker
Framework does not need JSpecify’s @NullUnmarked, which sets the default to “unspecified nullness”. The Nullness
Checker supports explicit warning suppressions instead.

39.10.5 How does the Checker Framework compare with the EISOP Checker Framework?
The EISOP Checker Framework (also called the EISOP Framework) is a fork of the Checker Framework. The
main difference is that the EISOP Nullness Checker supports one interpretation of the full JSpecify “standard” (see
Section 39.10.4), whereas the Checker Framework’s Nullness Checker only supports the non-ambiguous parts of
JSpecify.

The EISOP Checker Framework is an “unfriendly fork” in that it incorporates improvements from the Checker
Framework, but its developers do not contribute back to the Checker Framework: they only incorporate their improve-
ments and bug fixes in their own version. The EISOP Checker Framework has introduced some bugs that do not exist
in the Checker Framework, and it has fixed some bugs that exist in the Checker Framework, so neither one is strictly
more correct than the other. If you use the EISOP Checker Framework, please encourage its developers to be good
open-source citizens and contribute back to the Checker Framework. We wish the EISOP project well, because any
project that gets more people to verify their code (by writing nullness specifications and running a checker) is a net
positive for the programming community.

39.10.6 How does the Checker Framework compare with the JDK’s Optional type?
JDK 8 introduced the Optional class, a container that is either empty or contains a non-null value. The Optional
Checker (see Chapter 5) guarantees that programmers use Optional correctly.

Section 3.7.3 explains the relationship between nullness and Optional and the benefits of each.

39.10.7 How does pluggable type-checking compare with JML?
JML, the Java Modeling Language [LBR06], is a language for writing formal specifications.

JML aims to be more expressive than pluggable type-checking. A programmer can write a JML specification
that describes arbitrary facts about program behavior. Then, the programmer can use formal reasoning or a theorem-
proving tool to verify that the code meets the specification. Run-time checking is also possible. By contrast, pluggable

306

../api/org/checkerframework/checker/nullness/qual/PolyNull.html
https://github.com/eisop/checker-framework
https://eisop.github.io/
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html
http://www.eecs.ucf.edu/~leavens/JML/index.shtml

type-checking can express a more limited set of properties about your program. Pluggable type-checking annotations
are more concise and easier to understand.

JML is not as practical as pluggable type-checking. The JML toolset is less mature. For instance, if your code
uses generics or other features of Java 5, then you cannot use JML. However, JML has a run-time checker, which the
Checker Framework currently lacks.

39.10.8 Is the Checker Framework an official part of Java?
The Checker Framework is not an official part of Java. The Checker Framework relies on type annotations, which
became part of Java with Java 8 (released in March 2014). For more about type annotations, see the Type Annotations
(JSR 308) FAQ for more details.

39.10.9 What is the relationship between the Checker Framework and JSR 305?
JSR 305 aimed to define official Java names for some annotations, such as @NonNull and @Nullable. However, it
did not aim to precisely define the semantics of those annotations nor to provide a reference implementation of an
annotation processor that validated their use; as a result, JSR 305 was of limited utility as a specification. JSR 305 has
been abandoned; there has been no activity by its expert group since 2009.

By contrast, the Checker Framework precisely defines the meaning of a set of annotations and provides powerful
type-checkers that validate them. However, the Checker Framework is not an official part of the Java language; it
chooses one set of names, but another tool might choose other names.

In the future, the Java Community Process might revitalize JSR 305 or create a replacement JSR to standardize the
names and meanings of specific annotations, after there is more experience with their use in practice.

The Checker Framework defines annotations @NonNull and @Nullable that are compatible with annotations
defined by JSR 305, SpotBugs, IntelliJ, and other tools; see Section 3.7.

39.10.10 What is the relationship between the Checker Framework and JSR 308?
JSR 308, also known as the Type Annotations specification, dictates the syntax of type annotations in Java SE 8: how
they are expressed in the Java language.

JSR 308 does not define any type annotations such as @NonNull, and it does not specify the semantics of any
annotations. Those tasks are left to third-party tools. The Checker Framework is one such tool.

307

https://checkerframework.org/jsr308/jsr308-faq.html#pluggable-type-checking-in-java
https://checkerframework.org/jsr308/jsr308-faq.html#pluggable-type-checking-in-java

Chapter 40

Troubleshooting, getting help, and
contributing

The manual might already answer your question, so first please look for your answer in the manual, includ-
ing this chapter and the FAQ (Chapter 39). If you think you have found a bug in the Checker Frame-
work, please report it (see Section 40.2). For discussions of broad interest, you can use the mailing list,
checker-framework-discuss@googlegroups.com. For archives and to subscribe, see https://groups.google.
com/forum/#!forum/checker-framework-discuss. If you want to help out, you can give feedback (including on
the documentation), choose a bug and fix it (start with those labeled “good first issue”), or select a project from the
ideas list at https://checkerframework.org/manual/new-contributor-projects.html.

40.1 Common problems and solutions
• To verify that you are using the compiler you think you are, you can add -version to the command line. For

instance, instead of running javac -g MyFile.java, you can run javac -version -g MyFile.java. Then,
javac will print out its version number in addition to doing its normal processing. Note that if you are running
under Java 8, $CHECKERFRAMEWORK/bin/javac -version prints “javac (version info not available)” because it
uses the Error Prone compiler which does not provide version information.

40.1.1 Unable to compile the Checker Framework
If you get the following error while compiling the Checker Framework itself:
checker-framework/stubparser/dist/stubparser.jar(org/checkerframework/stubparser/ast/CompilationUnit.class):
warning: [classfile] Signature attribute introduced in version 49.0 class files is ignored in version 46.0 class files

and you have used Eclipse to compile the Checker Framework, then probably you are using a very old version of
Eclipse. (If you install Eclipse from the Ubuntu 16.04 repository, you get Eclipse version 3.8. Ubuntu 16.04 was
released in April 2016, and Eclipse 3.8 was released in June 2012, with subsequent major releases in June 2013, June
2014, and June 2015.) Install the latest version of Eclipse and use it instead.

40.1.2 Unable to run the checker, or checker crashes
If you are unable to run the checker, or if the checker or the compiler terminates with an error, then the problem may be
a problem with your environment. (If the checker or the compiler crashes, that is a bug in the Checker Framework;
please report it. See Section 40.2.) This section describes some possible problems and solutions.

• An error that includes java.lang.NoSuchFieldError: RELEASE" means that you are not using the correct
compiler (you are not using a Java 9+ compiler).

308

https://groups.google.com/forum/#!forum/checker-framework-discuss
https://groups.google.com/forum/#!forum/checker-framework-discuss
https://github.com/typetools/checker-framework/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22
https://checkerframework.org/manual/new-contributor-projects.html

• If you get the error
com.sun.tools.javac.code.Symbol$CompletionFailure: class file for com.sun.source.tree.Tree not found

then you are using the source installation and file tools.jar is not on your classpath. See the installation
instructions (Section 1.3).

• If you get an error like one of the following,
...\build.xml:59: Error running ${env.CHECKERFRAMEWORK}\checker\bin\javac.bat compiler

.../bin/javac: Command not found

error: Annotation processor ’org.checkerframework.checker.signedness.SignednessChecker’ not found

then the problem may be that you have not set the CHECKERFRAMEWORK environment variable, as described in
Section 38.6. Or, maybe you made it a user variable instead of a system variable.

• If you get one of these errors:
The hierarchy of the type ClassName is inconsistent

The type com.sun.source.util.AbstractTypeProcessor cannot be resolved.
It is indirectly referenced from required .class files

then you are likely not using the Checker Framework compiler. Use either
$CHECKERFRAMEWORK/checker/bin/javac or one of the alternatives described in Section 38.6.

• If you get the error

java.lang.ArrayStoreException: sun.reflect.annotation.TypeNotPresentExceptionProxy

then an annotation is not present at run time that was present at compile time. For example, maybe when you
compiled the code, the @Nullable annotation was available, but it was not available at run time.

• If you get an error that contains lines like these:

Caused by: java.util.zip.ZipException: error in opening zip file
at java.util.zip.ZipFile.open(Native Method)
at java.util.zip.ZipFile.<init>(ZipFile.java:131)

then one possibility is that you have installed the Checker Framework in a directory that contains special characters
that Java’s ZipFile implementation cannot handle. For instance, if the directory name contains “+”, then Java 1.6
throws a ZipException, and Java 1.7 throws a FileNotFoundException and prints out the directory name with “+”
replaced by blanks.

• The Checker Framework sometimes runs out of memory when processing very large Java files, or files with very
large methods.
If you get an error such as

error: SourceChecker.typeProcess: unexpected Throwable (OutOfMemoryError) while processing ...
; message: GC overhead limit exceeded

(all on one line), then either give the JVM more memory when running the Checker Framework, or split your
files and methods into smaller ones, or both.

• Versions of Error Prone before 2.4.0 are incompatible with the Checker Framework. (More precisely, each
version of Error Prone before 2.4.0 is compatible with only one specific version of the Checker Framework.)
Those versions of Error Prone use outdated versions of the Checker Framework’s dataflow analysis library, each
of which is compatible with only one version of the Checker Framework.
If you wish to use both Error Prone and the Checker Framework, then use Error Prone version 2.4.0 or later. If you
cannot upgrade to Error Prone 2.4.0 or later, there is a way to still use both tools. The Gradle plugin documentation
(https://github.com/kelloggm/checkerframework-gradle-plugin#incompatibility-with-error-prone)
shows how to do so if you use the Gradle build system.

• Versions 0.9.0 and 0.9.1 of NullAway are compatible only with Checker Framework version 3.6.0 through 3.8.0.
Those versions of NullAway use version 3.6.0 of the Checker Framework’s dataflow analysis library without
shading it. As of version 0.9.2, NullAway uses a shaded version of the library, so this conflict no longer exists. If
you want to use a version of the Checker Framework newer than 3.8.0 with NullAway in the same build, then use
NullAway 0.9.2 or later.

309

https://errorprone.info/
https://github.com/kelloggm/checkerframework-gradle-plugin#incompatibility-with-error-prone
https://github.com/uber/NullAway

40.1.3 Unexpected warnings not related to type-checking
This section gives solutions for some warning messages that are not related to type errors in your code.

• If you get an error like the following

error: scoping construct for static nested type cannot be annotated
error: scoping construct cannot be annotated with type-use annotation

then you have probably written something like one of the following:

@Nullable java.util.List The correct Java syntax to write an annotation on a fully-qualified type
name is to put the annotation on the simple name part, as in java.util.@Nullable List. But, it’s usually
better to add import java.util.List to your source file, so that you can just write @Nullable List.

@Nullable Map.Entry You must write Outer.@Nullable StaticNestedClass rather than @Nullable
Outer.StaticNestedClass. Since a static nested class does not depend on its outer class, the annotation
on the outer class would have no effect and is forbidden.

Java 8 requires that a type qualifier be written directly on the type that it qualifies, rather than on a scoping
mechanism that assists in resolving the name. Examples of scoping mechanisms are package names and outer
classes of static nested classes.
The reason for the Java 8 syntax is to avoid syntactic irregularity. When writing a member nested class (also
known as an inner class), it is possible to write annotations on both the outer and the inner class: @A1 Outer.
@A2 Inner. Therefore, when writing a static nested class, the annotations should go on the same place: Outer.
@A3 StaticNested (rather than @ConfusingAnnotation Outer. Nested where @ConfusingAnnotation
applies to Outer if Nested is a member class and applies to Nested if Nested is a static class). It’s not legal to
write an annotation on the outer class of a static nested class, because neither annotations nor instantiations of the
outer class affect the static nested class.
Similar arguments apply when annotating pakkage.Outer.Nested.

