CHECKER

framework

The Checker Framework Manual:
Custom pluggable types for Java

https://checkerframework.org

Version 3.36.0 (3 Jul 2023)

For the impatient: Section[I.3](page[I6) describes how to install and use pluggable type-checkers.

https://checkerframework.org

Contents

I TInfroducfion| 15
... 16

1.2 How it works: Pluggable types| 16
L3 T0sallalion] . - -« « ¢ v oot e e e e e 16
1.4 Example use: detecting a null pointerbug| oo o oo 17

[2° Using a checker| 18
2.1~ Where to write type annotations| o e e e e e e e e 18
22 Runningachecker| 19
..................................... 19

|ZZZ Summarz of commang-!lne 0§t10ns| 20
223 Checker auto-disCOVEry|. oo oo 23

224 Shorthand forbuilt-in checkers 23

2.3 What the checker guarantees| 23
[2.4 Tips about writing annotations| 24
........................... 24

4. oet started annotating legacy code 25

P43 Annotations Indicate non-exceptional BERAVION . . » « « o o o e 26
[2.4.4 Subclasses must respect superclass annotations|o 28
[2.4.5 What to do 1f a checker issues a warning about your code]. 28
P46 Calls to unannotated code (Iogacy TBIames) . - . - « « « « « o oo e 30
(3__Nullness Checker| 31
[3.1 What the Nullness Checker guarantees| 31
1. Nullness Checker optional warnings| 32

B2 Nullness annofafions] o vttt e e e e e 32
[3.2.1 Nullness qualifiers| e 32
3.2.2 Nullness method annotations| Lo 33

3.2.3 Initialization qualifiers| L 34

24 Mapkey qualifiers] 34
....................................... 34
B3T TmplOIEQUATGTS . . . « « o o o o e e e e 34
3.3.2 Defaultannotationl L. e e e e 34
B33 Conditionalnullnessl oo 35
[3.3.4 Nullness and array initialization| L 35
----------------------- 36
336 Run-timechecks fornullnessl. v v oo e e 36
[3.3.7 Inference of GNonNull and Nullable annotations| 36

3.4 Suppressing nullness warnings|o oo o 37
[3.4.1 Suppressing warnings with assertions and method calls| 37

13.4.2 Null arguments to collectionclasses| 0000,

. XAMPICS| . . . o L o o o e

B3I Tinyexamples|
332 Example annotated source code]

3.6 Tips for getting started| L.

[3.7 _Other tools for nullness checking| 0 00
E 7 i Wﬁlcﬁ too! 18 néEt foryou?

E 72 Incompatibility note about FindBugs and SpotBugs @Nullablel
[B773 Relationship 10 Optional<To] . . v v v v v v v et e e e e e e e e e

13.8.1 Imtialization qualifiers| oo

[3.8.2 How an object becomes imtialized|0 o oL
8. @UnderInitializationexamples| oo

[3.8.7 How to handle warnings| o

Map Key Checker]

4.1 Invoking the Map Key Checker]

EZ &] aﬁ Eez annotat10ns| ...

[4.3.2 Diagnosing the need for explicit @ Keykor on lower bounds|

BAExamples]
[F5 Tocal inference of @ KeyFor annotat10ns|

Optional Checker for possibly-present datal

|§.1 How to run the Optional Checkery.
. Optional annotations| e e
[5.37 What the Optional Checker guarantees| v v i v it e e e e e

Interning Checker|

6.1 Interning annotations| L e

IE; I.1 Intermng quahiiersl ..

16.1.2 Interning method and class annotations| 0oL
[6.2 Annotating your code with @Interned|. Lo

6.3.1 Theintern() methods|
16.3.2 Detault qualifiers and qualifiers for literals| 0.
16.3.3 InternedDistinct: values not equals() to any other valuef
[6.4 What the Interning Checker checks|. L.
[6.4.1 Imprecision (false positive warnings) of the Interning Checker]

[63 Examples]
[6.6 Other interning annotations]o

53
53
53
54
54
55
55
56

58
58
58
59

{7 Called Methods Checker for the builder pattern and more| 66

[Z1 How to run the Called Methods Checked 66
[72 For LomboKUSErs|. o e e e e e e e 67
[/.3_Specifying yourcode| 67
. efault handling for Lombok an utovaluel Lo 69

. sing the Called Methods Checker for properties unrelated to builders| 70
[£.6 More information| e e e e e e e 70
|8 Resource Leak Checker for must-call obligations| 71
8.1 How to run the Resource Leak Checkenl 71
8.2 _Resource [Leak Checker annotationsl e 72
[8.3 Example of how safe resource usageis verified| oL 72
................................ 73
BAL Ownmng helds . . - . . . - oo 74

B3 Resource allasing] o e 74
[8.6 Creating obligations (how to re-assign a non-final owning field),. 74
8.6.1 Requirements at a call site of a @CreatesMustCallFor method 75
[8.6.2 Requirements at a declaration of a @CreatesMustCallFor method 75

[8.7 Ignored exception types|. 76
B8 Errors about Aeld INIHANZAGON] . « + + + « « « o o v oo e e e e e e 76
18.9 Errors about unknown must call obligations| 0000 o000 77
8.10 Collections of resources|. e e e e e e 77
[9__Fake Enum Checker for fake enumerations| 78
9.1 __Fake enum annotations] 78
9.2 _What the Fenum Checkerchecks| 79
[9.3 Running the Fenum Checker) L o 79
9.4 Supp o) 80
O3 BXaMPIE . . - . - o oo 80
[0.6 The Take enumeration pattern] o i e 81
9.7 Referencesl. L e e e e 81
(10 Tainting Checker| 82
[10.1 Tainting annotations|. e e e e e e e e 82
[10.2 Tips on writing @Untainted annotations|. v i it e e e 82

[10.3 @Tainted and @Untainted can be used for many purposes| 83
||U.4T A caution about polymorpﬁlsm and side eHects| 83

(11_Lock Checker| 85
[L1.I What the Lock Checker guarantees| 85
M2 Tockannofaions v o v v ot e e e e 85

[I1.2.1 Typequalifiers| 85
[T22 Declaration annofalions] . - - - « « « v v v v v v e 87
[11.3 Type-checkingrules|. e 87
[11.3.1 Polymorphic qualifiers| 87
[I32 Dereferencesl o v v v vt 88
[11.3.3 Primitive types, boxed primitive types, and Strings| L. 88
[[T34 Overriding] e 88
L35 Sideeffectsl o o e 88

A Examples|o 89
|| IEI Examples of @GuardedBy| 89
[TT.42 @GuardedBy({"a”, “b"}) is not a subtype of @GuardedBy({"a })|. o . o 90

I11.4.3 Examples of @Holding|.
|I11.4.4 Examples of @EnsuresLockHeld and @EnsuresLockHeldlf|

[11.4.5 Example of @Lockingkree, @ReleasesNoLocks, and @MayReleaseLocks|
: 1146 Folymorpﬁlsm and method formal parameters with unknown guarasl
||]§ More |00E]ng aeta1|s| ...

[TT.5.T Two types of locking: monitor locks and explicit locks|
|I11.5.2 Held locks and held expressions; aliasing|

[11.5.3 Run-time checks forlocking| 0 0L

! | §§ Elscusswn of §efau!t éua!lﬁeﬂ
[TT.5.5 Discussion Of GHOLAING] - « « « o o v o o e e e e s s s

11.7 Possible extensions| e e e e e e e e e

12.2 1. r NdS| . . e e e

[12.3 Upperbounds|
..
@
[12.6 Binary searchindices| o e

112,77 Substring Indices| e e e e
112.7.1 The need for the €SubstringIndexFor annotation|

|| Zg |nequa|1tles| ..

[12.9 Annotating fixed-size data SIUCTUTES] « v o v v v e e et e e e e e e et e

[13 Regex Checker for regular expression syntax|

[I3.1 Regexannotations|.
[T3:2 Annotafing your code With BRegex|.o
BT TmplCIt QUATAGTS] . - .« o o o o e e e e e e e
113.2.2 Capturing groups| v v v vt i e e e e e e e e e e e e e e e e
[13.2.3 Concatenation of partial regular expressions|. L.
[[3.24 Testing whother a StANg 5 a regUlal eXPIESSION] . . - . « . .« o o o oo
[T3.2.5 Suppressing Warnings| o oo v vt e e

{14 Format String Checker]

[14.1 Formatting terminology|.

4, ormat String Checker annotations|

[T42.7 Conversion Categ@ories] v v v v vt e e e e e e e e
[14.2.2 Subtyping rules for @Format|. L e

[14.3 What the Format String Checkerchecks|

(15 Internationalization Format String Checker (118n Format String Checker)|

|15.1 Internationalization Format String Checker annotations|

[15.2 Conversion Categories|. vt
.3 Subtyping rules for @I18nFormat| e e
[T5.4 What the Internationalization Format String Checkerchecks]

96
97
97
98
100
101
102
102
103
104
104

106
106
106
106
107
107
108
108

109
109
109
110
111
112
113
113
114
114
114

|15.6 Running the Internationalization Format Checker] 120
[15.7 Testing whether a string has an 118n formattype| 120
[T5-.8 Examples of using the Internationalization Format Checker] 120

{16 Property File Checker| 122
[16.1 General Property File Checker] o 122

.2 Internationalization Checker nChecker)| 123
[16.2.1 Internationalization annotations| L Lo 123

[16.2.2 Running the Internationalization Checker| 123

[16.3 Compiler Message Key Checker|] 123

[17 Signature String Checker for string representations of types| 125
[17.1 Signature annotations| L. e e 125
|17.2 What the Signature Checkerchecks| 127
I8 GUI Effect Checker] 128
U8.1 GUIeffectannotations| 129
18.2 What th T Eff heckerchecks. L 129
[18.3 Running the GUIL Effect Checker| 129
[84 Annotationdefaults] oot 129
[I8.5 Polymorphiceffects|. 130
[T8.5.T Defining an effect-polymorphiC type]. v o v v i ot e e e 130

[18.5.2 Using an effect-polymorphic type| 130

18.5.3 Subclassing a specific instantiation of an effect-polymorphic type] 131

T8.5.4 Sublyping with polyMOMPAIC SIFeCt] - - - - -« » » + « o o oo e e 131

M6 RETErENCES. - - « - .« o o ot v et e e e e e 132
19 Units Checkerl 133
9.1 Units annotations] oL e e e 133
[19.2 Extending the Units Checker] o o 134
135

135

136

136

[20_Signedness Checker 137
RO.T Annotations] 137
[20.1.1 Default qualifiers| 138

0.2 Prohibited operations| e e e 138
20.2.1 Rationale] 138

20.2.2 Permitted shifts| 139

[20.3 Utlity routines for manipulating unsigned values| 139
20.4 Local typerefinement| e e e 140
.. 140
0.6 Other Stgnedness aMMO@HONS] - - - -« « « o o oo e e 140

[2T Purity Checker] 141
RL1 Purity annotations| 141
PT.2 Purity annotations A WOSTed] . . » « « o o o o oo 141
21.3 Overriding methods must respect specifications in superclasses| 141
1.4 Suppressing Warnings| e e e e e e e e e e e e 142

22 Constant Value Checker 143

221 Annotations] 143
[22.1.1 Type Annotations|. 143

D22 Other constant value annofaions] « . . . e oo e e e 144
[22.2.1 Compile-time execution of €Xpressions| 145

2222 @StaticallyExecutable methods and the classpath]. 145

W T I S 146

[22.4 Unsoundly ignoring overflow| 146
P25 Strings can be null i GONGAIGRATONS] . . . - - -« . .+« « o oo oo 147
23 Returns Receiver Checker| 148
P31 Annotations] 148
[23.2 AutoValue and Lombok Support] 148
24 Reflection resolufion| 150
150