• An “error: package ... does not exist” or “error: cannot find symbol” about classes in your own project or its
dependencies means that you have left your own project or its dependencies off the classpath when you invoked
the compiler.

40.1.4 Unexpected type-checking results
This section describes possible problems that can lead the type-checker to give unexpected results.

• If the Checker Framework is unable to verify a property that you know is true, then you should formulate a proof
about why the property is true. Your proof depends on some set of facts about the program and its operation.
State them completely; for example, don’t write “the field f cannot be null when execution reaches line 22”, but
justify why the field cannot be null.
Once you have written down your proof, translate each fact into a Java annotation.
If you are unable to express some aspect of your proof as an annotation, then the type system is not capable of
reproducing your proof. You might need to find a different proof, or extend the type system to be more expressive,
or suppress the warning.
If you are able to express your entire proof as annotations, then look at the Checker Framework error messages.

– Perhaps your proof was incomplete or incorrect. Your proof might depend on some fact you didn’t write
down, such as “method m has no side effects.” In this case, you should revise your proof and add more
annotations to your Java code.

– Perhaps your proof is incorrect, and the errors indicate where.
– Perhaps there is a bug in the type-checker. In this case, you should report it to the maintainers, giving your

proof and explaining why the type-checker should be able to make the same inferences that you did.

Recall that the Checker Framework does modular verification, one procedure at a time; it observes the specifica-
tions, but not the implementations, of other methods.
Also see Section 2.4.5, which explains this same methodology in different words.

310

• If a checker seems to be ignoring the annotation on a method, then it is possible that the checker is reading the
method’s signature from its .class file, but the .class file was not created by a Java 8 or later compiler. You
can check whether the annotations actually appear in the .class file by using the javap tool.
If the annotations do not appear in the .class file, here are two ways to solve the problem:

– Re-compile the method’s class with the Checker Framework compiler. This will ensure that the type
annotations are written to the class file, even if no type-checking happens during that execution.

– Pass the method’s file explicitly on the command line when type-checking, so that the compiler reads its
source code instead of its .class file.

• If a checker issues a warning about a property that it accepted (or that was checked) on a previous line, then
probably there was a side-effecting method call in between that could invalidate the property. For example, in
this code:

if (currentOutgoing != null && !message.isCompleted()) {
currentOutgoing.continueBuffering(message);

}

the Nullness Checker will issue a warning on the second line:

warning: [dereference.of.nullable] dereference of possibly-null reference currentOutgoing
currentOutgoing.continueBuffering(message);
^

If currentOutgoing is a field rather than a local variable, and isCompleted() is not a pure method, then a null
pointer dereference can occur at the given location, because isCompleted() might set the field currentOutgoing
to null.
If you want to communicate that isCompleted() does not set the field currentOutgoing to null, you can use
@Pure, @SideEffectFree, or @EnsuresNonNull on the declaration of isCompleted(); see Sections 32.7.5
and 3.2.2.

• If a checker issues a type-checking error for a call that the library’s documentation states is correct, then maybe
that library method has not yet been annotated, so default annotations are being used.
To solve the problem, add the missing annotations to the library (see Chapter 35). The annotations might appear
in stub files (which appear in an .astub file together with the checker’s source code) or in the form of annotated
libraries (which appear in https://github.com/typetools/).

• If the compiler reports that it cannot find a method from the JDK or another external library, then maybe the stub
file for that class is incomplete.
To solve the problem, add the missing annotations to the library, as described in the previous item.
The error might take one of these forms:

method sleep in class Thread cannot be applied to given types
cannot find symbol: constructor StringBuffer(StringBuffer)

• If you get an error related to a bounded type parameter and a literal such as null, the problem may be missing
defaulting. Here is an example:

mypackage/MyClass.java:2044: warning: incompatible types in assignment.
T retval = null;

^
found : null
required: T extends @MyQualifier Object

A value that can be assigned to a variable of type T extends @MyQualifier Object only if that value is of the
bottom type, since the bottom type is the only one that is a subtype of every subtype of T extends @MyQualifier
Object. The value null satisfies this for the Java type system, and it must be made to satisfy it for the pluggable
type system as well. The typical way to address this is to call addStandardLiteralQualifiers on the
LiteralTreeAnnotator.

• An error such as

311

../api/org/checkerframework/dataflow/qual/Pure.html
../api/org/checkerframework/dataflow/qual/SideEffectFree.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
https://github.com/typetools/

MyFile.java:123: error: incompatible types in argument.
myModel.addElement("Scanning directories...");

^
found : String
required: ? extends Object

may stem from use of raw types. (“String” might be a different type and might have type annotations.) If your
declaration was

DefaultListModel myModel;

then it should be

DefaultListModel<String> myModel;

Running the regular Java compiler with the -Xlint:unchecked command-line option will help you to find and
fix problems such as raw types.

• The error

error: annotation type not applicable to this kind of declaration
... List<@NonNull String> ...

indicates that you are using a definition of @NonNull that is a declaration annotation, which cannot be used
in that syntactic location. For example, many legacy annotations such as those listed in Figures 3.2 and 3.3
are declaration annotations. You can fix the problem by instead using a definition of @NonNull that is a type
annotation, such as the Checker Framework’s annotations; often this only requires changing an import statement.

• If Eclipse gives the warning

The annotation @NonNull is disallowed for this location

then you have the wrong version of the org.eclipse.jdt.annotation classes. Eclipse includes two incompati-
ble versions of these annotations. You want the one with a name like org.eclipse.jdt.annotation_2.0.0.....jar,
which you can find in the plugins subdirectory under the Eclipse installation directory. Add this .jar file to your
build path.

• When one formal parameter’s annotation references another formal parameter’s name, as in this constructor:
public String(char value[], @IndexFor("value") int offset, @IndexOrHigh("value") int count) { ... }

you will get an error such as
[expression.unparsable] Expression in dependent type annotation invalid:
Use "#1" rather than "value"

Section 32.8 explains that you need to use a different syntax to refer to a formal parameter:
public String(char value[], @IndexFor("#1") int offset, @IndexOrHigh("#1") int count) { ... }

• The Checker Framework can issue false positive warnings in dead code. An example is
void m() {
String t = "";
t.toString();
try {
} catch (Throwable e) {

t.toString(); // Nullness Checker issues spurious (dereference.of.nullable)
}

• If the Checker Framework issues an error or warning that you cannot reproduce using a smaller test case, then try
running the Checker Framework with the -AatfDoNotCache command-line argument. If the Checker Framework
behaves differently with and without that command-line argument, then there is a bug related to its internal
caches. Please report that bug at https://github.com/typetools/checker-framework/issues.

40.1.5 Unexpected compilation output when running javac without a pluggable type-checker
A message of the form

312

https://github.com/typetools/checker-framework/issues

error: annotation values must be of the form ’name=value’
@LTLengthOf("firstName", "lastName") int index;

^

is caused by incorrect Java syntax. When you supply a set of multiple values as an annotation argument, you need to
put curly braces around them:

@LTLengthOf({"firstName", "lastName"}) int index;

40.2 How to report problems (bug reporting)
If you have a problem with any checker, or with the Checker Framework, please file a bug at https://github.com/
typetools/checker-framework/issues. (First, check whether there is an existing bug report for that issue.) If the
problem is with an incorrect or missing annotation on a library, including the JDK, see Section 40.2.1. You can also use
the issue tracker to make suggestions and feature requests. We also welcome pull requests with annotated libraries, bug
fixes, new features, new checkers, and other improvements.

Please ensure that your bug report is clear and that it is complete. Otherwise, we may be unable to understand it
or to reproduce it, either of which would prevent us from helping you. Your bug report should include at least the
following 4 parts: commands, inputs, outputs, and expectation.

Commands Provide one or more commands that can be pasted into a command shell to reproduce the problem.
In the simplest case, you will provide one command of the form javac -processor ... MyFile.java. In
more complex cases, it might be a set of commands clone a repository, check out a branch, and run a build
command. Include commands to install software and set environment variables if necessary.
If you encountered the problem in an IDE, reproduce it from the command line; if you cannot, report the bug to
the IDE integration. If you encountered the problem when using a build system, it is most useful to the Checker
Framework developers if you provide a single javac command rather than a build file.
It can be helpful to add
-version -Aversion -AprintGitProperties -verbose -AprintVerboseGenerics
to the javac options. This causes the compiler to output debugging information, including its version number.

Inputs Include all files that are necessary to reproduce the problem. This includes every file that is used by any of the
commands you reported, and possibly other files as well. This is not necessary if the commands you provided
obtain the code that is type-checked.
If you cannot share your code, create a new, small test case. (A small test case is helpful even if your code is
not secret!) If the Checker Framework crashed, the progress tracing options (Section 36.12.4) can be helpful in
determining which file the Checker Framework was processing when it crashed.
Minimization: If your command invokes a build system such as Gradle or Maven, it can be helpful to the
maintainers if you are able to reduce it to a single javac invocation on a single file. This also rules out the
possibility that the problem is with the build system integration rather than the checker itself. If you use an
invasive annotation processor such as Lombok, then try to reproduce the problem without it — this will indicate
whether the problem is in the Checker Framework proper or in its interaction with Lombok.

Output Indicate exactly what the result was by attaching a file or using cut-and-paste from your command shell. Don’t
merely describe it in words, don’t use a screenshot, and don’t provide just part of the output.

Expectation If the problem is not a crash, then indicate what you expected the result to be, since a bug is a difference
between desired and actual outcomes. Also, please indicate why you expected that result — explaining your
reasoning can reveal how your reasoning is different than the checker’s and which one is wrong. Remember that
the checker reasons modularly and intraprocedurally: it examines one method at a time, using only the method
signatures of other methods.
It can also be helpful to indicate what you have already done to try to understand the problem. Did you do any
additional experiments? What parts of the manual did you read, and what else did you search for in the manual?
Without this information, the maintainers may give you redundant suggestions or may waste time re-doing work
you have already done.

313

https://github.com/typetools/checker-framework/issues
https://github.com/typetools/checker-framework/issues

When reporting bugs, please focus on realistic scenarios and well-written code. We are sure that you can make up
artificial code that stymies the type-checker! Those aren’t a good use of your time to report nor the maintainers’ time to
evaluate and fix.

40.2.1 Problems with annotated libraries
If a checker reports a warning because a library contains incorrect annotations, then please open a pull request
that adds the annotations. If the library’s maintainers have added annotations, make a pull request to them. If the
Checker Framework maintainers have added annotations, you can find the annotated source in https://github.com/
typetools/.

If a checker reports a warning because a library is not annotated, please do not open a GitHub issue. Instead, we
appreciate pull requests to help us improve the annotations. Alternatively or in the interim, you can use stub files as
described in Section 35.5.

For either approach, please see Chapter 35, page 227 for tips about writing library annotations.
Thanks for your contribution to the annotated libraries!

40.3 Building from source
The Checker Framework release (Section 1.3) contains everything that most users need, both to use the distributed
checkers and to write your own checkers. This section describes how to compile its binaries from source. You will be
using the latest development version of the Checker Framework, rather than an official release.

The Checker Framework runs under any JDK version 8 or later. However, you must build the Checker Framework
under JDK 11 or later.

40.3.1 Install prerequisites
You need to install several packages in order to build the Checker Framework. Follow the instructions for your operating
system. If your OS is not listed, adapt the instructions for an existing OS; for example, other Linux distributions will be
similar to Ubuntu.

Put the setting of the JAVA_HOME environment variable in a startup file such as .bash_profile or .bashrc, if
JAVA_HOME is not already set appropriately. It must be the location of your JDK installation (not the JRE installation).
You may need to log out and log back in for the setting to take effect.

Ubuntu Run the following commands, which should be the same as those in checker/bin-devel/Dockerfile-ubuntu-jdkXX-plus,
where XX is a JDK version such as 8, 11, 17, etc.:
(This list should be the same as in checker/bin-devel/Dockerfile-ubuntu-jdk17-plus; if your build fails
because it is missing a package, try the commands there and report a bug in this manual.)

sudo apt-get -qqy update
sudo apt-get -qqy install \
openjdk-17-jdk \
ant cpp git gradle jq jtreg7 libcurl3-gnutls \
make maven pipx python3-requests python3-setuptools unzip wget \
autoconf devscripts dia hevea imagemagick junit jtreg7 latexmk \
librsvg2-bin libasound2-dev libcups2-dev libfontconfig1-dev \
libx11-dev libxext-dev libxrender-dev libxrandr-dev libxtst-dev libxt-dev \
pdf2svg rsync shellcheck \
texlive-font-utils texlive-fonts-recommended \
texlive-latex-base texlive-latex-extra texlive-latex-recommended

pipx install black
pipx install flake8

314

https://github.com/typetools/
https://github.com/typetools/

pipx install html5validator
pipx ensurepath

You may have to answer questions about which time zone your computer is in.
In a startup file, write:
export JAVA_HOME=${JAVA_HOME:-$(dirname "$(dirname "$(readlink -f "$(which javac)")")")}

macOS If you employ homebrew to install packages, run the following commands:

brew update
brew install git graphviz ant hevea maven librsvg unzip make
brew install --cask temurin17
brew install --cask mactex

Note: Running brew install -cask temurin17 is only necessary if you do not already have a JDK that is
compatible with the Checker Framework installed.
Make a latex directory and copy hevea.sty file into it. (https://hevea.inria.fr/ gives the current version
number.)

mkdir -p $HOME/Library/texmf/tex/latex
cp -p /opt/homebrew/Cellar/hevea/2.36/lib/hevea/hevea.sty $HOME/Library/texmf/tex/latex/

Note: If copy permission is denied, try sudo.
If echo $JAVA_HOME outputs nothing (that is, if the JAVA_HOME environment variable is not set), then write the
following in a startup file:

export JAVA_HOME=$(/usr/libexec/java_home -v XX)

or

export JAVA_HOME=/Library/Java/JavaVirtualMachines/adoptopenjdk-XX.jdk/Contents/Home/

In the command, XX is a JDK version such as 17, 21, 24, etc.
Windows To build on Windows 10 or later, run bash to obtain a version of Ubuntu (provided by the Windows

Subsystem for Linux) and follow the Ubuntu instructions.

40.3.2 Obtain the source
Obtain the latest source code from the version control repository:

git clone https://github.com/typetools/checker-framework.git checker-framework
export CHECKERFRAMEWORK=$(pwd)/checker-framework

You might want to add an export CHECKERFRAMEWORK=... line to your .bashrc file.

40.3.3 Build the Checker Framework
1. As with any Gradle project, run ./gradlew assemble to build the Checker Framework:

cd $CHECKERFRAMEWORK
./gradlew assemble

Your antivirus program (e.g., Windows Security Virus & threat protection) might make the build run very slowly,
or might make it seem to stall. Just give it time.
If compilation fails, but you have not made any changes, then perhaps one of the supporting repositories is in an
inconsistent state; see Section 40.3.7.

2. Once it is built, you may wish to put the Checker Framework’s javac even earlier in your PATH:

export PATH=$CHECKERFRAMEWORK/checker/bin:${PATH}

315

https://brew.sh
https://hevea.inria.fr/

The Checker Framework’s javac ensures that all required libraries are on your classpath and boot classpath, but
is otherwise identical to the javac Java compiler.
Putting the Checker Framework’s javac earlier in your PATH will ensure that the Checker Framework’s version
is used.

3. If you wish to use Maven or Gradle, publish the Checker Framework artifacts to a local Maven repository, run
./gradlew publishToMavenLocal

cd $CHECKERFRAMEWORK
./gradlew publishToMavenLocal

Then use the Maven or Gradle instructions, but modify the version number for the Checker Framework artifacts.
Use the version number that is output when you run ./gradlew version.

4. Test that everything works:

• Run ./gradlew allTests:
cd $CHECKERFRAMEWORK
./gradlew allTests

• Run the Nullness Checker examples (see Section 3.5, page 38).

40.3.4 Build the Checker Framework Manual (this document)
1. Install needed packages; see Section 40.3.1 for instructions.
2. Run make in the docs/manual directory to build both the PDF and HTML versions of the manual.

40.3.5 Code style, IDE configuration, pull requests, etc.
Please see the Checker Framework Developer Manual.

40.3.6 Enable continuous integration builds
We strongly recommend that you enable continuous integration (CI) builds on your fork of the projects, so that you
learn quickly about errors. See the CI instructions in the Checker Framework Developer Manual.

Debugging continuous integration builds

If a continuous integration job is failing, you can reproduce the problem locally. The CI jobs all run within Docker
containers. Install Docker on your local computer, then perform commands like the following to get a shell within
Docker:

docker pull mdernst/cf-ubuntu-jdk21
docker run -it mdernst/cf-ubuntu-jdk21 /bin/bash

Then, you can run arbitrary commands, including those that appear in the CI configuration files. For example:

git clone --filter=blob:none -b docker-ubuntu-24-10 https://github.com/mernst/checker-framework.git
cd checker-framework
export CHECKERFRAMEWORK=$(pwd)
alias javacheck=’$CHECKERFRAMEWORK/checker/bin/javac’
export NO_WRITE_VERIFICATION_METADATA=true
checker/bin-devel/test-cftests-junit.sh

316

https://checkerframework.org/manual/developer-manual.html
https://checkerframework.org/manual/developer-manual.html#ci

40.3.7 Related repositories
Building the Checker Framework depends on other repositories, such as Annotation Tools and Stub Parser. You need to
have compatible versions of each.

After you git pull in one of the repositories, you should do so in the others as well. The script checker/bin-devel/clone-related.sh
pulls all the related repositories, so to build the latest development version of the Checker Framework you can do

cd $CHECKERFRAMEWORK
git pull
checker/bin-devel/clone-related.sh

40.4 Contributing
We welcome contributions and pull requests. Section 40.3 tells you how to set up your development environment to
compile the Checker Framework, and the Checker Framework Developer Manual gives more information.

One good way to contribute is to give feedback about your use of the tool. There is a list of potential projects for
new contributors at https://checkerframework.org/manual/new-contributor-projects.html. Or, you can
fix a bug that you have encountered during your use of the Checker Framework.

40.4.1 Contributing fixes (creating a pull request)
Please see the pull requests section of the Checker Framework Developer Manual. Thanks in advance for your
contributions!

The easiest bugs to fix for a newcomer are labeled as “good first issue”.
Please do not spam the issue tracker with requests to assign an issue to you. If you want to contribute by fixing an

issue, just open a pull request that fixes it. You can do that even if the issue is already assigned to someone.
Please do not spam the issue tracker asking how to get started fixing a bug. If you have concrete questions, please

ask them and we will be happy to assist you. If you don’t know how to get started fixing a particular bug, then you
should contribute to the project in other ways. Thanks!

40.5 Credits and changelog
Differences from previous versions of the checkers and framework can be found in the docs/CHANGELOG.md file. This
file is included in the Checker Framework distribution and is also available on the web at https://checkerframework.
org/CHANGELOG.md.

Developers who have contributed code to the Checker Framework include Abraham Lin, Adian Qian, Aditya
Singh, Akash Srivastava, Alex Liu, Alvin Abdagic, Anant Jain, Anatoly Kupriyanov, Andy Turner, Aosen Xiong,
Arie van Deursen, Artem Pyanykh, Arthur Baars, Ashish Rana, Asumu Takikawa, Atul Dada, Ayush Agarwal, Baorui
Zhou, Basil Peace, Benno Stein, Bohdan Sharipov, Brian Corcoran, Calvin Loncaric, Charles Chen, Charlie Garrett,
Chris Povirk, Chris Toxiadis, Christopher Mackie, Colin S. Gordon, Craig Day, Dan Brotherston, Dan Brown, Daniel
Zhu, David Lazar, David McArthur, Di Wang, Dilraj Singh, Dmitriy Shepelev, Eric Spishak, Ethan Koenig, Farzan
Mirshekari, Felipe R. Monteiro, Florian Lanzinger, Gautam Korlam, Google Inc. (via @wmdietlGC), Haaris Ahmed,
Haifeng Shi, Hamed Taghani, Heath Borders, Ivory Wang, Jakub Vrána, James Yoo, Jason Waataja, Javier Thaine,
Jeff Luo, Jenny Xiang, Jeroen Meijer, Jianchu Li, Jiangqi Zhang, Jiasen (Jason) Xu, Joe Schafer, John Krah, John
Vandenberg, JohnnyJayJay, Jonathan Burke, Jonathan Nieder, Joshua Peterson, Jugal Mistry, Junhao Hu, Kanak Das,
Kartikeya Goswami, Kenneth Knowles, Kivanc Muslu, Konstantin Weitz, Lazaro Clapp, Leo Liu, Liam Miller-Cushon,
Lian Sun, Luqman Aden, Mahmood Ali, Manu Sridharan, Mark Roberts, Markus Frohme, Martin Kellogg, Matt
Mullen, Maximilian Gama, Michael Bayne, Michael Coblenz, Michael Ernst, Michael Hixson, Michael Sloan, Michal
Stehlik, Mier Ta, Mrigank Arora, Muyeed Ahmed, Narges Shadab, Neil Brown, Nhat Dinh, Nhat Nguyen, Nicholas
Breen, Nikhil Shinde, Nima Karimipour, Nitin Kumar Das, Oleg Shchelykalnov, Olek Wojnar, Pascal Wittmann, Patrick
Meiring, Paul Vines, Paulo Barros, Philip Lai, Piyush Jha, Pratik Bhusal, Prionti Nasir, Priti Chattopadhyay, Rashmi

317

https://github.com/typetools/annotation-tools/
https://github.com/typetools/stubparser/
https://checkerframework.org/manual/developer-manual.html
https://checkerframework.org/manual/new-contributor-projects.html
https://checkerframework.org/manual/developer-manual.html#pull-requests
https://github.com/typetools/checker-framework/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22
https://checkerframework.org/CHANGELOG.md
https://checkerframework.org/CHANGELOG.md

Mudduluru, Ravi Roshan, Renato Athaydes, René Just, René Kraneis, Rob Bygrave, Ruturaj Mohanty, Ryan Oblak,
Sadaf Tajik, Sagar Tewari, Sanjay Malakar, Sascha Kehrli, Sean C. Sullivan, Sean McLaughlin, Sebastian Schuberth,
Shinya Yoshida, Shubham Raj, Sidney Monteiro, Simon Gerst, Stefan Heule, Steph Dietzel, Stephan Schroevers, Stuart
Pernsteiner, Suzanne Millstein, Thomas Schweizer, Thomas Weißschuh, Tony Wang, Trask Stalnaker, Travis Haagen,
Utsav Oza, Vatsal Sura, Vitalii Ananiev, Vladimir Sitnikov, Vlastimil Dort, Weitian Xing, Werner Dietl, Zhiping Cai.