151

151

152

153

155

155

155

156

156

157

[26 Aliasing Checker| 158
[26.1 Alasing annotations| 158
P62 LeakiNg COMMERES) . . - - - - o o o o oo e e 159
[26.3 Restrictions on where GUnique may B WIITED] o v v v v v v v e e e e e 160
26.4 Aliasing type refinement] e e e 160
162
271 Must Call annotations] L e e 162
[27.2 Writing @MustCall/@InheritableMustCallonaclass| 163
[27.3 Relationship to lightweight ownership| 163
....................................... 164
[27.5 Type parameter bounds often need to be annotated]. 164

[28 Subtyping Checker| 165
[28.1 Using the Subtyping Checker|. 165

1. ompiling your qualifiers and your project|, 166

P8I0 Suppressing warnings from the Subtyping CRECKe . . . « .« o o o oo e oo 166

[28.2 Subtyping Checkerexample| 166
28.3 ‘Type aliases and typedefs| L 168

[29 Third-party checkers| 170

29.1 Determinism checker e 170
29.2 Constant Value Inference (Interval Inference)] 170
293 CryptoChecker] 170
|Z§§ EWE crypto policy compliance checker| o oL oo o 171
P05 AWS KMS compance OReckel] . - .« « « « + o o o e e e 171
29.6_PUnits units of measurement] e e e e 171
[29.7 JalyCtypestate checker|. 171

... 171
29.9 Nullness Rawness Checker

[29.11Practical Immutability For Classes And Objects (PICO)[. 172
29.12Read Checker and Cast Checker for ensuring that EOF 1s recognized 172
[29.130ntology type system| 172
0.14Glacier: Class immutability|. 172
............................... 172
.16Immutability checkers: s ,and Javarl| L 173
29.17JCrypt: computation over encrypteddatal. L 173
29.18 DroidInfer: information flowl e 173
ROIOEmor Prone [Inter]« v o v o e e e e 173
[29.20SPARTA 1nformation flow type-checker for Android| 173
P02 TSFTow type system For IFOrMation IOW] - - » - « « « « + o oo e e e 173
29.22Checkl.T taint checker] o L e 174
29.23EnerS checker e 174
[29.24Relm immutability] 174
[29.25SFlow x Relm for information flow and reference immutability] 174
[9.26Generic Universe Types CRecken] - . - - - - . - - -+« @ o oo 174
P0.27Salety-CIiical Java CRECKET] - .« .« « « o o e o e e e e e 174
[29.28Thread locality checker] 174
29.29Units and dimensions checkerl 174
[29.30Typestate checkers| 175
[29.30.T Comparison to flow-sensitive type refinement] oo v v i i i 175

30 Generics and polymorphism| 176
130.1 Generics (parametric polymorphism or type polymorphism)| 176
EU I . I an BYPeS| . v o e e e e e e e e e e 176
[30.T.2 Restricting instantiation Of @ GENEriC Class| o v v v v it et e 176
130.1.3 "Type annotations on a use of a generic type variable| 178
B0.04 Annotationsonwildcardsl 178
30.1.5 Examples of qualifiers on a type parameter| 179

0.1.6 Covariant type parameters| i i e e e e e e e e 180
B0.1.7 Method type argument inference and type qUaliiers]. . . . « « o o o oo oo e 180
[30.1.8 The Bottom type| 181

2. elationship to subtyping and generics| L oo 182

|§UZ§ []smg mu!tlﬁ!e Eo!imo@l_uc qualifiers in a method signature] 182
B0.2.4 Using a single polymorphic qualifier in a mothod SIgNAtTe]« « o o oo e e e 182

[30.3 Class qualifier parameters|. e e 184
30.3.1 Resolving polymorphism when the receiver type has a polymorphic qualifieff 184

0.3.2 Using class qualifier parameters in the typeofafield 184
B03.3 TLocal variable defaults for types with qUaliier pATameters] « « o v v o oo e e 185

[30.3.4 Qualifier parameters by default|. 185

130.3.5 Types with qualifier parameters as type arguments| 185

(31 Advanced type system features| 187
BI.T Invariant array types| o i e e e e e e e e e e e e 187
131.2 Context-sensitive type inference for array constructors|o 187
[31.3 Upper bound of qualifiers on uses of a given type (annotations on a class declaration)] 188
. e effective qualifier on a type (defaults and inference)l 189
.................................. 189
BT3T Dolault Tor Us6 OT A VDG » -+« v o oo e e e 190
[31.5.2 Controlling defaults in sourcecode| 190
[31.5.3 Defaulting rules and CLIMB-to-top| 191
B34 Tnhenteddefaults] o o 192
31.5.5 TInberited wildcard annotationsl 193
131.5.6 Default qualifiers for .class files (library defaults)| 193
31.6_Annotations on CONStruCtOrs] e e e e e e e e e e e e 194
1.6.1 Annotations on constructor declarations| L oL 194
1.6.2 Annotations on constructor INVOCAONS|« v v v v v v e e e e e e e e e 194
[31.7 Type refinement (flow-sensitive type qualifier inference)] 195
BI7T Type rehmement eXamples] . . . - . - - - - . o oo 195
BT.72 Type reRmement BEORAVION . . - . . « « « o o o oo e e e 195
31.7.3 Which typesarerefined| 196
31.7.4 Run-time tests and type refinement]. 196
B1.7.5_Side clfects, determinism, purity, and fype reRnement 197
BIZ6 ASSEITOns]. . . . - v o v o o e e 199
B1.7.7 Var Keyword| o 199

[31.8 Writing Java expressions as annotation arguments| e e e e e 200
BL8.1T Limitations| o e 201

BL9 Feldinvariants| L e e e 201
BLI0Unused fieldsl e 202
BII0.1@Unusedannotationl oo 202

[32 Suppressing warnings| 204
32.1 @SuppressWarnings annotation]ttt e e e e e e e e e e e e e e e 204
32.1.1 @SuppressWarnings SYNAX| v v v v v it e e e e e e e e e e e e e 205
132.1.2 Where @SuppressWarningscanbe written| e 205
32.1.3 Good practices when suppressing warnings| o v e i e e 206
............................ 207
2. uppressing warnings and defensive programming| Lo 208
.............................. 209
B2 4 =EskipUses and —AonlyUses command-INE OPHONS|\ v v vt v v v e e e e e e 209
[32.5 -AskipDefs and -AonlyDefs command-lineoptions|, . 209
[32.6 -Alint command-lineoption|. 210
................................... 210
.. 211
BZO Checker-speciic MECHAMISTS] . « - - « « « « o o e o e e e e 211

[33 Type inference| 212

33.1 Type inference tools|. e 212
[33.2 Whole-program inference|. 213
|§§§ Eunnmg wﬁole-grogram mnference on asingle project|f oL 213
----------------------- 214

B34 Running whole-program Inference on Many Projects] - - - - - « « « o o oo 215
133.5 Whole-program 1nference that inserts annotations into sourcecodef 216
[33.6 Inference results depend on uses in your program or test suite]. 216
.......................... 217
(3.6 Manually checking whole-program inference resuly] 217

[33.7 How whole-program inference works| 0 00 oL 217
B3.8 Type inference compared to other whole-program analyses] « « o o o oo 218
[34 Annotating libraries| 219
[34.1 Tips for annotating alibrary| 220
34.1.1 Don’tchangethecode| 220
[34.1.2 Library annotations should reflect the specification, not the implementation| 220

[B4I3 Reportbugsupstream| 220
EZ. [.4 Fully annotate the library, or indicate which partsyoudidnot] 220
B4T35 Verify your annofations|. 221

B47 Creating an annot@ed TBTATY] - « - - « o o oo e e e e 21
[34.3 Creating an annotated JDK| o 222
[34.4 Compiling partially-annotated libraries|. 222

[B4.41 The -AuseConservativeDefaultsForUncheckedCode=source,bytecode command-line |

[argument| 222

BA5 USE s CTa550S] . - « « « v e oo e 223
34.5.1 Usingastubfile] 223
[34.5.2 Multiple specifications foramethod| 0 0oL 223
[34.5:3 Stub methods in subclasses of the declaring class| 224
BAS4 SwhAleformall . . - .« o v oo e e e e 225
34.5.5 Creatingastubfile| 225
[34.5.6 Distributing stub files|. L 226
[34.5.7 Troubleshooting stub libraries| 226

[34.6 Ajavafiles|. e 227

|§E§| [!smg ANAJAVATIIE] e e 227
|§§§2 E;orrespondlng source filesand ajavafiles| 0oL 228

B4.7 Troubleshooting/debugging annotated TIBTAMEs] - - « « « « « « o o o oo 228
35 How to create a new checkerl 230
35.1 How checkers build on the Checker Framework| 231
35.2 Thepartsof achecker]. 231
[35.3 Compiling and using a customchecker|. L o o 232
[35.4 Tipsforcreatingachecker] L 232

.5 Annotations: Type qualifiers and hierarchy|. 234
.................................... 234

B55.2 Declaratively defining the qUalifier Merarchy] . . . « « « o o o oo 235

[35.5.3 Procedurally defining the qualifier hierarchy|., 236

[35.5.4 Defining the default annotation|. L. 237
.. 237
................................... 237

B55.7 Completencss of the QUAlREr MIGTarChY] . « « « « « « o o o oo e 238

135.5.8 Annotations whose argument 1s a Java expression (dependent type annotations)| 238

10

[35.5.9 Repeatable annotations| 239

[35.6 The checker class: Compiler interface| 239
[35.6.1 Indicating supported annotations|. 240
.6.2 Bundling multiple checkers| o 240
[5.63 Providing command-ling OPFONS) . . . - . - .« o o 241
B3 VSTOr TYD TUIES] - » -« o o o oo e e 241
B3Z1 ASTtraversall o 242
[35.7.2 Avoid hardcoding|. 242
.8 pe factory: Type introductionrules|. 243
.8. rocedurally specifying type introductionrules|00, 243
. ataflow: enhancing flow-sensitive type re nement: 244
B5.0.1 Dotermine expressions (0 refine the types ofl . « « « « « « o o oo oo 244
35.9.2 Createrequired class| L 245
verride meth hat handl finterest| 245
[35.9.4 Implement the refinement| L L 245
................................ 247
35.10Annotated JDK and other annotated libraries
B5.1TTesting framework| e 247
[35.12Debugging options| 248
|§§ IZ l Emount of detall iInmessages| L 248
... 248
35.12.3 Stub and JDK libraries
[35.12.4 Progress tracing|. e e e e e e e e 249
[35.12.5 Saving the command-line argumentstoafile] 249
.................................. 249
8 ples| . . . e 250
B5.12.0 Using an extemal deBUSEET]. . . . « « » o o o oo e e 251
[35.13Documenting the checker| L 251
[35.14javac implementation survival guide| 252
............................. 252
----------------- 253
B3T3 Tntcgrating a chocker with the Chocker FTameworkl . - - -« » o o oo e 254
|36 Building an accumulation checker| 255
B6.1 Publications| e e e e 256
|37 Integration with external tools| 257
BZIADdroldl o 257
[37.2 Android Studio and the Android Gradle Plugin| 258
3721 JDK 8l . . . e e e e e 258
37.22 JDK TTH . . . e e e e e 259
37.3 Anttask] e e e 259
[37.3.1 Explanation|. 260
BZABazell o 260
BZ5BucK. . . . o 261
[37.5.1 Troubleshooting| e 261
[37.6 Command line, via Checker Framework javac wrapper] 262
. ommand line, via JDK javac| 262
... 263
... 263
8 DSE|. . . e e 265