In addition, too many users to list have provided valuable feedback, which has improved the toolset’s design and
implementation. Thanks for your help!

40.6 License
Two different licenses apply to different parts of the Checker Framework.

• The Checker Framework itself is licensed under the GNU General Public License (GPL), version 2, with the
classpath exception. This is the same license that OpenJDK is licensed under. Just as compiling your code with
javac does not infect your code with the GPL, type-checking your code with the Checker Framework does not
infect your code with the GPL. Running the Checker Framework during development has no effect on your
intellectual property or licensing.
If you want to ship the Checker Framework as part of your product, then your product may need to be licensed
under the GPL. Because of the classpath exception, you can include parts of the Checker Framework in your
product, even if your product uses a different license. For example, Google’s Error Prone and Uber’s NullAway
both use the Checker Framework internally, but neither one is licensed under the GPL.

• The more permissive MIT License applies to code that you might want to include in your own program, such as
the annotations and run-time utility classes.

For details, see file LICENSE.txt.

40.7 Publications
Here are some papers that use the Checker Framework; for instance, they build a type-checker on top of the Checker
Framework, or their methodology depends on using the Checker Framework. (It is not papers that merely cite the
Checker Framework.) This list is incomplete; if you know of a paper that is missing, please let us know so that we can
add it. Most educational use of the Checker Framework is never published, and most commercial use of the Checker
Framework is never discussed publicly. Most of the papers are available for free online; do a web search on the title.

• Practical pluggable types for Java (ISSTA 2008) [PAC+08]
• Building and using pluggable type systems with the Checker Framework (ECOOP 2008) [Ern08a]
• Type-Based Object Immutability with Flexible Initialization (ECOOP 2009) [HP09]
• The nullness analyser of Julia (LPAR 2010) [Spo10]
• Static checking of safety critical Java annotations (JTRES 2010) [TPV10]
• Ownership and immutability in generic Java (OOPSLA 2010) [ZPL+10]
• Rethinking the economics of software engineering (FOSER 2010) [SE10]
• Applying uniqueness to the Java language (Master’s Thesis, 2010) [Har10]
• TIFI+: A Type Checker for Object Immutability with Flexible Initialization (Diploma thesis, 2010) [Noa10]
• Building and using pluggable type-checkers (ICSE 2011) [DDE+11]
• Inference of field initialization (ICSE 2011) [SE11]
• EnerJ: approximate data types for safe and general low-power computation (PLDI 2011) [SDF+11]
• Tunable static inference for generic universe types (ECOOP 2011) [DEM11]
• Separating ownership topology and encapsulation with generic universe types (TOPLAS 2011) [DDM11]
• The design, implementation and evaluation of a pluggable type checker for thread-locality in Java (Master’s

Thesis, 2011) [She11]
• Towards Effective Inference and Checking of Ownership Types (IWACO 2011) [HM11]

318

https://github.com/google/error-prone
https://github.com/uber/NullAway
https://raw.githubusercontent.com/typetools/checker-framework/master/LICENSE.txt

• Static Dominance Inference (TOOLS 2011) [MV11]
• A Static Memory Safety Annotation System for Safety Critical Java (RTSS 2011) [TPNV11]
• Inference and checking of object ownership (ECOOP 2012) [HDME12]
• A type system for regular expressions (FTfJP 2012) [SDE12]
• Verification games: making verification fun (FTfJF 2012) [DDE+12]
• Reim & ReImInfer: checking and inference of reference immutability and method purity (OOPSLA 2012) [HMDE12]
• ReImInfer: method purity inference for Java (FSE 2012) [HM12]
• Inference and checking of context-sensitive pluggable types (FSE 2012) [MH12]
• Documenting Java database access with type annotations (WorldComp 2012) [Ber12]
• Immutability (book chapter, 2013) [PÖZE13]
• JavaUI: Effects for controlling UI object access (ECOOP 2013) [GDEG13]
• Reified type parameters using Java annotations (GPCE 2013) [GBS13]
• Evaluating the Accuracy of Annotations in the Loci 3.0 Pluggable Type Checker (Master’s Thesis, 2013) [Zaz13]
• Composing polymorphic information flow systems with reference immutability (FTfJP 2013) [MH13]
• Type-based taint analysis for Java web applications (FASE 2014) [HDM14]
• A type system for format strings (ISSTA 2014) [WKSE14]
• Collaborative verification of information flow for a high-assurance app store (CCS 2014) [EJM+14]
• Cascade: A universal type qualifier inference tool (ICSE 2015) [VPEJ15]
• An inference and checking framework for context-sensitive pluggable types (PhD thesis, 2014) [Hua14]
• CFL-reachability and context-sensitive integrity types (PPPJ 2014) [MHD14]
• Static analysis of implicit control flow: resolving Java reflection and Android intents (ASE 2015) [BJM+15]
• Scalable and Precise Taint Analysis for Android (ISSTA 2015) [HDMD15]
• A context-sensitive security type system for Java (Master’s thesis, 2015) [Kai15]
• Locking discipline inference and checking (ICSE 2016) [ELM+16]
• Semantics for locking specifications (NFM 2016) [EMMS16]
• JCrypt: Towards computation over encrypted data (PPPJ 2016) [DMD16a]
• Preventing signedness errors in numerical computations in Java (FSE 2016) [Mac16]
• Enforcing correct array indexes with a type system (FSE 2016) [San16]
• Gradual Pluggable Typing in Java (Master’s Thesis, 2016) [Bro16]
• Security analysis of the IRMA app using SPARTA and fuzzing (Bachelor Thesis, 2016) [Bri16]
• Static Analysis and Program Transformation for Secure Computation on the Cloud (ISSTA 2016 Doctoral

Symposium) [DMD16b]
• Towards using concurrent Java API correctly (ICECCS 2016) [LBSD16]
• Reflection-aware static analysis of Android apps (ASE 2016) [LBOK16]
• A crowdsourcing game for formal software verification (Bachelor’s thesis) [Iri16]
• Exploring Language Support for Immutability (ICSE 2016) [CSA+16]
• Granullar: Gradual nullable types for Java (CC 2017) [BDL17]
• Type checking for reliable APIs (WAPI 2017) [KS17]
• Glacier: transitive class immutability for Java (ICSE 2017) [CNA+17]
• A General Pluggable Type Inference Framework and its use for Data-flow Analysis (Master’s Thesis, 2017) [Li17]
• Null safety benchmarks for object initialization (ISP RAS, 2017) [Kog17]
• Static analysis and program transformation for secure computation on the cloud (PhD Thesis, 2017) [Don17]
• Spartan Jester: end-to-end information flow control for hybrid Android applications (SPW 2017) [SCN17]
• Lightweight verification of array indexing (ISSTA 2018) [KDME18]
• Safe Stream-based Programming with Refinement Types (ASE 2018) [SCSC18]
• Don’t miss the end: Preventing unsafe end-of-file comparisons (NFM 2018) [CD18]
• Context sensitive typechecking and inference: ownership and immutability (Master’s Thesis, 2018) [Ta18]
• Usable and Sound Static Analysis through its Integration into Automated and Interactive Workflows (Master’s

Thesis, 2018) [Val18]
• Pluggable properties for program understanding: Ontic type checking and inference (Master’s Thesis, 2018) [Che18]
• Definite reference mutability (ECOOP 2018) [Mil18]

319

• Googletest to CUTE converter (Technical report, 2018) [GV18]
• NullAway: Practical type-based null safety for Java (ESEC/FSE 2019) [BCS19]
• Compile-time detection of machine image sniping (ASE 2019) [Kel19]
• Type-Directed Bounding of Collections in Reactive Programs (VMCAI 2019) [LČCT19]
• Scala with Explicit Nulls (Master’s Thesis, 2019) [NR19]
• A machine-checked proof of security for AWS Key Management Service (CCS, 2019) [ABB+19]
• Synthesis of assurance cases for software certification (ICSE NIER 2020) [BKM20]
• Verifying object construction (ICSE 2020) [KRS+20]
• Precise inference of expressive units of measurement types (OOPSLA 2020) [XLD20]
• Rethinking safe consistency in distributed object-oriented programming (OOPSLA 2020) [KEW+20]
• Continuous compliance (ASE 2020) [KSTE20]
• Light-weight verification of cryptographic API usage (Master’s Thesis, 2020) [Xin20]
• Type checking and whole-program inference for value range analysis (Master’s Thesis, 2020) [Xia20]
• User-Centered Design of Principled Programming Languages (PhD thesis, 2020) [Cob20]
• Behavioural types for memory and method safety in a core object-oriented language (APLAS 2020) [BFG+20]
• Scala with Explicit Nulls (ECOOP 2020) [NZL+20]
• Property Types in Java: Combining Type Systems and Deductive Verification (Master’s Thesis, 2021) [Lan21]
• Interval Type Inference: Improvements and Evaluations (Master’s Thesis, 2021) [Wan21]
• Coping with the reality: adding crucial features to a typestate-oriented language (Master’s Thesis, 2021) [dLM21]
• Java Typestate Checker (Coordination 2021) [MGR21]
• Ensuring correct cryptographic algorithm and provider usage at compile time (FTFjP 2021) [XCD21]
• Scalability and Precision by Combining Expressive Type Systems and Deductive Verification (OOPSLA

2021) [LWUD21]
• Automatic Annotation of Confidential Data in Java Code (FPS 2021) [BBRS21]
• Accumulation Analysis (ECOOP 2022) [KSSE22]
• Lightweight Verification via Specialized Typecheckers (PhD thesis, 2022) [Kel22]

320

Bibliography

[ABB+19] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Matthew Campagna, Ernie Cohen, Benjamin
Gregoire, Vitor Pereira, Bernardo Portela, Pierre-Yves Strub, and Serdar Tasiran. A machine-checked
proof of security for AWS Key Management Service. In CCS 2019: Proceedings of the 21st ACM
Conference on Computer and Communications Security, page 63–78, London, UK, November 2019.

[AQKE09] Shay Artzi, Jaime Quinonez, Adam Kieżun, and Michael D. Ernst. Parameter reference immutability:
Formal definition, inference tool, and comparison. Automated Software Engineering, 16(1):145–192,
March 2009.

[Art01] Cyrille Artho. Finding faults in multi-threaded programs. Master’s thesis, Swiss Federal Institute of
Technology, March 15, 2001.

[BBRS21] Iulia Bastys, Pauline Bolignano, Franco Raimondi, and Daniel Schoepe. Automatic annotation of
confidential data in Java code. In FPS 2021: 14th International Symposium on Foundations & Practice of
Security, Paris, France, December 2021.

[BCS19] Subarno Banerjee, Lazaro Clapp, and Manu Sridharan. NullAway: Practical type-based null safety
for Java. In ESEC/FSE 2019: The ACM 27th joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE), pages 740–750, Tallinn, Estonia,
August 2019.

[BDL17] Dan Brotherston, Werner Dietl, and Ondřej Lhoták. Granullar: Gradual nullable types for Java. In CC
2017: 26th International Conference on Compiler Construction, pages 87–97, Austin, TX, USA, February
2017.