37.8.1 Usingan Anttaskl. e 265

[37.8.2 Troubleshooting Eclipse| 265

379 Gradlel e 265
... 265
37.10.1 Runnm a checker on every Intellil) compilation|. 0 0 0. 266
[37.10.2 Running a checker on every IntellJ Change of SaVe| . . . « « « v v oo oe e e e e e 266
[37.11javac diagnostics WIapper|. v v v v v e e e e e e e e e e e e e e e e e e e 266
.. 266

[37.12.1 Annotations on generated code|. 267

2. pe-checking code with Lombok annotations| 267

B7.12.3 Maven Projects Using LOMDBOK] - - - - - » » - o e oo 267
BZI3Mavenl e e e e 267
137.13.1 Maven, with a locally-built version of the Checker Framework| 270
BTZIANEBEANS . . - - -« ¢ o e e e e e e 271
[37.14.1 Adding a checker via the Project Properties window| 271
B7.14.2 Adding a checker via an anCIaTEe] . - » .« -+« « o o o e e 271
BZISSBE . . . oo 272
... 272
137.15.2 JDK 11 and later, for non-modularizedcodef. 273
IﬂliiF&r_mdm.anZQd_md.d 273
.. 273
137. 17Type inference tools|. L L e e 273
[38 Frequently Asked Questions (FAQs)| 274
38.1 Motivation for pluggable type-checking| L 276
[B8.1.T T don’t make type errors, so would pluggable type-checking helpme? 276
138.1.2 Should I use pluggable types (type qualifiers), or should I use Java subtypes?| 276

[38.2 Getting started|. 277
[382.1 How do I get started annofating an existing program? 277
[38.2.2 Which checker should TStart with?l. o v v vttt 277
138.2.3 How can I join the checker-framework-dev mailing list?} 278

[38.3 Usability of pluggable type-checking|. 278
38.3.1 Are type annotations easy toread and write?] oL oL 278

8.3.2 Will my code become cluttered with type annotations?| 278

1ll using the CCKEr rramework Siow down my program ! 11l 1t slow down the compiler? 278

Eg 3 E Eow §o | sEorten tEe comman§ !1ne wEen 1nv0§n§ achecker? 279
[38.3.5 Method pre-condition contracts, including formal parameter annotations, make no sense for |

| publicmethods| 279
[38.4 How to handle warmings and errors| 279

|§§.4.1 What should I do if a checker issues a warning aboutmy code? 279

138.4.4 What do square brackets mean in a Checker Framework warning message?| 280
38.4.5 Can a pluggable type- checker uarantee that my code iscorrect?| 280

8.4.8 Why does the checker always say there are 100 errors or warnings?{ 281

[B8.4.9 Why does the Checker Framework report an error regarding a type I have not written in my |

| PrOgram?| e e e e e e e e e e e 281
[38.4.10 Why does the Checker Framework accept code on one line but reject 1t on the next?. 281

[38.4.1T How can I do run-time monitoring of properties that were not statically checked? 281

B85 Talse pOSIHVE WAININGS| o o v v o e e e e 281

[38.5.1 Whatis a “false positive” warning?| 282
138.5.2 How can I improve the Checker Framework to eliminate a false positive warning?. 282
38.5.3 Why doesn’t the Checker Framework infer types for fields and method return types?| 282

ES.S.Z WEy doesn’t the Checker Framework track relatlonsﬁlps between var1a5|es’7| 283
Eg 5.5 Why isn’t the Checker Framework path-sensitive?]o 285

[B8.6 Syntax of type annotations] vt i e e e e 285
38.6.1 Whatisa™receiver™l e e e e e e 285
38.6.2 What is the meaning of an annotation after a type, such as @NonNull Object @Nullable? . 286

.0. at 1s the meaning of array annotations such as €NonNull Object @Nullable []7] 286
[38.6.4 What is the meaning of varargs annotations such as @Engllsh String @NonEmpty ...7 .. 286
B8.6.6 How are type qualifiers written on upper and Tower bounds? « o o o oo v s 287
138.6.7 Why shouldn’t a qualifier apply to both types and declarations?| 287
38.6.10 What 1S the dlfference between type annotations and declaratlon annotations? 288
[3826.11 How should type annotations be formatted in source code? Where should T write type annotations 289

[38.7 Semantics of type annotations| L 290
38 7.1 How can | handle typestate, or phases of my program with different data properties? 290

Eg 7 3 Eow sEou@ | annotate coge tEat uses generlcsﬂ 291

[3877.4 Why are type annotations declared with GRetention (RetentionPolicy.RUNTIME)] 292

38.8 Creatinganew checker| e 292
1_H Lcr n hecker?l 292

38.8.2 What properties can and cannot be handled by type-checking? 292
[38.8:3~ Why is there no declarative syntax for writing typerules?. 293
B8O Tool QUESTIONS| o o v e e e e 293
[38.9.T How does pluggable type-checking work? 293
[38.9.2 What classpath is needed to use an annotated library? 293
[38.9.3 Why do .class files contain more annotations than the source code?] 293

E§§§ !s tEere a tzﬁe cEecEer ior managmg checked and unchecked exceptions?] 294
Eg 9 § l Ee E;Eecger ErameworE runs too s!owlz] 294

38.9.6 What does the Checker Framework version number mean

[38.10Relationship toothertools| 295
38.10.1 Why not just use a bug detector (like SpotBugs or Error Prone)?| 295

8.10.2 How does the Checker Framework compare with Eclipse’s null analysis?| 296

8.10.3 How does the Checker Framework compare with NullAway?[. 296
[38.10.4 How does the Checker Framework compare with the JDK's Opt fonal type?] - 296
138.10.5 How does pluggable type-checking compare with JMLY 296
[38.10.6 Is the Checker Framework an official partof Java?l 297
[38.10.8 What s the relationship between the Checker Framework and JSR 3087 297

39 Troubleshooting, getting help, and contributin 298
..................................... 298
[B9.1.1_Unable to compile the Checker Framework] oo 298
[B9.1.2 Unable to run the checker, or checkercrashes| 298
139.1.3 Unexpected warnings not related to type-checking| 300
[39.1.4 Unexpected type-checking results| 300
39.1.5 Unexpected compilation output when running javac without a pluggable type-checker] 302

[39.3 Building from source] e e e e 304

[39.3.1 Install prerequisites|. e e e 304
39.3.2 Obtainthe sourcel e e e e e 305
[39.3.3 Build the Checker Framework] 305
139.3.4 Build the Checker Framework Manual (this document)] 306
139.3.5 Code style, IDE configuration, pull requests, etc.| L. 306
[39.3.6 Enable continuous integration builds|. L oo o oo 306
[39.3.7 Relatedrepositories|. 306

B9:4 Contributing]. 307
EQE | §;0ntr1but1ng fixes (creating apull request)|. L Lo 307

... 307
39.6 Licensel 307
Publications| e e 308

14

Chapter 1

Introduction

The Checker Framework enhances Java’s type system to make it more powerful and useful. This lets software developers
detect and prevent errors in their Java programs.

A “checker” is a compile-time tool that warns you about certain errors or gives you a guarantee that those errors do
not occur. The Checker Framework comes with checkers for specific types of errors:

0NN AW =

— =
W = O 0o

14.

15.

16.
17.

18.
19.
20.
21.
22.
23.

24.
25.

. Nullness Checker for null pointer errors (see Chapter 3] page

. Initialization Checker to ensure all ¢NonNull fields are set in the constructor (see Chapter [3.8] page[43)

. Map Key Checker to track which values are keys in a map (see Chapter 4] page[53)

. Optional Checker for errors in using the Optionalltype (see Chapter[5] page [58)

. Interning Checker for errors in equality testing and interning (see Chapter[6} page [60)

. Called Methods Checker for the builder pattern (see Chapter [7] page [66)

. Resource Leak Checker for ensuring that resources are disposed of properly (see Chapter|[8] page

. Fake Enum Checker to allow type-safe fake enum patterns and type aliases or typedefs (see Chapter [} page
. Tainting Checker for trust and security errors (see Chapter[I0] page [82))

. Lock Checker for concurrency and lock errors (see Chapter [T} page[S3)

. Index Checker for array accesses (see Chapter[I2] page [96)

. Regex Checker to prevent use of syntactically invalid regular expressions (see Chapter|[I3] page[I06)

. Format String Checker to ensure that format strings have the right number and type of % directives (see Chapter[I4]

page[109)

Internationalization Format String Checker to ensure that i18n format strings have the right number and type of
{} directives (see Chapter[T3] page[I16)

Property File Checker to ensure that valid keys are used for property files and resource bundles (see Chapter [T6]
page[122)

Internationalization Checker to ensure that code is properly internationalized (see Chapter[16.2] page[123)
Signature String Checker to ensure that the string representation of a type is properly used, for example in
Class.forName (see Chapter[I7] page [I25)

GUI Effect Checker to ensure that non-GUI threads do not access the Ul, which would crash the application (see
Chapter (18] page[128)

Units Checker to ensure operations are performed on correct units of measurement (see Chapter [I9] page[133)
Signedness Checker to ensure unsigned and signed values are not mixed (see Chapter [20] page

Purity Checker to identify whether methods have side effects (see Chapter [21] page [T41)

Constant Value Checker to determine whether an expression’s value can be known at compile time (see Chapter[22]
page([[43)

Reflection Checker to determine whether an expression’s value (of type Method or Class) can be known at
compile time (see Chapter [24] page [I50)

Initialized Fields Checker to ensure all fields are set in the constructor (see Chapter [3.8] page [43)

Aliasing Checker to identify whether expressions have aliases (see Chapter 26} page[T58)

15

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html

26. Must Call Checker to over-approximate the methods that should be called on an object before it is de-allocated
(see Chapter [27] page [162))

27. Subtyping Checker for customized checking without writing any code (see Chapter 28] page

28. Third-party checkers that are distributed separately from the Checker Framework (see Chapter[29] page [T70)

These checkers are easy to use and are invoked as arguments to javac.
The Checker Framework also enables you to write new checkers of your own; see Chapters [28]and 35

1.1 How to read this manual

If you wish to get started using some particular type system from the list above, then the most effective way to read this
manual is:

* Read all of the introductory material (Chapters [TH2).

* Read just one of the descriptions of a particular type system and its checker (Chapters [3H29).

* Skim the advanced material that will enable you to make more effective use of a type system (Chapters [30H39),
so that you will know what is available and can find it later. Skip Chapter 35]on creating a new checker.

1.2 How it works: Pluggable types

Java’s built-in type-checker finds and prevents many errors — but it doesn’t find and prevent enough errors. The
Checker Framework lets you define new type systems and run them as a plug-in to the javac compiler. Your code stays
completely backward-compatible: your code compiles with any Java compiler, it runs on any JVM, and your coworkers
don’t have to use the enhanced type system if they don’t want to. You can check part of your program, or the whole
thing. Type inference tools exist to help you annotate your code; see Section [33]

Most programmers will use type systems created by other people, such as those listed at the start of the introduction
(Chapter] page[T3). Some people, called “type system designers”, create new type systems (Chapter 35| page [230).
The Checker Framework is useful both to programmers who wish to write error-free code, and to type system designers
who wish to evaluate and deploy their type systems.

This document uses the terms “checker” and “type-checking compiler plugin” as synonyms.

1.3 Installation

This section describes how to install the Checker Framework.

* If you use a build system that automatically downloads dependencies, such as Gradle or Maven, no installation
is necessary; just see Chapter [37] page[257]

* If you wish to try the Checker Framework without installing it, use the |Checker Framework Live Demo webpage.

» This section describes how to install the Checker Framework from its distribution. The Checker Framework
release contains everything that you need, both to run checkers and to write your own checkers.

* Alternately, you can build the latest development version from source (Section[39.3] page [304).

Requirement: You must have a JDK (version 8 or later) installed.
The installation process has two required steps and one optional step.