[Ber12] Paul L. Bergstein. Documenting Java database access with type annotations. In WorldComp 2012:
Proceedings of The 2012 World Congress in Computer Science, Computer Engineering, and Applied
Computing, 2012.

[BFG+20] Mario Bravetti, Adrian Francalanza, Iaroslav Golovanov, Hans Hüttel, Mathias S. Jakobsen, Mikkel K.
Kettunen, and António Ravara. Behavioural types for memory and method safety in a core object-oriented
language. In APLAS 2020: 18th Asian Symposium on Programming Languages and Systems, page
105–124, Fukuoka, Japan, November 2020.

[BJM+15] Paulo Barros, René Just, Suzanne Millstein, Paul Vines, Werner Dietl, Marcelo d’Amorim, and Michael D.
Ernst. Static analysis of implicit control flow: Resolving Java reflection and Android intents. In ASE
2015: Proceedings of the 30th Annual International Conference on Automated Software Engineering,
pages 669–679, Lincoln, NE, USA, November 2015.

[BKM20] Hamid Bagheri, Eunsuk Kang, and Niloofar Mansoor. Synthesis of assurance cases for software certifica-
tion. In ICSE NIER, Proceedings of the 42nd International Conference on Software Engineering, New
Ideas and Emerging Results Track, pages 61–64, Seoul, Korea, May 2020.

321

[Bri16] Laurens Brinker. Security analysis of the IRMA app using SPARTA and fuzzing. Bachelor thesis,
Radboud University, Nijmegen, Netherlands, 2016.

[Bro16] Daniel Brotherston. Gradual pluggable typing in Java. Master’s thesis, U. of Waterloo, Waterloo, Ontario,
Canada, 2016.

[CD18] Charles Zhuo Chen and Werner Dietl. Don’t miss the end: Preventing unsafe end-of-file comparisons. In
NFM 2018: 10th NASA Formal Methods Symposium, pages 87–94, Newport News, VA, USA, April 2018.

[Che18] Zhuo Chen. Pluggable properties for program understanding: Ontic type checking and inference. Master’s
thesis, U. of Waterloo, Waterloo, Ontario, Canada, 2018.

[CNA+17] Michael Coblenz, Whitney Nelson, Jonathan Aldrich, Brad Myers, and Joshua Sunshine. Glacier:
Transitive class immutability for Java. In ICSE 2017, Proceedings of the 39th International Conference
on Software Engineering, pages 496–506, Buenos Aires, Argentina, May 2017.

[Cob20] Michael Coblenz. User-Centered Design of Principled Programming Languages. PhD thesis, Carnegie
Mellon University, aug 2020. TR CMU-CS-20-127.

[Cop05] Tom Copeland. PMD Applied. Centennial Books, November 2005.

[Cro06] Jose Cronembold. JSR 198: A standard extension API for Integrated Development Environments.
https://jcp.org/en/jsr/detail?id=198, May 8, 2006.

[CSA+16] Michael Coblenz, Joshua Sunshine, Jonathan Aldrich, Brad Myers, Sam Weber, and Forrest Shull.
Exploring language support for immutability. In ICSE 2016, Proceedings of the 38th International
Conference on Software Engineering, pages 736–747, Austin, TX, USA, May 2016.

[Dar06] Joe Darcy. JSR 269: Pluggable annotation processing API. https://jcp.org/en/jsr/detail?id=269,
May 17, 2006. Public review version.

[DDE+11] Werner Dietl, Stephanie Dietzel, Michael D. Ernst, Kıvanç Muşlu, and Todd Schiller. Building and using
pluggable type-checkers. In ICSE 2011, Proceedings of the 33rd International Conference on Software
Engineering, pages 681–690, Waikiki, Hawaii, USA, May 2011.

[DDE+12] Werner Dietl, Stephanie Dietzel, Michael D. Ernst, Nathaniel Mote, Brian Walker, Seth Cooper, Timothy
Pavlik, and Zoran Popović. Verification games: Making verification fun. In FTfJP: 14th Workshop on
Formal Techniques for Java-like Programs, pages 42–49, Beijing, China, June 2012.

[DDM11] Werner Dietl, Sophia Drossopoulou, and Peter Müller. Separating ownership topology and encapsulation
with Generic Universe Types. ACM Transactions on Programming Languages and Systems, 33(6):20:1–62,
December 2011.

[DEM11] Werner Dietl, Michael D. Ernst, and Peter Müller. Tunable static inference for Generic Universe Types. In
ECOOP 2011 — Object-Oriented Programming, 25th European Conference, pages 333–357, Lancaster,
UK, July 2011.

[dLM21] João Daniel da Luz Mota. Coping with the reality: adding crucial features to a typestate-oriented language.
Master’s thesis, Universidade Nova de Lisboa, Faculdade de Ciências e Tocnologia, February 2021.

[DMD16a] Yao Dong, Ana Milanova, and Julian Dolby. JCrypt: Towards computation over encrypted data. In PPPJ
2016: Proceedings of the 13th International Conference on Principles and Practice of Programming in
Java: Virtual Machines, Languages, and Tools, Lugano, Switzerland, July 2016.

[DMD16b] Yao Dong, Ana Milanova, and Julian Dolby. Static analysis and program transformation for secure
computation on the cloud. In ISSTA 2016 Doctoral Symposium, Saarbrücken, Genmany, July 2016.

322

https://jcp.org/en/jsr/detail?id=198
https://jcp.org/en/jsr/detail?id=269

[Don17] Yao Dong. Static analysis and program transformation for secure computation on the cloud. PhD thesis,
Rensselaer Polytechnic Institute, December 2017.

[EJM+14] Michael D. Ernst, René Just, Suzanne Millstein, Werner Dietl, Stuart Pernsteiner, Franziska Roesner, Karl
Koscher, Paulo Barros, Ravi Bhoraskar, Seungyeop Han, Paul Vines, and Edward X. Wu. Collaborative
verification of information flow for a high-assurance app store. In CCS 2014: Proceedings of the 21st
ACM Conference on Computer and Communications Security, pages 1092–1104, Scottsdale, AZ, USA,
November 2014.

[ELM+16] Michael D. Ernst, Alberto Lovato, Damiano Macedonio, Fausto Spoto, and Javier Thaine. Locking
discipline inference and checking. In ICSE 2016, Proceedings of the 38th International Conference on
Software Engineering, pages 1133–1144, Austin, TX, USA, May 2016.

[EMMS16] Michael D. Ernst, Damiano Macedonio, Massimo Merro, and Fausto Spoto. Semantics for locking
specifications. In NFM 2016: 8th NASA Formal Methods Symposium, pages 355–372, Minneapolis, MN,
USA, June 2016.

[Ern08a] Michael D. Ernst. Building and using pluggable type systems with the Checker Framework. In ECOOP
2008 — Object-Oriented Programming, 22nd European Conference, Paphos, Cyprus, July 2008. Tool
demo.

[Ern08b] Michael D. Ernst. Type Annotations specification (JSR 308). https://checkerframework.org/
jsr308/, September 12, 2008.

[GBS13] Prodromos Gerakios, Aggelos Biboudis, and Yannis Smaragdakis. Reified type parameters using java an-
notations. In GPCE 2013: Proceedings of the 12th International Conference on Generative Programming
and Component Engineering, pages 61–64, Indianapolis, IN, USA, October 2013.

[GDEG13] Colin S. Gordon, Werner Dietl, Michael D. Ernst, and Dan Grossman. JavaUI: Effects for controlling
UI object access. In ECOOP 2013 — Object-Oriented Programming, 27th European Conference, pages
179–204, Montpellier, France, July 2013.

[Goe06] Brian Goetz. The pseudo-typedef antipattern: Extension is not type definition. https:
//web.archive.org/web/20171025205847/https://www.ibm.com/developerworks/java/
library/j-jtp02216/, February 21, 2006.

[GPB+06] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes, and Doug Lea. Java Concur-
rency in Practice. Addison-Wesley, 2006.

[GV18] Sascha Gschwind and Renato Venzin. Googletest to CUTE converter. Technical report, University of
Applied Sciences Rapperswil, Rapperswil, Switzerland, 2018.

[Har10] Artemus Harper. Applying uniqueness to the Java language. Master’s thesis, Washington State University,
2010.

[HDM14] Wei Huang, Yao Dong, and Ana Milanova. Type-based taint analysis for Java web applications. In FASE
2014: Fundamental Approaches to Software Engineering, pages 140–154, Grenoble, France, April 2014.

[HDMD15] Wei Huang, Yao Dong, Ana Milanova, and Julian Dolby. Scalable and precise taint analysis for Android.
In ISSTA 2015, Proceedings of the 2015 International Symposium on Software Testing and Analysis,
pages 106–117, Baltimore, MD, USA, July 2015.

[HDME12] Wei Huang, Werner Dietl, Ana Milanova, and Michael D. Ernst. Inference and checking of object
ownership. In ECOOP 2012 — Object-Oriented Programming, 26th European Conference, pages
181–206, Beijing, China, June 2012.

323

https://checkerframework.org/jsr308/
https://checkerframework.org/jsr308/
https://web.archive.org/web/20171025205847/https://www.ibm.com/developerworks/java/library/j-jtp02216/
https://web.archive.org/web/20171025205847/https://www.ibm.com/developerworks/java/library/j-jtp02216/
https://web.archive.org/web/20171025205847/https://www.ibm.com/developerworks/java/library/j-jtp02216/

[HM11] Wei Huang and Ana Milanova. Towards effective inference and checking of ownership types. In IWACO
2011: International Workshop on Aliasing, Confinement and Ownership in object-oriented programming,
Lancaster, UK, July 2011.

[HM12] Wei Huang and Ana Milanova. ReImInfer: Method purity inference for Java. In FSE 2012: Proceedings
of the ACM SIGSOFT 20th Symposium on the Foundations of Software Engineering, pages 1–4, Cary,
NC, USA, November 2012.

[HMDE12] Wei Huang, Ana Milanova, Werner Dietl, and Michael D. Ernst. ReIm & ReImInfer: Checking and
inference of reference immutability and method purity. In OOPSLA 2012, Object-Oriented Programming
Systems, Languages, and Applications, pages 879–896, Tucson, AZ, USA, October 2012.

[HP04] David Hovemeyer and William Pugh. Finding bugs is easy. In OOPSLA Companion: Companion to
Object-Oriented Programming Systems, Languages, and Applications, pages 132–136, Vancouver, BC,
Canada, October 2004.

[HP09] Christian Haack and Erik Poll. Type-based object immutability with flexible initialization. In ECOOP
2009 — Object-Oriented Programming, 23rd European Conference, pages 520–545, Genova, Italy, July
2009.

[HSP05] David Hovemeyer, Jaime Spacco, and William Pugh. Evaluating and tuning a static analysis to find null
pointer bugs. In PASTE 2005: ACM SIGPLAN/SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering (PASTE 2005), pages 13–19, Lisbon, Portugal, September 2005.

[Hua14] Wei Huang. An inference and checking framework for context-sensitive pluggable types. PhD thesis,
Rennselaer Polytechnic Institute, 2014.

[Iri16] Karamitrou Irini. A crowdsourcing game for formal software verification. Bachelor’s thesis, University
of Thessaly Polytechnic School Department of Electrical and Computer Engineering, Thessaly, Greece,
2016.

[Kai15] Benjamin Kaiser. A context-sensitive security type system for Java. Master’s thesis, Rennselaer Polytech-
nic Institute, Troy, NY, USA, April 2015.