1. Download the Checker Framework distribution:
https://checkerframework.org/checker-framework-3.36.0.z1ip

2. Unzip it to create a checker-framework-3.36.0 directory.

3. Configure your IDE, build system, or command shell to include the Checker Framework on the classpath. Choose
the appropriate section of Chapter [37]

16

http://eisop.uwaterloo.ca/live/
https://checkerframework.org/checker-framework-3.36.0.zip

Now you are ready to start using the checkers.

We recommend that you work through the Checker Framework tutorial (https://checkerframework.org/
tutorial/)), which demonstrates the Nullness, Regex, and Tainting Checkers.

Section[I.4] walks you through a simple example. More detailed instructions for using a checker appear in Chapter 2}

The Checker Framework is released on a monthly schedule. The minor version (the middle number in the version
number) is incremented if there are any incompatibilities with the previous version, including in user-visible behavior
or in methods that a checker implementation might call.

1.4 Example use: detecting a null pointer bug

This section gives a very simple example of running the Checker Framework. There is also a tutorial (https:
//checkerframework.org/tutorial/) that you can work along with.

Let’s consider this very simple Java class. The local variable ref’s type is annotated as @NonNull, indicating that
ref must be a reference to a non-null object. Save the file as GetStarted. java.

import org.checkerframework.checker.nullness.qual.*;

public class GetStarted {
void sample() {
@NonNull Object ref = new Object();

If you run the Nullness Checker (Chapter 3)), the compilation completes without any errors.
Now, introduce an error. Modify ref’s assignment to:

@NonNull Object ref = null;
If you run the Nullness Checker again, it emits the following error:

GetStarted.java:5: incompatible types.
found : @Nullable <nulltype>
required: @NonNull Object

@NonNull Object ref = null;

A

1 error

This is a trivially simple example. Even an unsound bug-finding tool like SpotBugs or Error Prone could have
detected this bug. The Checker Framework’s analysis is more powerful than those tools and detects more code defects
than they do.

Type qualifiers such as @NonNull are permitted anywhere that you can write a type, including generics and casts;
see Section 2.1} Here are some examples:

@Interned String intern() { ... } // return value
int compareTo (@NonNull String other) { ... } // parameter
@NonNull List<@Interned String> messages; // non-null list of interned Strings

17

https://checkerframework.org/tutorial/
https://checkerframework.org/tutorial/
https://checkerframework.org/tutorial/
https://checkerframework.org/tutorial/
../api/org/checkerframework/checker/nullness/qual/NonNull.html

Chapter 2

Using a checker

A pluggable type-checker enables you to detect certain bugs in your code, or to prove that they are not present. The
verification happens at compile time.

Finding bugs, or verifying their absence, with a checker is a two-step process, whose steps are described in

Sections 2. 1land 2.2

1. The programmer writes annotations, such as|@NonNull/and @Interned, that specify additional information about
Java types. (Or, the programmer uses an inference tool to automatically infer annotations that are consistent with
their code: see Section[33]) It is possible to annotate only part of your code: see Section[2.4.6

2. The checker reports whether the program contains any erroneous code — that is, code that is inconsistent with
the annotations.

This chapter is structured as follows:

* Section[2.TF How to write annotations

* Section How to run a checker
 Section What the checker guarantees

* Section[2.4} Tips about writing annotations

Additional topics that apply to all checkers are covered later in the manual:

* Chapter[3T} Advanced type system features
* Chapter[32} Suppressing warnings

* Chapter[34} Annotating libraries

* Chapter 35} How to create a new checker

* Chapter[37} Integration with external tools

There is a tutorial (https://checkerframework.org/tutorial/) that walks you through using the Checker
Framework on the command line.

2.1 Where to write type annotations

You may write a type annotation immediately before any use of a type, including in generics and casts. Because array
levels are types and receivers have types, you can also write type annotations on them. Here are a few examples of type
annotations:

@Interned String intern() { ... } // return value

int compareTo (@NonNull String other) { ... } // parameter

String toString(QTainted MyClass this) { ... } // receiver ("this" parameter)

@NonNull List<@Interned String> messages; // generics: non-null list of interned Strings
@Interned String @NonNull [] messages; // arrays: non-null array of interned Strings
myDate = (@Initialized Date) beingConstructed; // cast

18

../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/interning/qual/Interned.html
https://checkerframework.org/tutorial/

You only need to write type annotations on method signatures, fields, and some type arguments. Most annotations
within method bodies are inferred for you; for more details, see Section [3_1_77}

The Java Language Specification also defines declaration annotations, such as @Deprecated and @Override, which
apply to a class, method, or field but do not apply to the method’s return type or the field’s type. They should be written
on their own line in the source code, before the method’s signature.

2.2 Running a checker

To run a checker, run the compiler javac as usual, but either pass the -processor plugin_class command-line
option, or use auto-discovery as described in Section 2.2.3] (If your project already uses auto-discovery for some
annotation processor, such as AutoValue, then you should use auto-discovery.) Two concretes example of using
-processor to run the Nullness Checker are

javac -processor nullness MyFile.java
javac -processor org.checkerframework.checker.nullness.NullnessChecker MyFile. java

where javac is as specified in Section [37.6]

You can also run a checker from within your favorite IDE or build system. See Chapter [37] for details about
build tools such as Ant (Section 37.3)), Buck (Section [37.3), Bazel (Section 37.4), Gradle (Section [37.9), Maven
(Section[37.13)), and sbt (Section [37.13)); IDEs such as Eclipse (Section[37.8), IntelliJ IDEA (Section[37.10), NetBeans
(Section [37.14)), and tIDE (Section [37.16)); and about customizing other IDEs and build tools.

The checker is run on only the Java files that javac compiles. This includes all Java files specified on the command
line and those created by another annotation processor. It may also include other of your Java files, if they are more
recent than the corresponding .class file. Even when the checker does not analyze a class (say, the class was already
compiled, or source code is not available), it does check the uses of those classes in the source code being compiled.
Type-checking works modularly and intraprocedurally: when verifying a method, it examines only the signature
(including annotations) of other methods, not their implementations. When analyzing a variable use, it relies on the
type of the variable, not any dataflow outside the current method that produced the value.

After you compile your code while running a checker, the resulting .class and . jar files can be used for pluggable
type-checking of client code.

If you compile code without the -processor command-line option, no checking of the type annotations is
performed. Furthermore, only explicitly-written annotations are written to the .class file; defaulted annotations are
not, and this will interfere with type-checking of clients that use your code. Therefore, to create .class files that will
be distributed or compiled against, you should run the type-checkers for all the annotations that you have written.

2.2.1 Using annotated libraries

When your code uses a library that is not currently being compiled, the Checker Framework looks up the library’s
annotations in its class files or in a stub file.

Some projects are already distributed with type annotations by their maintainers, so you do not need to do anything
special. An example is all the libraries in|https://github.com/plume-1ib/l Over time, this should become more
common.

For some other libraries, the Checker Framework developers have provided an annotated version of the library,
either as a stub file or as compiled class files. (If some library is not available in either of these forms, you can contribute
by annotating it, which will help you and all other Checker Framework users; see Chapter [34] page[219])

Some stub files are used automatically by a checker, without any action on your part. For others, you must pass the
-Astubs=... command-line argument. As a special case, if an .astub file appears in checker/resources/, then
pass the command-line option use -Astubs=checker. jar/stubfilename.astub. The “checker. jar” should
be literal — don’t provide a path. This special syntax only works for “checker. jar”.

The annotated libraries that are provided as class files appear in the org.checkerframework.annotatedlib group
in the Maven Central Repository. The annotated library has identical behavior to the upstream, unannotated version;

19

https://github.com/plume-lib/
https://search.maven.org/search?q=org.checkerframework.annotatedlib
https://search.maven.org/search?q=org.checkerframework.annotatedlib

the source code is identical other than added annotations. (Some of the annotated libraries are bcel, commons-csv,
commons-io, guava, and java-getopt.)
To use an annotated library:

* If your project stores . jar files locally, then|download the . jar file from the Maven Central Repository.
* If your project manages dependencies using a tool such as Gradle or Maven, then update your buildfile to use the
org.checkerframework.annotatedlib group. For example, in build.gradle, change

api group: ’'org.apache.bcel’, name: ’'bcel’, version: '6.3.1’
api group: ’'commons-io’, name: ’'commans-io’, version: 2.8’

to

api group: ’org.checkerframework.annotatedlib’, name: ’'bcel’, version: '6.3.1’
api group: ’org.checkerframework.annotatedlib’, name: ’commons-io’, version: ’2.8.0.1’

Usually use the same version number. (Sometimes you will use a slightly larger number, if the Checker Framework
developers have improved the type annotations since the last release by the upstream maintainers.) If a newer ver-
sion of the upstream library is available but that version is not available in org.checkerframework.annotatedlib,
then open an issue requesting that the org.checkerframework.annotatedlib version be updated.

There is one special case. If an .astub file is shipped with the Checker Framework in checker/resources/,
then you can use -Astubs=checker. jar/stubfilename.astub. The “checker.jar” should be literal — don’t
provide a path. (This special syntax only works for “checker. jar”.)

2.2.2 Summary of command-line options

You can pass command-line arguments to a checker via javac’s standard -A option (“A” stands for “annotation’).
All of the distributed checkers support the following command-line options. Each checker may support additional
command-line options; see the checker’s documentation.

To pass an option to only a particular checker, prefix the option with the canonical or simple name of a checker,
followed by an underscore “_”. Such an option will apply only to a checker with that name or any subclass of that
checker. For example, you can use

-ANullnessChecker_lint=redundantNullComparison
-Aorg.checkerframework.checker.guieffect.GuiEffectChecker_ lint=debugSpew

to pass different lint options to the Nullness and GUI Effect Checkers. A downside is that, in this example, the Nullness
Checker will issue a “The following options were not recognized by any processor” warning about the second option
and the GUI Effect Checker will issue a “The following options were not recognized by any processor” warning about
the first option.

Unsound checking: ignore some errors

+ -Asuppressiiarnings Suppress all errors and warnings matching the given key; see Section [32.3]

e -AskipUses, -RonlyUses Suppress all errors and warnings at all uses of a given class — or at all uses except
those of a given class. See Section[32.4]

e -AskipDefs, -AonlyDefs Suppress all errors and warnings within the definition of a given class — or everywhere
except within the definition of a given class. See Section[32.5]

* -AassumeSideEffectFree, ~-AassumeDeterministic, ~AassumePure Unsoundly assume that every method
is side-effect-free, deterministic, or both; see Section [31.7.3]

e —AassumeAssertionsAreEnabled, ~AassumeAssertionsAreDisabled Whether to assume that assertions are
enabled or disabled; see Section[31.7.6]

e -AignoreRangeOverflow Ignore the possibility of overflow for range annotations such as @IntRange; see
Section 2.4

* -Awarns Treat checker errors as warnings. If you use this, you may wish to also supply ~Xmaxwarns 10000,
because by default javac prints at most 100 warnings. If you use this, don’t supply -Werror, which is a javac
argument to halt compilation if a warning is issued.

20

https://search.maven.org/search?q=org.checkerframework.annotatedlib

e -AignorelInvalidAnnotationLocations Ignore annotations in bytecode that have invalid annotation locations.
More sound (strict) checking: enable errors that are disabled by default

e -AcheckPurityAnnotations Check the bodies of methods marked @SideEffectFreel @Deterministic, and
@Pure to ensure the method satisfies the annotation. By default, the Checker Framework unsoundly trusts the
method annotation. See Section

e -AinvariantArrays Make array subtyping invariant; that is, two arrays are subtypes of one another only if
they have exactly the same element type. By default, the Checker Framework unsoundly permits covariant array
subtyping, just as Java does. See Section[31.1]

e -AcheckCastElementType In a cast, require that parameterized type arguments and array elements are the same.
By default, the Checker Framework unsoundly permits them to differ, just as Java does. See Section[30.1.6|and
Section BT.1}

e -AuseConservativeDefaultsForUncheckedCode Enables conservative defaults, and suppresses all type-
checking warnings, in unchecked code. Takes arguments “source,bytecode”. “-source,-bytecode” is the (unsound)
default setting.