[KDME18] Martin Kellogg, Vlastimil Dort, Suzanne Millstein, and Michael D. Ernst. Lightweight verification of
array indexing. In ISSTA 2018, Proceedings of the 2018 International Symposium on Software Testing
and Analysis, pages 3–14, Amsterdam, Netherlands, July 2018.

[Kel19] Martin Kellogg. Compile-time detection of machine image sniping. In ASE 2019: Proceedings of the
34th Annual International Conference on Automated Software Engineering, pages 1256–1258, San Diego,
CA, USA, September 2019.

[Kel22] Martin Kellogg. Lightweight Verification via Specialized Typecheckers. PhD thesis, University of
Washington Paul G. Allen School of Computer Science and Engineering, Seattle, WA, USA, June 2022.

[KEW+20] Mirko Köhler, Nafise Eskandani, Pascal Weisenburger, Alessandro Margara, and Guido Salvaneschi.
Rethinking safe consistency in distributed object-oriented programming. In OOPSLA 2020, Object-
Oriented Programming Systems, Languages, and Applications, Chicago, IL, USA, November 2020.

[Kog17] Alexander V. Kogtenkov. Null safety benchmarks for object initialization. Proceedings of the Institute for
System Programming of RAS, 29(6):135–150, 2017.

[KRS+20] Martin Kellogg, Manli Ran, Manu Sridharan, Martin Schäf, and Michael D. Ernst. Verifying object
construction. In ICSE 2020, Proceedings of the 42nd International Conference on Software Engineering,
pages 1447–1458, Seoul, Korea, May 2020.

324

[KS17] Maria Kechagia and Diomidis Spinellis. Type checking for reliable APIs. In WAPI ’17: Proceedings of
the 1st International Workshop on API Usage and Evolution, pages 15–18, Buenos Aires, Argentina, May
2017.

[KSSE21] Martin Kellogg, Narges Shadab, Manu Sridharan, and Michael D. Ernst. Lightweight and modular
resource leak verification. In ESEC/FSE 2021: The ACM 29th joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE), pages 181–192,
Athens, Greece, August 2021.

[KSSE22] Martin Kellogg, Narges Shadab, Manu Sridharan, and Michael D. Ernst. Accumulation analysis. In
ECOOP 2022 — Object-Oriented Programming, 33rd European Conference, pages 10:1–10:31, Berlin,
Germany, June 2022.

[KSTE20] Martin Kellogg, Martin Schäf, Serdar Tasiran, and Michael D. Ernst. Continuous compliance. In ASE
2020: Proceedings of the 35th Annual International Conference on Automated Software Engineering,
pages 511–523, Melbourne, Australia, September 2020.

[Lan21] Florian Lanzinger. Property types in Java: Combining type systems and deductive verification. Master’s
thesis, Karlsruher Institut für Technologie, feb 2021.

[LBOK16] Li Li, Tegawendé F. Bissyandé, Damien Octeau, and Jacques Klein. Reflection-aware static analysis of
Android apps. In ASE 2016: Proceedings of the 31st Annual International Conference on Automated
Software Engineering, pages 756–761, Singapore, Singapore, September 2016.

[LBR06] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A behavioral interface
specification language for Java. ACM SIGSOFT Software Engineering Notes, 31(3), March 2006.

[LBSD16] Shuang Liu, Guangdong Bai, Jun Sun, and J. Dong. Towards using concurrent Java API correctly. In
ICECCS 2016: 21st International Conference on Engineering of Complex Computer Systems, pages
219–222, Dubai, UAE, June 2016.

[LČCT19] Tianhan Lu, Pavol Černý, Bor-Yuh Evan Chang, and Ashutosh Trivedi. Type-directed bounding of
collections in reactive programs. In VMCAI 2019: 20th International Conference on Verification, Model
Checking and Abstract Interpretation, pages 275–296, Cascais, Portugal, January 2019.

[Li17] Jianchu Li. A general pluggable type inference framework and its use for data-flow analysis. Master’s
thesis, U. of Waterloo, Waterloo, Ontario, Canada, 2017.

[LWUD21] Florian Lanzinger, Alexander Weigl, Mattias Ulbrich, and Werner Dietl. Scalability and precision by
combining expressive type systems and deductive verification. Proceedings of the ACM on Programming
Languages, 5(OOPSLA), October 2021.

[Mac16] Christopher A. Mackie. Preventing signedness errors in numerical computations in Java. In FSE 2016:
Proceedings of the ACM SIGSOFT 24th Symposium on the Foundations of Software Engineering, pages
1148–1150, Seattle, WA, USA, November 2016.

[MGR21] João Mota, Marco Giunti, and António Ravara. Java typestate checker. In Coordination 2021: 23rd IFIP
WG 6.1 International Conference on Coordination Models and Languages, page 121–133, Valletta, Malta,
June 2021.

[MH12] Ana Milanova and Wei Huang. Inference and checking of context-sensitive pluggable types. In FSE
2012: Proceedings of the ACM SIGSOFT 20th Symposium on the Foundations of Software Engineering,
pages 1–4, Cary, NC, USA, November 2012.

[MH13] Ana Milanova and Wei Huang. Composing polymorphic information flow systems with reference
immutability. In FTfJP: 14th Workshop on Formal Techniques for Java-like Programs, pages 5:1–5:7,
Montpellier, France, July 2013.

325

[MHD14] Ana Milanova, Wei Huang, and Yao Dong. CFL-reachability and context-sensitive integrity types. In PPPJ
2014: Proceedings of the 2014 International Conference on Principles and Practice of Programming in
Java: Virtual Machines, Languages, and Tools, page 99–109, Cracow, Poland, September 2014.

[Mil18] Ana Milanova. Definite reference mutability. In ECOOP 2018 — Object-Oriented Programming, 32nd
European Conference, pages 25:1–25:30, Amsterdam, Netherlands, July 2018.

[MV11] Ana Milanova and Jan Vitek. Static dominance inference. In TOOLS 2011: Objects, Models, Components,
Patterns, 49th International Conference, pages 211–227, Zurich, Switzerland, June 2011.

[MWME21] Rashmi Mudduluru, Jason Waataja, Suzanne Millstein, and Michael D. Ernst. Verifying determinism
in sequential programs. In ICSE 2021, Proceedings of the 43rd International Conference on Software
Engineering, pages 37–49, Madrid, Spain, May 2021.

[Noa10] Gunther Noack. TIFI+: A type checker for object immutability with flexible initialization. Diploma
thesis, University of Kaiserslautern, March 2010.

[NR19] Abel Nieto Rodriguez. Scala with explicit nulls. Master’s thesis, University of Waterloo Department of
Computer Science, Waterloo, Ontario, Canada, December 2019.

[NZL+20] Abel Nieto, Yaoyu Zhao, Ondřej Lhoták, Angela Chang, and Justin Pu. Scala with explicit nulls. In
ECOOP 2020 — Object-Oriented Programming, 33rd European Conference, pages 25:1–25:26, online,
November 2020.

[PAC+08] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Jeff H. Perkins, and Michael D. Ernst. Practical
pluggable types for Java. In ISSTA 2008, Proceedings of the 2008 International Symposium on Software
Testing and Analysis, pages 201–212, Seattle, WA, USA, July 2008.

[PÖZE13] Alex Potanin, Johan Östlund, Yoav Zibin, and Michael D. Ernst. Immutability. In Aliasing in Object-
Oriented Programming, volume 7850 of LNCS, pages 233–269. Springer-Verlag, April 2013.

[QTE08] Jaime Quinonez, Matthew S. Tschantz, and Michael D. Ernst. Inference of reference immutability. In
ECOOP 2008 — Object-Oriented Programming, 22nd European Conference, pages 616–641, Paphos,
Cyprus, July 2008.

[San16] Joseph Santino. Enforcing correct array indexes with a type system. In FSE 2016: Proceedings of the
ACM SIGSOFT 24th Symposium on the Foundations of Software Engineering, pages 1142–1144, Seattle,
WA, USA, November 2016.

[SCN17] Julian Sexton, Andrey Chudnov, and David A. Naumann. Spartan Jester: end-to-end information flow
control for hybrid Android applications. In SPW 2017: Symposium Security and Privacy Workshops,
pages 157–162, San Jose, CA, USA, May 2017.

[SCSC18] Benno Stein, Lazaro Clapp, Manu Sridharan, and Bor-Yuh Evan Chang. Safe stream-based programming
with refinement types. In ASE 2018: Proceedings of the 33rd Annual International Conference on
Automated Software Engineering, pages 565–576, Montpellier, France, September 2018.

[SDE12] Eric Spishak, Werner Dietl, and Michael D. Ernst. A type system for regular expressions. In FTfJP: 14th
Workshop on Formal Techniques for Java-like Programs, pages 20–26, Beijing, China, June 2012.

[SDF+11] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze, and Dan Grossman.
EnerJ: Approximate data types for safe and general low-power computation. In PLDI 2011: Proceedings
of the ACM SIGPLAN 2011 Conference on Programming Language Design and Implementation, pages
164–174, San Jose, CA, USA, June 2011.

[SE10] Todd W. Schiller and Michael D. Ernst. Rethinking the economics of software engineering. In FoSER:
Workshop on the Future of Software Engineering Research, pages 325–330, Santa Fe, NM, USA, Novem-
ber 2010.

326

[SE11] Fausto Spoto and Michael D. Ernst. Inference of field initialization. In ICSE 2011, Proceedings of the
33rd International Conference on Software Engineering, pages 231–240, Waikiki, Hawaii, USA, May
2011.

[SGT+23] Narges Shadab, Pritam Gharat, Shrey Tiwari, Michael D. Ernst, Martin Kellogg, Shuvendu Lahiri, Akash
Lal, and Manu Sridharan. Inference of resource management specifications. Proceedings of the ACM on
Programming Languages, 7(OOPSLA2, article #282):1705–1728, October 2023.

[She11] Amanj Sherwany. The design, implementation and evaluation of a pluggable type checker for thread-
locality in Java. Master’s thesis, Uppsala University, Department of Information Technology, Uppsala,
Sweden, 2011.

[SM11] Alexander J. Summers and Peter Müller. Freedom before commitment: A lightweight type system
for object initialisation. In OOPSLA 2011, Object-Oriented Programming Systems, Languages, and
Applications, pages 1013–1032, Portland, OR, USA, October 2011.

[Spo10] F. Spoto. The nullness analyser of Julia. In LPAR 2010: Proceedings of the 16th International Conference
on Logic for Programming, Artificial Intelligence, and Reasoning, pages 405–424, Dakar, Senegal, April
2010.

[Sun21] Lian Sun. An immutability type system for classes and objects: Improvements, experiments, and
comparisons. Master’s thesis, University of Waterloo Department of Electrical and Computer Engineering,
Waterloo, Ontario, Canada, April 2021.

[Ta18] Mier Ta. Context sensitive typechecking and inference: Ownership and immutability. Master’s thesis,
University of Waterloo Department of Electrical and Computer Engineering, Waterloo, Ontario, Canada,
2018.

[TE05] Matthew S. Tschantz and Michael D. Ernst. Javari: Adding reference immutability to Java. In OOPSLA
2005, Object-Oriented Programming Systems, Languages, and Applications, pages 211–230, San Diego,
CA, USA, October 2005.

[TPNV11] Daniel Tang, Ales Plsek, Kelvin Nilsen, and Jan Vitek. A static memory safety annotation system for
Safety Critical Java. In RTSS 2011: The 32nd IEEE Real-Time Systems Symposium, Vienna, Austria,
November 2011.