— “bytecode” specifies whether the checker should apply conservative defaults to bytecode (that is, to already-
compiled libraries); see Section [31.5.6]

— Outside the scope of any relevant @AnnotatedFor annotation, “source” specifies whether conservative
default annotations are applied to source code and suppress all type-checking warnings; see Section [34.4]

* -AconcurrentSemantics Whether to assume concurrent semantics (field values may change at any time) or
sequential semantics; see Section [38.4.6]

e -AconservativeUninferredTypeArqguments Whether an error should be issued if type arguments could not
be inferred and whether method type arguments that could not be inferred should use conservative defaults. By
default, such type arguments are (largely) ignored in later checks. Passing this option uses a conservative value
instead. See |Issue 979.

e -AignoreRawTypeArguments=false Do not ignore subtype tests for type arguments that were inferred for a
raw type. Must also use ~AconservativeUninferredTypeArguments. See Section[30.1.1]

* —processor org.checkerframework.common.initializedfields.InitializedFieldsChecker, ... En-
sure that all fields are initialized by the constructor. See Chapter 25} page[T53]

Type-checking modes: enable/disable functionality

 -Alint Enable or disable optional checks; see Section [32.6]

-AwarnRedundantAnnotations Warn about redundant annotations. A warning is issued if an explicitly written
annotation is the same as the default annotation for that location. This feature does not warn about all redundant
annotations, only some.

-AsuggestPureMethods Suggest methods that could be marked @SideEffectFree, @Deterministic, or
@Pure} see Section

-AresolveReflection Determine the target of reflective calls, and perform more precise type-checking based
on that information; see Chapter[24] -AresolveReflection=debug causes debugging information to be output.
-Ainfer=output format Output suggested annotations for method signatures and fields. These annotations
may reduce the number of type-checking errors when running type-checking in the future; see Section[33.2] Using
-Ainfer=jaifs produces . jaif files. Using -Ainfer=stubs produces .astub files. Using -Ainfer=ajava
produces .ajava files. You must also supply -Awarns, or the inference output may be incomplete.
-AinferOutputOriginal When outputting .ajava files when running with -Ainfer=ajava, also output a
copy of the original file with no inferred annotations, but with the formatting of a . ajava file, to permit use of
diff to view the inferred annotations. Must be combined with -Ainfer=ajava.
-AshowSuppressWarningsStrings With each warning, show all possible strings to suppress that warning.
-AwarnUnneededSuppressions Issue a warning if a @SuppressWarnings did not suppress a warning issued
by the checker. This only warns about @SuppressWarnings strings that contain a checker name (for syntax,
Section 32.1.1). The -ArequirePrefixInWarningSuppressions command-line argument ensures that all
@SuppressWarnings strings contain a checker name. An unneeded. suppression warning can be suppressed

21

../api/org/checkerframework/dataflow/qual/SideEffectFree.html
../api/org/checkerframework/dataflow/qual/Deterministic.html
../api/org/checkerframework/dataflow/qual/Pure.html
../api/org/checkerframework/framework/qual/AnnotatedFor.html
https://github.com/typetools/checker-framework/issues/979
../api/org/checkerframework/dataflow/qual/SideEffectFree.html
../api/org/checkerframework/dataflow/qual/Deterministic.html
../api/org/checkerframework/dataflow/qual/Pure.html

only by @SuppressWarnings ("unneeded. suppression") or @SuppressWarnings ("checkername:unneeded. suppressio
not by @SuppressWarnings ("checkername").

e -AwarnUnneededSuppressionsExceptions=regex disables ~-AwarnUnneededSuppressions for @SuppressiWarnings
strings that contain a match for the regular expression. Most users don’t need this.

e -ArequirePrefixInWarningSuppressions Require that the string in a warning suppression annotation begin
with a checker name. Otherwise, the suppress warning annotation does not suppress any warnings. For
example, if this command-line option is supplied, then @SuppressWarnings ("assignment™) has no effect, but
@SuppressWarnings ("nullness:assignment™) does.

* -AshowPrefixInWarningMessages When issuing an error or warning, prefix the warning suppression key by
the checker name. For instance, output “error: [nullness:assignment] ...” instead of “error: [assignment]”. This
makes it easy to tell, from the suppression key only, which checker issued the error or warning.

Partially-annotated libraries

* -Astubs List of stub files or directories; see Section34.5.1]
* -AstubWarnIfNotFound, -AstubNoWarnIfNotFound, -AstubWarnIfNotFoundIgnoresClasses, -AstubWarnIfRedundantWi
-AstubWarnNote Warn about problems with stub files; see Section
e -AmergeStubsWithSource If both a stub file and a source file for a class are available, trust both and use the
greatest lower bound of their annotations. The default behavior (without this flag) is to ignore types from the stub
file if source is available. See Section 34.3.2]
e -AuseConservativeDefaultsForUncheckedCode=source Outside the scope of any relevant|@AnnotatedFor
annotation, use conservative default annotations and suppress all type-checking warnings; see Section [34.4]

Debugging

e -AprintAllQualifiers, -AprintVerboseGenerics, —~Anomsgtext, —~AdumpOnErrors Amount of detail in
messages; see Section [35.12.1]

* -Adetailedmsgtext Format of diagnostic messages; see Section[35.12.2]

e -Aignorejdkastub, -ApermitMissingJdk, -AparseAllJdk, ~AstubDebug Stub and JDK libraries; see Sec-
tion[35.12.3]

e -Afilenames, -Ashowchecks, ~AshowInferenceSteps, ~AshowlpiFailedInferences Progress tracing; see
Section[35.12.41

e —AoutputArgsToFile Output the compiler command-line arguments to a file. Useful when the command line is
generated and executed by a tool, such as a build system. This produces a standalone command line that can be
executed independently of the tool that generated it (such as a build system). That command line makes it easier
to reproduce, report, and debug issues. For example, the command line can be modified to enable attaching a

debugger. See Section[35.12.3]
e -Aflowdotdir, -Averbosecfq, -Acfgviz Draw a visualization of the CFG (control flow graph); see Sec-

tion
 -AresourceStats, -AatfDoNotCache, -Aat fCacheSize Miscellaneous debugging options; see Section[35.12.7]
* -Aversion Print the Checker Framework version.
e -AprintGitProperties Print information about the git repository from which the Checker Framework was
compiled.

Some checkers support additional options, which are described in that checker’s manual section. For example, -Aquals
tells the Subtyping Checker (see Chapter [28) and the Fenum Checker (see Chapter [0)) which annotations to check.

Here are some standard javac command-line options that you may find useful. Many of them contain “processor” or
“proc”, because in javac jargon, a checker is an “annotation processor”.

* -processor Names the checker to be run; see Sections [2.2]and[2.2.4] May be a comma-separated list of multiple
checkers. Note that javac stops processing an indeterminate time after detecting an error. When providing
multiple checkers, if one checker detects any error, subsequent checkers may not run.

* —processorpath Indicates where to search for the checker. This should also contain any classes used by
type-checkers, such as qualifiers used by the Subtyping Checker (see Section [28.2) and classes that define
statically-executable methods used by the Constant Value Checker (see Section 22.2.2)).

22

../api/org/checkerframework/framework/qual/AnnotatedFor.html

e —proc:{none,only} Controls whether checking happens; -proc:none means to skip checking; -proc:only
means to do only checking, without any subsequent compilation; see Section[2.2.3]

e —-implicit:class Suppresses warnings about implicitly compiled files (not named on the command line); see
Section[37.3]

e —J Supply an argument to the JVM that is running javac; for example, -J-Xmx2500m to increase its maximum
heap size

¢ —doe To “dump on error”, that is, output a stack trace whenever a compiler warning/error is produced. Useful
when debugging the compiler or a checker.

2.2.3 Checker auto-discovery

“Auto-discovery” makes the javac compiler always run an annotation processor, such as a checker plugin, without
explicitly passing the -processor command-line option. This can make your command line shorter, and it ensures that
your code is checked even if you forget the command-line option.
If the javac command line specifies any -processor command-line option, then auto-discovery is disabled. This
means that if your project currently uses auto-discovery, you should use auto-discovery for the Checker Framework
too. (Alternately, if you prefer to use a -processor command-line argument, you will need to specify all annotation
processors, including ones that used to be auto-discovered.)
To enable auto-discovery, place a configuration file named META-INF/services/javax.annotation.processing.Processor
in your classpath. The file contains the names of the checkers to be used, listed one per line. For instance, to run the
Nullness Checker and the Interning Checker automatically, the configuration file should contain:

org.checkerframework.checker.nullness.NullnessChecker
org.checkerframework.checker.interning.InterningChecker

You can disable this auto-discovery mechanism by passing the -proc:none command-line option to javac, which
disables all annotation processing including all pluggable type-checking.

2.2.4 Shorthand for built-in checkers

Ordinarily, javac’s -processor flag requires fully-qualified class names. When using the Checker Framework javac
wrapper (Section[37.6), you may omit the package name and the Checker suffix. The following three commands are
equivalent:

javac —processor org.checkerframework.checker.nullness.NullnessChecker MyFile. java
javac -processor NullnessChecker MyFile. java
javac -processor nullness MyFile.java

This feature also works when multiple checkers are specified. Their names are separated by commas, with no
surrounding space. For example:

javac -processor NullnessChecker,RegexChecker MyFile. java
javac -processor nullness,regex MyFile. java

This feature does not apply to javac @argfiles,

2.3 What the checker guarantees

A checker guarantees two things: type annotations reflect facts about run-time values, and illegal operations are not
performed.

For example, the Nullness Checker (Chapter[3) guarantees lack of null pointer exceptions (Java Nul1PointerException).
More precisely, it guarantees that expressions whose type is annotated with |@NonNull never evaluate to null, and it
forbids other expressions from being dereferenced.

23

https://docs.oracle.com/javase/7/docs/technotes/tools/windows/javac.html#commandlineargfile
../api/org/checkerframework/checker/nullness/qual/NonNull.html

As another example, the Interning Checker (Chapter[6) guarantees that correct equality tests are performed. More
precisely, it guarantees that every expression whose type is an @ Interned type evaluates to an interned value, and it
forbids == on other expressions.

The guarantee holds only if you run the checker on every part of your program and the checker issues no warnings
anywhere in the code. You can also verify just part of your program.

There are some limitations to the guarantee.

* A compiler plugin can check only those parts of your program that you run it on. If you compile some parts of
your program without running the checker, then there is no guarantee that the entire program satisfies the property
being checked. Some examples of un-checked code are:

— Code compiled without the -processor switch. This includes external libraries supplied as a . class file
and native methods (because the implementation is not Java code, it cannot be checked).

— Code compiled with the -AskipUses, -AonlyUses, -AskipDefs or -AonlyDefs command-line arguments
(see Chapter [32).

— Dynamically generated code, such as generated by Spring or MyBatis. Its bytecode is directly generated
and run, not compiled by javac and not visible to the Checker Framework.

In each of these cases, any use of the code is checked — for example, a call to a native method must be compatible
with any annotations on the native method’s signature. However, the annotations on the un-checked code are
trusted; there is no verification that the implementation of the native method satisfies the annotations.

* You can suppress warnings, such as via the @SuppressWarnings annotation (Chapter [32] page [204). If you do
so incorrectly, the checker’s guarantee no longer holds.

* The Checker Framework is, by default, unsound in a few places where a conservative analysis would issue too
many false positive warnings. These are listed in Section [2.2.2] You can supply a command-line argument to
make the Checker Framework sound for each of these cases.

 Specific checkers may have other limitations; see their documentation for details.

In order to avoid a flood of unhelpful warnings, many of the checkers avoid issuing the same warning multiple
times. For example, consider this code:

@Nullable Object x = ...;
x.toString(); // warning
x.toString(); // no warning

The second call to toString cannot possibly throw a null pointer warning — x is non-null if control flows to the second
statement. In other cases, a checker avoids issuing later warnings with the same cause even when later code in a method
might also fail. This does not affect the soundness guarantee, but a user may need to examine more warnings after
fixing the first ones identified. (Often, a single fix corrects all the warnings.)

If you find that a checker fails to issue a warning that it should, then please report a bug (see Section [39.2).

2.4 Tips about writing annotations

Section [34.1] gives additional tips that are specific to annotating a third-party library.

2.4.1 Write annotations before you run a checker

Before you run a checker, annotate the code, based on its documentation. Then, run the checker to uncover bugs in the
code or the documentation.

Don’t do the opposite, which is to run the checker and then add annotations according to the warnings issued. This
approach is less systematic, so you may overlook some annotations. It often leads to confusion and poor results. It leads
users to make changes not for any principled reason, but to “make the type-checker happy”, even when the changes are
in conflict with the documentation or the code. Also see “Annotations are a specification”, below.

24

../api/org/checkerframework/checker/interning/qual/Interned.html

2.4.2 How to get started annotating legacy code

Annotating an entire existing program may seem like a daunting task. But, if you approach it systematically and do a
little bit at a time, you will find that it is manageable.

Start small

Start small. Focus on one specific property that matters to you; in other words, run just one checker rather than multiple
ones. You may choose a different checker for different programs. Focus on the most mission-critical or error-prone part
of your code; don’t try to annotate your whole program at first.

It is easiest to add annotations if you know the code or the code contains documentation. While adding annotations,
you will spend most of your time understanding the code, and less time actually writing annotations or running the
checker.

Don’t annotate the whole program, but work module by module. Start annotating classes at the leaves of the call
tree — that is, start with classes/packages that have few dependencies on other code. Annotate supertypes before you
annotate classes that extend or implement them. The reason for this rule is that it is easiest to annotate a class if the code
it depends on has already been annotated. Sections [32.4]and [32.5] give ways to skip checking of some files, directories,
or packages. Section [2.4.6| gives advice about handling calls from annotated code into unannotated code.

When annotating, be systematic; we recommend annotating an entire class or module at a time (not just some of the
methods) so that you don’t lose track of your work or redo work. For example, working class-by-class avoids confusion
about whether an unannotated type use means you determined that the default is desirable, or it means you didn’t yet
examine that type use.

Don’t overuse pluggable type-checking. If the regular Java type system can verify a property using Java subclasses,
then that is a better choice than pluggable type-checking (see Section [38.1.2).

Annotations are a specification

When you write annotations, you are writing a specification, and you should think about them that way. Start out by
understanding the program so that you can write an accurate specification. Sections [2.4.3]and [2.4.4] give more tips about
writing specifications.

For each class, read its Javadoc. For instance, if you are adding annotations for the Nullness Checker (Section [3),
then you can search the documentation for “null” and then add @Nullable anywhere appropriate. Start by annotating
signatures and fields, but not method bodies. The only reason to even read the method bodies yet is to determine
signature annotations for undocumented methods — for example, if the method returns null, you know its return type
should be annotated @Nullable, and a parameter that is compared against null may need to be annotated @Nullable.

The specification should state all facts that are relevant to callees. When checking a method, the checker uses
only the specification, not the implementation, of other methods. (Equivalently, type-checking is “modular” or
“intraprocedural”.) When analyzing a variable use, the checker relies on the type of the variable, not any dataflow
outside the current method that produced the value.

After you have annotated all the signatures, run the checker. Then, fix bugs in code and add/modify annotations
as necessary. Don’t get discouraged if you see many type-checker warnings at first. Often, adding just a few missing
annotations will eliminate many warnings, and you’ll be surprised how fast the process goes overall (assuming that you
understand the code, of course).

It is usually not a good idea to experiment with adding and removing annotations in order to understand their
effect. It is better to reason about the desired design. However, to avoid having to manually examine all callees, a more
automated approach is to save the checker output before changing an annotation, then compare it to the checker output
after changing the annotation.

Chapter [34]tells you how to annotate libraries that your code uses. Section[2.4.5]and Chapter [32]tell you what to do
when you are unable to eliminate checker warnings by adding annotations.

25

Write good code

Avoid complex code, which is more error-prone. If you write your code to be simple and clear enough for the type-
checker to verify, then it will also be easier for programmers to understand. When you verify your code, a side benefit
is improving your code’s structure.

Your code should compile cleanly under the regular Java compiler. As a specific example, your code should not
use raw types like List; use parameterized types like List<String> instead (Section[30.1.1)). If you suppress Java
compiler warnings, then the Checker Framework will issue more warnings, and its messages will be more confusing.
(Also, if you are not willing to write code that type-checks in Java, then you might not be willing to use an even more
powerful type system.)

Do not write unnecessary annotations.

* Do not annotate local variables unless necessary. The checker infers annotations for local variables (see
Section [31.7). Usually, you only need to annotate fields and method signatures. You should add annotations
inside method bodies only if the checker is unable to infer the correct annotation (usually on type arguments or
array element types, rather than on top-level types).

* Do not write annotations that are redundant with defaults. For example, when checking nullness (Chapter [3]
page [31)), the default annotation is @NonNull, in most locations other than some type bounds (Section [31.5.3).
When you are starting out, it might seem helpful to write redundant annotations as a reminder, but that’s like
when beginning programmers write a comment about every simple piece of code:

// The below code increments variable i by adding 1 to it.

i++;

As you become comfortable with pluggable type-checking, you will find redundant annotations to be distracting
clutter, so avoid putting them in your code in the first place.

* Avoid writing @SuppressWarnings annotations unless there is no alternative. It is tempting to think that your
code is right and the checker’s warnings are false positives. Sometimes they are, but slow down and convince
yourself of that before you dismiss them. Section [2.4.5]discusses what to do when a checker issues a warning
about your code.

2.4.3 Annotations indicate non-exceptional behavior

You should use annotations to specify normal behavior. The annotations indicate all the values that you want to flow to
a reference — not every value that might possibly flow there if your program has a bug.

Methods that crash when passed certain values

Nullness example As an example, consider the Nullness Checker. Its goal is to guarantee that your program does not
crash due to a null value.
This method crashes if null is passed to it:

/** @throws NullPointerException if arg is null */
void ml (Object arg) {
arg.toString();

}

Therefore, the type of arg should be @NonNull Object — you can write this as just Object, because @NonNull is the
default. The Nullness Checker (Chapter 3] page[31)) prevents null pointer exceptions by warning you whenever a client
passes a value that might cause m1 to crash.

Here is another method:

/** Qthrows NullPointerException if arg is null */
void m2 (Object arg) {

26

Objects.requireNonNull (arg);

Method m2 behaves just like m1 in that it throws Nul1lPointerException if a client passes null. Therefore, their
specifications should be identical (the formal parameter type is annotated with @NonNull), so the checker will issue the
same warning if a client might pass null.

The same argument applies to any method that is guaranteed to throw an exception if it receives null as an argument.
Examples include:

com.google.common.base.Preconditions.checkNotNull (Object)
java.lang.Double.valueOf (String)
java.lang.Objects.requireNonNull (Object)
java.lang.String.contains (CharSequence)
org.junit.Assert.assertNotNull (Object)
org.junit.jupiter.api.Assert.assertNotNull (Object)

Their formal parameter type is annotated as @NonNull, because otherwise the program might crash. Adding a call
to a method like requireNonNull never prevents a crash: your code still crashes, but with a slightly different stack
trace. In order to prevent all exceptions in your program caused by null pointers, you need to prevent those thrown by
methods including requireNonNull.

(One might argue that the formal parameter should be annotated as @Nullable because passing null has a well-
defined semantics (throw an exception) and such an execution may be possible if your program has a bug. However, it
is never the programmer’s intent for null to flow there. Preventing such bugs is the purpose of the Nullness Checker.)

A method like requireNonNull is useless for making your code correct, but it does have a benefit: its stack trace
may help developers to track down the bug. (For users, the stack trace is scary, confusing, and usually non-actionable.)
But if you are using the Checker Framework, you can prevent errors rather than needing extra help in debugging the
ones that occur at run time.

Optional example Another example is the Optional Checker (Chapter [5] page and the orElseThrow method.
The goal of the Optional Checker is to ensure that the program does not crash due to use of a non-present Optional
value. Therefore, the receiver of orElseThrow is annotated as @Present, and the Optional Checker issues a warning if
the client calls orElseThrow on a @MaybePresent value.

Permitting crashes in some called methods You can make a checker ignore crashes in library code, such as
assertNotNull (), that occur as a result of misuse by your code. This invalidates the checker’s guarantee that your
program will not crash. (Programmers and users typically care about all crashes, no matter which method is at the top
of the call stack when the exception is thrown.) The checker will still warn you about crashes in your own code.

* The -AskipUses command-line argument (Section[32.4) skips checking all method calls to one or more classes.
e A stub file (Section@]) can override the library’s annotations, for one or more methods.

As a special case, if you want the Nullness Checker to prevent most null pointer exceptions in your code, but to per-

mit null pointer exceptions at nullness assertion methods, you can pass -Astubs=permit-nullness-assertion-exception.astu
* Don’t type-check clients of the method. For example, JUnit’s assertNotNull () is typically called only in test

code; its clients are the tests. If you type-check only your main program, then the annotation on assertNotNull ()

is irrelevant.

Methods that sometimes crash when passed certain values

If a method can possibly throw an exception because its parameter is null, then that parameter’s type should be
@NonNull, which guarantees that the type-checker will issue a warning for every client use that has the potential to
cause an exception. Don’t write @Nullable on the parameter just because there exist some executions that don’t
necessarily throw an exception.

27

../api/org/checkerframework/checker/nullness/qual/Nullable.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html#orElseThrow()
../api/org/checkerframework/checker/optional/qual/Present.html
../api/org/checkerframework/checker/optional/qual/MaybePresent.html

2.4.4 Subclasses must respect superclass annotations

An annotation indicates a guarantee that a client can depend upon. A subclass is not permitted to weaken the contract;
for example, if a method accepts null as an argument, then every overriding definition must also accept null. A
subclass is permitted to strengthen the contract; for example, if a method does not accept null as an argument, then an
overriding definition is permitted to accept null.

As a bad example, consider an erroneous @Nullable annotation in
com/google/common/collect/Multiset. java:

101 public interface Multiset<E> extends Collection<E> {

122 /**

123 * Adds a number of occurrences of an element to this multiset.

129 * (@param element the element to add occurrences of; may be {@code null} only
130 * if explicitly allowed by the implementation

137 * @throws NullPointerException if {@code element} is null and this

138 * implementation does not permit null elements. Note that if {@code

139 * occurrences} is zero, the implementation may opt to return normally.
140 */

141 int add(@Nullable E element, int occurrences);

There exist implementations of Multiset that permit null elements, and implementations of Multiset that do not
permit null elements. A client with a variable Multiset ms does not know which variety of Multiset ms refers to.
However, the @Nullable annotation promises that ms.add (null, 1) is permissible. (Recall from Section [2.4.3]that
annotations should indicate normal behavior.)

If parameter element on line 141 were to be annotated, the correct annotation would be @NonNull. Suppose a
client has a reference to same Multiset ms. The only way the client can be sure not to throw an exception is to pass only
non-null elements to ms.add (). A particular class that implements Multiset could declare add to take a @Nullable
parameter. That still satisfies the original contract. It strengthens the contract by promising even more: a client with
such a reference can pass any non-null value to add (), and may also pass null.