[TPV10] Daniel Tang, Ales Plsek, and Jan Vitek. Static checking of safety critical Java annotations. In JTRES
2010: 8th International Workshop on Java Technologies for Real-time and Embedded Systems, pages
148–154, Prague, Czech Republic, August 2010.

[Val18] Lembit Valgma. Usable and sound static analysis through its integration into automated and interactive
workflows. Master’s thesis, U. of Tartu, Tartu, Estonia, 2018.

[VPEJ15] Mohsen Vakilian, Amarin Phaosawasdi, Michael D. Ernst, and Ralph E. Johnson. Cascade: A universal
programmer-assisted type qualifier inference tool. In ICSE 2015, Proceedings of the 37th International
Conference on Software Engineering, pages 234–245, Florence, Italy, May 2015.

[Wan21] Di Wang. Interval type inference: Improvements and evaluations. Master’s thesis, University of Waterloo
Department of Electrical and Computer Engineering, Waterloo, Ontario, Canada, December 2021.

[WKSE14] Konstantin Weitz, Gene Kim, Siwakorn Srisakaokul, and Michael D. Ernst. A type system for format
strings. In ISSTA 2014, Proceedings of the 2014 International Symposium on Software Testing and
Analysis, pages 127–137, San Jose, CA, USA, July 2014.

[WPM+09] Tobias Wrigstad, Filip Pizlo, Fadi Meawad, Lei Zhao, and Jan Vitek. Loci: Simple thread-locality for
Java. In ECOOP 2009 — Object-Oriented Programming, 23rd European Conference, pages 445–469,
Genova, Italy, July 2009.

327

[XCD21] Weitian Xing, Yuanhui Cheng, and Werner Dietl. Ensuring correct cryptographic algorithm and provider
usage at compile time. In FTfJP: 239d Workshop on Formal Techniques for Java-like Programs, page
43–50, Online, July 2021.

[Xia20] Tongtong Xiang. Type checking and whole-program inference for value range analysis. Master’s thesis,
University of Waterloo Department of Electrical and Computer Engineering, Waterloo, Ontario, Canada,
October 2020.

[Xin20] Weitian Xing. Light-weight verification of cryptographic API usage. Master’s thesis, U. of Waterloo,
Waterloo, Ontario, Canada, 2020.

[XLD20] Tongtong Xiang, Jeff Y. Luo, and Werner Dietl. Precise inference of expressive units of measurement
types. In OOPSLA 2020, Object-Oriented Programming Systems, Languages, and Applications, Chicago,
IL, USA, November 2020.

[Zaz13] Nosheen Zaza. Evaluating the accuracy of annotations in the Loci 3.0 pluggable type checker. Master’s
thesis, Uppsala University, Uppsala, Sweden, 2013.

[ZPA+07] Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, Adam Kieżun, and Michael D. Ernst. Object and
reference immutability using Java generics. In ESEC/FSE 2007: Proceedings of the 11th European
Software Engineering Conference and the 15th ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pages 75–84, Dubrovnik, Croatia, September 2007.

[ZPL+10] Yoav Zibin, Alex Potanin, Paley Li, Mahmood Ali, and Michael D. Ernst. Ownership and immutability in
generic Java. In OOPSLA 2010, Object-Oriented Programming Systems, Languages, and Applications,
pages 598–617, Revo, NV, USA, October 2010.

328

	Introduction
	How to read this manual
	How it works: Pluggable types
	Installation
	Example use: detecting a null pointer bug

	Using a checker
	Where to write type annotations
	Running a checker
	Using annotated libraries
	Summary of command-line options
	Checker auto-discovery
	Shorthand for built-in checkers

	What the checker guarantees
	Tips about writing annotations
	Write annotations before you run a checker
	How to get started annotating legacy code
	Annotations indicate non-exceptional behavior
	Subclasses must respect superclass annotations
	What to do if a checker issues a warning about your code
	Calls to unannotated code (legacy libraries)

	Nullness Checker
	What the Nullness Checker guarantees
	Nullness Checker optional warnings

	Nullness annotations
	Nullness qualifiers
	Nullness method annotations
	Initialization qualifiers
	Map key qualifiers

	Writing nullness annotations
	Implicit qualifiers
	Default annotation
	Conditional nullness
	Nullness and array initialization
	Nullness and conversions from collections to arrays
	Run-time checks for nullness
	Inference of @NonNull and @Nullable annotations

	Suppressing nullness warnings
	Suppressing warnings with assertions and method calls
	Null arguments to collection classes
	Conservative nullness annotations on the JDK

	Examples
	Tiny examples
	Example annotated source code
	Publications

	Tips for getting started
	Other tools for nullness checking
	Which tool is right for you?
	Incompatibility note about FindBugs and SpotBugs @Nullable
	Relationship to Optional<T>

	Initialization Checker
	Initialization qualifiers
	How an object becomes initialized
	@UnderInitialization examples
	Partial initialization
	Method calls from the constructor
	Initialization of circular data structures
	How to handle warnings
	Suppressing warnings
	More details about initialization checking

	Map Key Checker
	Invoking the Map Key Checker
	Map key annotations
	Default annotations
	Default for lower bounds
	Diagnosing the need for explicit @KeyFor on lower bounds

	Examples
	Local inference of @KeyFor annotations

	Optional Checker for possibly-present data
	How to run the Optional Checker
	Optional annotations
	Optional method annotations

	What the Optional Checker guarantees
	Suppressing optional warnings
	Suppressing warnings with assertions and method calls

	Interning Checker
	Interning annotations
	Interning qualifiers
	Interning method and class annotations

	Annotating your code with @Interned
	Interned classes
	The intern() methods
	Default qualifiers and qualifiers for literals
	InternedDistinct: values not equals() to any other value

	What the Interning Checker checks
	Imprecision (false positive warnings) of the Interning Checker

	Examples
	Other interning annotations

	Called Methods Checker for the builder pattern and more
	How to run the Called Methods Checker
	For Lombok users
	Specifying your code
	Default handling for Lombok and AutoValue
	Using the Called Methods Checker for properties unrelated to builders
	More information

	Resource Leak Checker for must-call obligations
	How to run the Resource Leak Checker
	Resource Leak Checker annotations
	Example of how safe resource usage is verified
	Aliased references and ownership transfer
	Owning parameters and exceptions
	Owning fields

	Resource aliasing
	A complete wrapper type example

	Creating obligations (how to re-assign a non-final owning field)
	Requirements at a call site of a @CreatesMustCallFor method
	Requirements at a declaration of a @CreatesMustCallFor method

	Ignored exception types
	Errors about field initialization
	Errors about unknown must call obligations
	Collections of resources
	Resource Leak Checker annotation inference algorithm

	Fake Enum Checker for fake enumerations
	Fake enum annotations
	What the Fenum Checker checks
	Running the Fenum Checker
	Suppressing warnings
	Example
	The fake enumeration pattern
	References

	Lock Checker
	What the Lock Checker guarantees
	Lock annotations
	Type qualifiers
	Declaration annotations

	Type-checking rules
	Polymorphic qualifiers
	Dereferences
	Primitive types, boxed primitive types, and Strings
	Overriding
	Side effects

	Examples
	Examples of @GuardedBy
	@GuardedBy({``a'', ``b''}) is not a subtype of @GuardedBy({``a''})
	Examples of @Holding
	Examples of @EnsuresLockHeld and @EnsuresLockHeldIf
	Example of @LockingFree, @ReleasesNoLocks, and @MayReleaseLocks
	Polymorphism and method formal parameters with unknown guards

	More locking details
	Two types of locking: monitor locks and explicit locks
	Held locks and held expressions; aliasing
	Run-time checks for locking
	Discussion of default qualifier
	Discussion of @Holding

	Other lock annotations
	Relationship to annotations in Java Concurrency in Practice

	Possible extensions

	Index Checker for sequence bounds (arrays and strings)
	Index Checker structure and annotations
	Lower bounds
	Upper bounds
	Sequence minimum lengths
	Sequences of the same length
	Binary search indices
	Substring indices
	The need for the @SubstringIndexFor annotation

	Inequalities
	Annotating fixed-size data structures

	Tainting Checker
	Tainting annotations
	Tips on writing @Untainted annotations
	@Tainted and @Untainted can be used for many purposes
	A caution about polymorphism and side effects

	SQL Quotes Checker
	SQL Quotes annotations
	What the SQL Quotes Checker checker
	Library annotations

	Regex Checker for regular expression syntax
	Regex annotations
	Annotating your code with @Regex
	Implicit qualifiers
	Capturing groups
	Concatenation of partial regular expressions
	Testing whether a string is a regular expression
	Suppressing warnings

	Format String Checker
	Formatting terminology
	Format String Checker annotations
	Conversion Categories
	Subtyping rules for @Format

	What the Format String Checker checks
	Possible false alarms
	Possible missed alarms

	Implicit qualifiers
	@FormatMethod
	Testing whether a format string is valid

	Internationalization Format String Checker (I18n Format String Checker)
	Internationalization Format String Checker annotations
	Conversion categories
	Subtyping rules for @I18nFormat
	What the Internationalization Format String Checker checks
	Resource files
	Running the Internationalization Format Checker
	Testing whether a string has an i18n format type
	Examples of using the Internationalization Format Checker

	Property File Checker
	General Property File Checker
	Internationalization Checker (I18n Checker)
	Internationalization annotations
	Running the Internationalization Checker

	Compiler Message Key Checker

	Signature String Checker for string representations of types
	Signature annotations
	How to choose which annotation to use

	What the Signature Checker checks

	GUI Effect Checker
	GUI effect annotations
	What the GUI Effect Checker checks
	Running the GUI Effect Checker
	Annotation defaults
	Polymorphic effects
	Defining an effect-polymorphic type
	Using an effect-polymorphic type
	Subclassing a specific instantiation of an effect-polymorphic type
	Subtyping with polymorphic effects

	References

	Units Checker
	Units annotations
	Extending the Units Checker
	What the Units Checker checks
	Running the Units Checker
	Suppressing warnings
	References

	Signedness Checker
	Annotations
	Default qualifiers

	Prohibited operations
	Rationale
	Permitted shifts

	Utility routines for manipulating unsigned values
	Local type refinement
	Instantiating polymorphism
	Other signedness annotations

	Purity Checker
	Purity annotations
	Purity annotations are trusted
	Overriding methods must respect specifications in superclasses
	Suppressing warnings

	Constant Value Checker
	Annotations
	Type Annotations

	Other constant value annotations
	Compile-time execution of expressions
	@StaticallyExecutable methods and the classpath

	Warnings
	Unsoundly ignoring overflow
	Strings can be null in concatenations

	Returns Receiver Checker
	Annotations
	AutoValue and Lombok Support

	Reflection resolution
	Reflection resolution example
	MethodVal and ClassVal Checkers
	ClassVal Checker
	MethodVal Checker
	MethodVal and ClassVal inference

	Initialized Fields Checker
	Running the Initialized Fields Checker
	Motivation: uninitialized fields
	Example
	Annotations
	Comparison to the Initialization Checker

	Aliasing Checker
	Aliasing annotations
	Leaking contexts
	Restrictions on where @Unique may be written
	Aliasing type refinement

	Must Call Checker
	Must Call annotations
	Writing @MustCall/@InheritableMustCall on a class
	Relationship to lightweight ownership
	Assumptions about reflection
	Type parameter bounds often need to be annotated