However, the best annotation for line 141 is no annotation at all. The reason is that each implementation of the
Multiset interface should specify its own nullness properties when it specifies the type parameter for Multiset. For
example, two clients could be written as

class MyNullPermittingMultiset implements Multiset<@Nullable Object> {
class MyNullProhibitingMultiset implements Multiset<@NonNull Object> { ... }

—

or, more generally, as

class MyNullPermittingMultiset<E extends @Nullable Object> implements Multiset<E> { ... }
class MyNullProhibitingMultiset<E extends @NonNull Object> implements Multiset<E> { ... }

Then, the specification is more informative, and the Checker Framework is able to do more precise checking, than if
line 141 has an annotation.

It is a pleasant feature of the Checker Framework that in many cases, no annotations at all are needed on type
parameters such as E in MultiSet.

2.4.5 What to do if a checker issues a warning about your code

When you run a type-checker on your code, it is likely to issue warnings or errors. Don’t panic! If you have trouble
understanding a Checker Framework warning message, you can search for its text in this manual. There are three
general causes for the warnings:

28

https://github.com/google/guava/blob/master/guava/src/com/google/common/collect/Multiset.java#L129

You found a bug There is a bug in your code, such as a possible null dereference. Fix your code to prevent that crash.

Wrong annotations The annotations are too strong (they are incorrect) or too weak (they are imprecise). Improve
the annotations, usually by writing more annotations in order to better express the specification. Only write
annotations that accurately describe the intended behavior of the software — don’t write inaccurate annotations
just for the purpose of eliminating type-checker warnings.
Usually you need to improve the annotations in your source code. Sometimes you need to improve annotations in
a library that your program uses (see Chapter [34] page[219).

Type-checker weakness There is a weakness in the type-checker. Your code is safe — it never suffers the error at run
time — but the checker cannot prove this fact. (Recall that The checker works modularly: when type-checking
a method m, it relies on the types and signatures of variables and methods used by m, but not the initialization
expressions or the method bodies.)
If possible, rewrite your code to be simpler for the checker to analyze; this is likely to make it easier for people to
understand, too. If that is not possible, suppress the warning (see Chapter[32} page[204); be sure to include a code
comment explaining how you know the code is correct even though the type-checker cannot deduce that fact.
Do not add an if test that can never fail, just to suppress a warning. Adding a gratuitous if clutters the code
and confuses readers. A reader should assume that every if condition can evaluate to true or false. There is one
exception to this rule: an if test may have a condition that you think will never evaluate to true, if its body just
throws a descriptive error message.

For each warning issued by the checker, you need to determine which of the above categories it falls into. Here is an
effective methodology to do so. It relies mostly on manual code examination, but you may also find it useful to write
test cases for your code or do other kinds of analysis, to verify your reasoning. (Also see Section[39.1.4]and Chapter [39]
Troubleshooting. In particular, Section [39.1.4]explains this same methodology in different words.)

Step 1: Explain correctness: write a proof Write an explanation of why your code is correct and it never suffers
the error at run time. In other words, this is an informal proof that the type-checker’s warning is incorrect. Write it in
natural language, such as English.

Don’t skip any steps in your proof. (For example, don’t write an unsubstantiated claim such as “x is non-null here”;
instead, give a justification.) Don’t let your reasoning rely on facts that you do not write down explicitly. For example,
remember that calling a method might change the values of object fields; your proof might need to state that certain
methods have no side effects.

If you cannot write a proof, then there is a bug in your code (you should fix the bug) or your code is too complex for
you to understand (you should improve its documentation and/or design).

Step 2: Translate the proof into annotations. Here are some examples of the translation.

* If your proof includes “variable x is never null at run time”, then annotate x’s type with @NonNull.

* If your proof includes “method foo always returns a legal regular expression”, then annotate foo’s return type
with |@Regex.

¢ If your proof includes “if method join’s first argument is non-null, then join returns a non-null result”, then
annotate join’s first parameter and return type with|@PolyNull|

¢ If your proof includes “method processOptions has already been called and it set field tz1”, then annotate
processOptions’s declaration with @EnsuresNonNull|("tz1").

¢ If your proof includes “method isEmpty returned false, so its argument must have been non-null”, then annotate
isEmpty’s declaration with @EnsuresNonNullIf|(expression="4#1",result=false).

« If your proof includes “method m has no side effects”, then annotate m’s declaration with @SideEffectFreel

¢ If your proof includes “each call to method m returns the same value”, then annotate m’s declaration with
@Deterministicl

All of these are examples of correcting weaknesses in the annotations you wrote. The Checker Framework provides
many other powerful annotations; you may be surprised how many proofs you can express in annotations. If you need
to annotate a method that is defined in a library that your code uses, see Chapter [34] page 219

29

../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/regex/qual/Regex.html
../api/org/checkerframework/checker/nullness/qual/PolyNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html
../api/org/checkerframework/dataflow/qual/SideEffectFree.html
../api/org/checkerframework/dataflow/qual/Deterministic.html

Don’t omit any parts of your proof. When the Checker Framework analyzes a method, it examines only the
signature/specification (not the implementation) of other methods.

If there are complex facts in your proof that cannot be expressed as annotations, then that is a weakness in the
type-checker. For example, the Nullness Checker cannot express “in list 1st, elements stored at even indices are always
non-null, but elements stored at odd elements might be null.” In this case, you have two choices. First, you can
suppress the warning (Chapter [32] page [204); be sure to write a comment explaining your reasoning for suppressing the
warning. You may wish to submit a feature request (Section [39.2) asking for annotations that handle your use case.
Second, you can rewrite the code to make the proof simpler; in the above example, it might be better to use a list of
pairs rather than a heterogeneous list.

Step 3: Re-run the checker At this point, all the steps in your proof have been formalized as annotations. Re-run the
checker and repeat the process for any new or remaining warnings.

If every step of your proof can be expressed in annotations, but the checker cannot make one of the deductions (it
cannot follow one of the steps), then that is a weakness in the type-checker. First, double-check your reasoning. Then,
suppress the warning, along with a comment explaining your reasoning (Chapter 32} page[204). The comment is an
excerpt from your informal proof, and the proof guides you to the best place to suppress the warning. Please submit a
bug report so that the checker can be improved in the future (Section [39.2)).

2.4.6 Calls to unannotated code (legacy libraries)

Sometimes, you wish to type-check only part of your program. You might focus on the most mission-critical or
error-prone part of your code. When you start to use a checker, you may not wish to annotate your entire program right
away. You may not have enough knowledge to annotate poorly-documented libraries that your program uses. Or, the
code you are annotating may call into unannotated libraries.

If annotated code uses unannotated code, then the checker may issue warnings. For example, the Nullness Checker
(Chapter 3) will warn whenever an unannotated method result is used in a non-null context:

@NonNull myvar = unannotated_method(); // WARNING: unannotated_method may return null

If the call can return null, you should fix the bug in your program by removing the |@NonNull|annotation in your
own program.
If the call never returns null, you have two choices: annotate the library or suppress warnings.

1. To annotate the library:

« If the unannotated code is in your program, you can write annotations but not type-check them yet. Two
ways to prevent the type-checking are via a @SuppressWarnings annotation (Section [32.1)) or by not
running the checker on that file, for example via the ~AskipDefs command-line option (Section [32.5).

+ To annotate a library whose source code you do not have or cannot change, see Chapter [34]

2. To suppress all warnings related to uses of unannotated_method, use the -~AskipUses command-line option
(Section [32.4). Beware: a carelessly-written regular expression may suppress more warnings than you intend.

30

../api/org/checkerframework/checker/nullness/qual/NonNull.html

Chapter 3

Nullness Checker

If the Nullness Checker issues no warnings for a given program, then running that program will never throw a null
pointer exception. In other words, the Nullness Checker prevents all Nul1PointerExceptions. See Section [3.1]for
more details about the guarantee and what is checked.

The most important annotations supported by the Nullness Checker are @NonNull and|@Nullable, |@NonNull|is
rarely written, because it is the default. All of the annotations are explained in Section [3.2]

To run the Nullness Checker, supply the -processor org.checkerframework.checker.nullness.NullnessChecker
command-line option to javac. For examples, see Section[3.5]

The NullnessChecker is actually an ensemble of three pluggable type-checkers that work together: the Nullness
Checker proper (which is the main focus of this chapter), the Initialization Checker (Section [3.8)), and the Map Key
Checker (Chapter[d] page[53). Their type hierarchies are completely independent, but they work together to provide
precise nullness checking.

3.1 What the Nullness Checker guarantees

If the Nullness Checker type-checks your program without errors, then your program will not crash with aNullPointerException
that is caused by misuse of null in checked code. Section[2.3|notes some limitations to guarantees made by the Checker
Framework.

The checker issues a warning in these cases:

1. When an expression of non-@NonNull|type is dereferenced, because it might cause a null pointer exception.
Dereferences occur not only when a field is accessed, but when an array is indexed, an exception is thrown, a lock
is taken in a synchronized block, and more. For a complete description of all checks performed by the Nullness
Checker, see the Javadoc for NullnessVisitor.

2. When an expression of [@NonNull| type might become null, because it is a misuse of the type: the null value could
flow to a dereference that the checker does not warn about.

As a special case of an of @NonNull type becoming null, the checker also warns whenever a field of @NonNull
type is not initialized in a constructor.

This example illustrates the programming errors that the checker detects:

@Nullable Object obj; // might be null
@NonNull Object nnobj; // never null

obj.toString() // checker warning: dereference might cause null pointer exception

nnobj = obj; // checker warning: nnobj may become null
if (nnobj == null) // checker warning: redundant test

31

../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/Nullable.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/NullnessVisitor.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html

Parameter passing and return values are checked analogously to assignments.

The Nullness Checker also checks the correctness, and correct use, of initialization (see Section @ and of map key
annotations (see Chapter[d page[53).

The checker performs additional checks if certain ~Alint command-line options are provided. (See Section[32.6]
for more details about the -Alint command-line option.)

3.1.1 Nullness Checker optional warnings

1. Options that control soundness:

* If you supply the -Alint=soundArrayCreationNullness command-line option, then the checker warns
if it encounters an array creation with a non-null component type. See Section [3.3.4]for a discussion.

* If you supply the -Astubs=collection-object-parameters-may-be-null.astub command-line op-
tion, then in JDK collection classes, the checker unsoundly permits null as an argument for any key or value
formal parameter whose type is Object (instead of the element type). See Section

 If yousupply the -Alint=trustArrayLenZero command-line option, then the checker will trust|@ArrayLen (
0) annotations. See Section [3.3.3]for a discussion.

* If you supply the -AassumeKeyFor command-line option, then the checker will unsoundly assume that the
argument to Map.get is a key for the receiver map. It will not do any checking of |€¢KeyFor and related
qualifiers.

 If yousupply the -AinvocationPreservesArgumentNullness command-line option, the Nullness Checker
unsoundly assumes that arguments passed to non-null parameters in an invocation remain non-null after the
invocation. This assumption is unsound in general, but holds for most code. For other ways to suppress
warnings related to method side effects, see Section[31.7.5]

2. Options that warn about poor code style:

* If you supply the -Alint=redundantNullComparison command-line option, then the checker warns
when a null check is performed against a value that is guaranteed to be non-null, as in ("m" == null).
Such a check is unnecessary and might indicate a programmer error or misunderstanding. The lint option is
disabled by default because sometimes such checks are part of ordinary defensive programming.