	Subtyping Checker
	Using the Subtyping Checker
	Compiling your qualifiers and your project
	Suppressing warnings from the Subtyping Checker

	Subtyping Checker example
	Type aliases and typedefs

	Third-party checkers
	Determinism checker
	Constant Value Inference (Interval Inference)
	Crypto Checker
	AWS crypto policy compliance checker
	AWS KMS compliance checker
	PUnits units of measurement
	JaTyC typestate checker
	NullAway
	Nullness Rawness Checker
	UI Thread Checker for ReactiveX
	Practical Immutability For Classes And Objects (PICO)
	Read Checker and Cast Checker for ensuring that EOF is recognized
	Ontology type system
	Glacier: Class immutability
	SQL checker that supports multiple dialects
	Immutability checkers: IGJ, OIGJ, and Javari
	JCrypt: computation over encrypted data
	DroidInfer: information flow
	Error Prone linter
	SPARTA information flow type-checker for Android
	SFlow type system for information flow
	CheckLT taint checker
	EnerJ checker
	ReIm immutability
	SFlow x ReIm for information flow and reference immutability
	Generic Universe Types checker
	Safety-Critical Java checker
	Thread locality checker
	Units and dimensions checker
	Typestate checkers
	Comparison to flow-sensitive type refinement

	Generics and polymorphism
	Generics (parametric polymorphism or type polymorphism)
	Raw types
	Restricting instantiation of a generic class
	Type annotations on a use of a generic type variable
	Annotations on wildcards
	Examples of qualifiers on a type parameter
	Covariant type parameters
	Method type argument inference and type qualifiers
	The Bottom type

	Qualifier polymorphism for methods
	Using polymorphic qualifiers in a method signature
	Relationship to subtyping and generics
	Using multiple polymorphic qualifiers in a method signature
	Using a single polymorphic qualifier in a method signature

	Class qualifier parameters
	Resolving polymorphism when the receiver type has a polymorphic qualifier
	Using class qualifier parameters in the type of a field
	Local variable defaults for types with qualifier parameters
	Qualifier parameters by default
	Types with qualifier parameters as type arguments

	Advanced type system features
	Invariant array types
	Context-sensitive type inference for array constructors
	Upper bound of qualifiers on uses of a given type (annotations on a class declaration)
	The effective qualifier on a type (defaults and inference)
	Default qualifier for unannotated types
	Default for use of a type
	Controlling defaults in source code
	Defaulting rules and CLIMB-to-top
	Inherited defaults
	Inherited wildcard annotations
	Default qualifiers for .class files (library defaults)

	Annotations on constructors
	Annotations on constructor declarations
	Annotations on constructor invocations

	Type refinement (flow-sensitive type qualifier inference)
	Type refinement examples
	Type refinement behavior
	Which types are refined
	Run-time tests and type refinement
	Side effects, determinism, purity, and type refinement
	Assertions
	Var Keyword

	Writing Java expressions as annotation arguments
	Limitations

	Field invariants
	Unused fields
	@Unused annotation

	Suppressing warnings
	@SuppressWarnings annotation
	@SuppressWarnings syntax
	Where @SuppressWarnings can be written
	Good practices when suppressing warnings

	@AssumeAssertion string in an assert message
	Suppressing warnings and defensive programming

	-AsuppressWarnings command-line option
	-AskipUses and -AonlyUses command-line options
	-AskipDefs and -AonlyDefs command-line options
	-AskipFiles and -AonlyFiles command-line options
	-Alint command-line option
	Change the specification of a method
	Don't run the processor
	Checker-specific mechanisms

	Type inference
	Type inference tools
	Whole-program inference
	Running whole-program inference on a single project
	Whole-program inference results
	Requirements for whole-program inference scripts

	Running whole-program inference on many projects
	Whole-program inference that inserts annotations into source code
	Inference results depend on uses in your program or test suite
	Whole-program inference ignores some code
	Manually checking whole-program inference results

	How whole-program inference works
	Type inference compared to other whole-program analyses

	Annotating libraries
	Tips for annotating a library
	Don't change the code
	Library annotations should reflect the specification, not the implementation
	Report bugs upstream
	Fully annotate the library, or indicate which parts you did not
	Verify your annotations

	Creating an annotated library
	Creating an annotated JDK
	Compiling partially-annotated libraries
	The -AuseConservativeDefaultsForUncheckedCode=source,bytecode command-line argument

	Using stub classes
	Using a stub file
	Multiple specifications for a method
	Stub methods in subclasses of the declaring class
	Stub file format
	Creating a stub file
	Distributing stub files
	Troubleshooting stub libraries

	Ajava files
	Using an Ajava file
	Corresponding source files and ajava files

	Troubleshooting/debugging annotated libraries

	How to create a new checker
	How checkers build on the Checker Framework
	The parts of a checker
	Compiling and using a custom checker
	Tips for creating a checker
	Annotations: Type qualifiers and hierarchy
	Defining the type qualifiers
	Declaratively defining the qualifier hierarchy
	Procedurally defining the qualifier hierarchy
	Defining the default annotation
	Relevant Java types
	Do not re-use type qualifiers
	Completeness of the qualifier hierarchy
	Annotations whose argument is a Java expression (dependent type annotations)
	Repeatable annotations

	The checker class: Compiler interface
	Indicating supported annotations
	Bundling multiple checkers
	Providing command-line options

	Visitor: Type rules
	AST traversal
	Avoid hardcoding

	Type factory: Type introduction rules
	Procedurally specifying type introduction rules
	Recursion in TreeAnnotators

	Dataflow: enhancing flow-sensitive type refinement
	Determine expressions to refine the types of
	Create required class
	Override methods that handle Nodes of interest
	Implement the refinement
	Further customizing flow-sensitive inference

	Annotated JDK and other annotated libraries
	Testing framework
	Debugging options
	Amount of detail in messages
	Format of output
	Stub and JDK libraries
	Progress tracing
	Saving the command-line arguments to a file
	Visualizing the dataflow graph
	Miscellaneous debugging options
	Examples
	Using an external debugger

	Documenting the checker
	javac implementation survival guide
	Checker access to compiler information
	How a checker fits in the compiler as an annotation processor

	Integrating a checker with the Checker Framework

	Building an accumulation checker
	Publications

	Integration with external tools
	Android
	Android Studio and the Android Gradle Plugin
	JDK 8
	JDK 11+

	Ant task
	Explanation

	Bazel
	Buck
	Troubleshooting

	Command line, via Checker Framework javac wrapper
	Command line, via JDK javac
	JDK 8
	JDK 11+

	Eclipse
	Using an Ant task
	Troubleshooting Eclipse

	Gradle
	IntelliJ IDEA
	Running a checker on every IntelliJ compilation
	Running a checker on every IntelliJ change or save

	javac diagnostics wrapper
	Lombok
	Annotations on generated code
	Type-checking code with Lombok annotations
	Maven Projects using Lombok

	Maven
	Maven, with a locally-built version of the Checker Framework

	NetBeans
	Adding a checker via the Project Properties window
	Adding a checker via an ant target

	sbt
	JDK 8
	JDK 11 and later, for non-modularized code
	For modularized code

	tIDE
	Type inference tools

	Frequently Asked Questions (FAQs)
	Motivation for pluggable type-checking
	I don't make type errors, so would pluggable type-checking help me?
	Should I use pluggable types (type qualifiers), or should I use Java subtypes?

	Getting started
	How do I get started annotating an existing program?
	Which checker should I start with?
	How can I join the checker-framework-dev mailing list?

	Usability of pluggable type-checking
	Are type annotations easy to read and write?
	Will my code become cluttered with type annotations?
	Will using the Checker Framework slow down my program? Will it slow down the compiler?
	How do I shorten the command line when invoking a checker?
	Method pre-condition contracts, including formal parameter annotations, make no sense for public methods

	How to handle warnings and errors
	What should I do if a checker issues a warning about my code?
	Why does a checker issue a warning even though the code checks a property?
	What does a certain Checker Framework warning message mean?
	What do square brackets mean in a Checker Framework warning message?
	Can a pluggable type-checker guarantee that my code is correct?
	What guarantee does the Checker Framework give for concurrent code?
	How do I make compilation succeed even if a checker issues errors?
	Why does the checker always say there are 100 errors or warnings?
	Why does the Checker Framework report an error regarding a type I have not written in my program?
	Why does the Checker Framework accept code on one line but reject it on the next?
	How can I do run-time monitoring of properties that were not statically checked?

	False positive warnings
	What is a ``false positive'' warning?
	How can I improve the Checker Framework to eliminate a false positive warning?
	Why doesn't the Checker Framework infer types for fields and method return types?
	Why doesn't the Checker Framework track relationships between variables?
	Why isn't the Checker Framework path-sensitive?

	Syntax of type annotations
	What is a ``receiver''?
	What is the meaning of an annotation after a type, such as @NonNull Object @Nullable?
	What is the meaning of array annotations such as @NonNull Object @Nullable []?
	What is the meaning of varargs annotations such as @English String @NonEmpty ...?
	What is the meaning of a type qualifier at a class declaration?
	How are type qualifiers written on upper and lower bounds?
	Why shouldn't a qualifier apply to both types and declarations?
	How do I annotate a fully-qualified type name?
	What is the difference between type annotations and declaration annotations?
	How should type annotations be formatted in source code? Where should I write type annotations?
	How does the Checker Framework handle obsolete declaration annotations?
	How do I convert from other tools' declaration annotations to type annotations?

	Semantics of type annotations
	How can I handle typestate, or phases of my program with different data properties?
	Why are explicit and implicit bounds defaulted differently?
	How should I annotate code that uses generics?
	Why are type annotations declared with @Retention(RetentionPolicy.RUNTIME)?

	Creating a new checker
	How do I create a new checker?
	What properties can and cannot be handled by type-checking?
	Why is there no declarative syntax for writing type rules?

	Tool questions
	How does pluggable type-checking work?
	What classpath is needed to use an annotated library?
	Why do .class files contain more annotations than the source code?
	Is there a type-checker for managing checked and unchecked exceptions?
	The Checker Framework runs too slowly
	What does the Checker Framework version number mean?

	Relationship to other tools
	Why not just use a bug detector (like SpotBugs or Error Prone)?
	How does the Checker Framework compare with Eclipse's null analysis?
	How does the Checker Framework compare with NullAway?
	How does the Checker Framework compare with JSpecify?
	How does the Checker Framework compare with the EISOP Checker Framework?
	How does the Checker Framework compare with the JDK's Optional type?
	How does pluggable type-checking compare with JML?
	Is the Checker Framework an official part of Java?
	What is the relationship between the Checker Framework and JSR 305?
	What is the relationship between the Checker Framework and JSR 308?

	Troubleshooting, getting help, and contributing
	Common problems and solutions
	Unable to compile the Checker Framework
	Unable to run the checker, or checker crashes
	Unexpected warnings not related to type-checking
	Unexpected type-checking results
	Unexpected compilation output when running javac without a pluggable type-checker

	How to report problems (bug reporting)
	Problems with annotated libraries

	Building from source
	Install prerequisites
	Obtain the source
	Build the Checker Framework
	Build the Checker Framework Manual (this document)
	Code style, IDE configuration, pull requests, etc.
	Enable continuous integration builds
	Related repositories

	Contributing
	Contributing fixes (creating a pull request)

	Credits and changelog
	License
	Publications