3. Options that enable checking modes:

¢ If you supply the -Alint=permitClearProperty command-line option, then the checker permits calls
to|System.setProperties ()|and calls to System.clearProperty that might clear one of the built-in
properties.
By default, the checker forbids calls to those methods, and also special-cases type-checking of calls to
System.getProperty () and|System.setProperties (). A call to one of these methods can return null
in general, but by default the Nullness Checker treats it as returning non-null if the argument is one of the
literal strings listed in the documentation of |System.getProperties (). To make this behavior sound, the
Nullness Checker forbids calls that might clear any built-in property, as described above.

3.2 Nullness annotations
The Nullness Checker uses three separate type hierarchies: one for nullness, one for initialization (Section[3.8), and one

for map keys (Chapter[d] page[53) The Nullness Checker has four varieties of annotations: nullness type qualifiers,
nullness method annotations, initialization type qualifiers, and map key type qualifiers.

3.2.1 Nullness qualifiers

The nullness hierarchy contains these qualifiers:

32

../api/org/checkerframework/common/value/qual/ArrayLen.html
../api/org/checkerframework/checker/nullness/qual/KeyFor.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/System.html#getProperties()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/System.html#clearProperty(java.lang.String)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/System.html#getProperty(java.lang.String,java.lang.String)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/System.html#setProperties(java.util.Properties)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/System.html#getProperties()

@Nullable Object

/\

@NonNull Object @Nullable Date

. —r

@NonNull Date

Figure 3.1: Partial type hierarchy for the Nullness type system. Java’s Object is expressed as @Nullable Object.
Programmers can omit most type qualifiers, because the default annotation (Section [3.3.2) is usually correct. The
Nullness Checker verifies three type hierarchies: this one for nullness, one for initialization (Section[3.8)), and one for

map keys (Chapter [d] page[53).

@Nullable/ indicates a type that includes the null value. For example, the Java type Boolean is nullable: a variable of
type Boolean always has one of the values TRUE, FALSE, or null. (Since @NonNull is the default type annotation,
you would actually write this type as @Nullable Boolean.)

@NonNull indicates a type that does not include the null value. The type boolean is non-null; a variable of type
boolean always has one of the values true or false. The type @NonNull Boolean is also non-null: a variable
of type @NonNull Boolean always has one of the values TRUE or FALSE — never null. Dereferencing an
expression of non-null type can never cause a null pointer exception.

The @NonNull annotation is rarely written in a program, because it is the default (see Section [3.3.2).
@PolyNull] indicates qualifier polymorphism. For a description of qualifier polymorphism, see Section[30.2]
@MonotonicNonNull indicates a reference that may be null, but if it ever becomes non-null, then it never

becomes null again. This is appropriate for lazily-initialized fields, for field initialization that occurs in a

lifecycle method other than the constructor (e.g., an override of android.app.Activity.onCreate), and other

uses. @MonotonicNonNull is typically written on field types, but not elsewhere.

The benefit of @MonotonicNonNull over @Nullable is that after a check of a @MonotonicNonNull field, all

subsequent accesses within that method can be assumed to be @NonNull, even after arbitrary external method

calls that have access to the given field. By contrast, for a @Nullable field, the Nullness Checker assumes that
most method calls might set it to null. (Exceptions are calls to methods that are @SideEffectFree or that have
an @EnsuresNonNull|or|@EnsuresNonNullIf annotation.)

A @MonotonicNonNull field may be initialized to null, but the field may not be assigned to null anywhere else in

the program. If you supply the noInitForMonotonicNonNull lint flag (for example, supply ~Alint=noInitForMonotonicNonNu

on the command line), then @MonotonicNonNull fields are not allowed to have initializers at their declarations.

Use of @MonotonicNonNull on a static field is a code smell: it may indicate poor design. You should consider

whether it is possible to make the field a member field that is set in the constructor.

In the type system, @MonotonicNonNull is a supertype of @NonNull and a subtype of @Nullable.

Figure [3.1]shows part of the type hierarchy for the Nullness type system. (The annotations exist only at compile
time; at run time, Java has no multiple inheritance.)

3.2.2 Nullness method annotations

The Nullness Checker supports several annotations that specify method behavior. These are declaration annotations, not
type annotations: they apply to the method itself rather than to some particular type.

QRequiresNonNull indicates a method precondition: The annotated method expects the specified variables to be
non-null when the method is invoked. Don’t use this for formal parameters (just annotate their type as @NonNull).
@RequiresNonNull is appropriate for a field that is @Nullable in general, but some method requires the field to
be non-null.

@EnsuresNonNull

33

../api/org/checkerframework/checker/nullness/qual/Nullable.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/PolyNull.html
../api/org/checkerframework/checker/nullness/qual/MonotonicNonNull.html
../api/org/checkerframework/dataflow/qual/SideEffectFree.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html
../api/org/checkerframework/checker/nullness/qual/RequiresNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html

@EnsuresNonNullIf indicates a method postcondition. With @EnsuresNonNull, the given expressions are
non-null after the method returns; this is useful for a method that initializes a field, for example. With
@EnsuresNonNullIf, if the annotated method returns the given boolean value (true or false), then the given
expressions are non-null. See Section [3.3.3]and the Javadoc for examples of their use.

3.2.3 Initialization qualifiers

The Nullness Checker invokes an Initialization Checker, whose annotations indicate whether an object is fully initialized
— that is, whether all of its fields have been assigned.

@Initialized
@UnknownInitialization
@UnderInitialization

Use of these annotations can help you to type-check more code. Figure[3.3]shows its type hierarchy. For details, see
Section3.8]

3.2.4 Map key qualifiers

@KeyFor

indicates that a value is a key for a given map — that is, indicates whether map.containsKey (value) would evaluate
to true.

This annotation is checked by a Map Key Checker (Chapter[d] page[53) that the Nullness Checker invokes. The
@KeyFor annotation enables the Nullness Checker to treat calls to Map . get| precisely rather than assuming it may
always return null. In particular, a call mymap.get (mykey) returns a non-null value if two conditions are satisfied:

1. mymap’s values are all non-null; that is, mymap was declared as Map<KeyType, @NonNull ValueType>.
Note that @NonNull is the default type, so it need not be written explicitly.

2. mykey is a key in mymap; that is, mymap.containsKey (mykey) returns true. You express this fact to the
Nullness Checker by declaring mykey as @KeyFor ("mymap") KeyType mykey. For a local variable, you
generally do not need to write the @KeyFor ("mymap") type qualifier, because it can be inferred.

If either of these two conditions is violated, then mymap.get (mykey) has the possibility of returning null.

The command-line argument -AassumeKeyFor makes the Nullness Checker not run the Map Key Checker. The
Nullness Checker will unsoundly assume that the argument to Map.get is a key for the receiver map. That is, the
second condition above is always considered to be true.

3.3 Writing nullness annotations

3.3.1 Implicit qualifiers

The Nullness Checker adds implicit qualifiers, reducing the number of annotations that must appear in your code (see
Section [3T.4). For example, enum types are implicitly non-null, so you never need to write ¢NonNull MyEnumType.
If you want details about implicitly-added nullness qualifiers, see the implementation of NullnessAnnotatedTypeFactory,

3.3.2 Default annotation

Unannotated references are treated as if they had a default annotation. All types default to @NonNull, except that
@Nullable is used for casts, locals, instanceof, and implicit bounds (see Section @D A user can choose a different
defaulting rule by writing a|@DefaultQualifier annotation on a package, class, or method. In the example below,
fields are defaulted to @Nullable instead of @NonNull.

34

../api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html
../api/org/checkerframework/checker/initialization/qual/Initialized.html
../api/org/checkerframework/checker/initialization/qual/UnknownInitialization.html
../api/org/checkerframework/checker/initialization/qual/UnderInitialization.html
../api/org/checkerframework/checker/nullness/qual/KeyFor.html
../api/org/checkerframework/checker/nullness/qual/KeyFor.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html#get(java.lang.Object)
../api/org/checkerframework/checker/nullness/NullnessAnnotatedTypeFactory.html
../api/org/checkerframework/framework/qual/DefaultQualifier.html

@efaultQualifier(value = Nullable.class, locations = TypeUseLocation.FIELD)
class MyClass {

Object nullableField = null;

@NonNull Object nonNullField = new Object();

3.3.3 Conditional nullness

The Nullness Checker supports a form of conditional nullness types, via the @EnsuresNonNullIf method annotations.
The annotation on a method declares that some expressions are non-null, if the method returns true (false, respectively).

Consider|java.lang.Class. Method Class.getComponentType () may return null, but it is specified to return a
non-null value if|Class.isArray ()|is true. You could declare this relationship in the following way (this particular
example is already done for you in the annotated JDK that comes with the Checker Framework):

class Class<T> {
@EnsuresNonNullIf (expression="getComponentType ()", result=true)
public native boolean isArray();

public native @Nullable Class<?> getComponentType () ;

A client that checks that a Class reference is indeed that of an array, can then de-reference the result of
Class.getComponentType safely without any nullness check. The Checker Framework source code itself uses
such a pattern:

if (clazz.isArray()) {
// no possible null dereference on the following line
TypeMirror componentType = typeFromClass(clazz.getComponentType());

}

Another example is Queue . peek and |Queue.poll, which return non-null if |1 sEmpty returns false.

The argument to @EnsuresNonNullIf is a Java expression, including method calls (as shown above), method
formal parameters, fields, etc.; for details, see Section @} More examples of the use of these annotations appear in the
Javadoc for @EnsuresNonNullIfl

Java programs sometimes contain more complex nullness invariants. When these invariants are more complex than
handled by the Nullness Checker, you will need to suppress a warning (see Section [3.4).

3.3.4 Nullness and array initialization

Suppose that you declare an array to contain non-null elements:
Object [] oa = new Object[10];

(recall that Ob ject means the same thing as @NonNull Object). By default, the Nullness Checker unsoundly permits
this code.

To make the Nullness Checker conservatively reject code that may leave a non-null value in an array, use the
command-line option -Alint=soundArrayCreationNullness. The option is currently disabled because it makes the
checker issue many false positive errors.

With the option enabled, you can write your code to create a nullable or lazy-nonnull array, initialize each component,
and then assign the result to a non-null array:

35

../api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Class.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Class.html#getComponentType()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Class.html#isArray()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Queue.html#peek()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Queue.html#poll()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Collection.html#isEmpty()
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html

@MonotonicNonNull Object [] temp = new @MonotonicNonNull Object[10];
for (int i = 0; 1 < temp.length; ++i) {

temp[i] = new Object();
}
@SuppressWarnings ("nullness") // temp array is now fully initialized
@NonNull Object [] oa = temp;

Note that the checker is currently not powerful enough to ensure that each array component was initialized.
Therefore, the last assignment needs to be trusted: that is, a programmer must verify that it is safe, then write a
@SuppressWarnings annotation.

3.3.5 Nullness and conversions from collections to arrays

The nullness semantics of Collection.toArray (T []) cannot be captured by just the nullness type system, though
the Nullness Checker contains special-case code to type-check calls to toArray. Therefore, you will probably have to
write @SuppressWarnings ("nullness") on any overriding definitions of toArray.

The nullness type of the returned array depends on the size of the passed parameter. In particular, the returned array
component is of type @NonNull if the following conditions hold:

» The receiver collection’s type argument (that is, the element type) is @NonNull, and
* The passed array size is less than or equal to the collection size. The Nullness Checker uses these heuristics to
handle the most common cases:

— the argument has length O:
an empty array initializer, e.g. c.toArray (new String[] {}),or
* array creation tree of size 0, e.g. c.toArray (new String[0]).
— array creation tree with a collection size () method invocation as argument c.toArray (new String[c.size()]).

Additionally, when you supply the ~Alint=t rustArrayLenZero command-line option, acall to Collection.toArray
will be estimated to return an array with a non-null component type if the argument is a field access where the field
declaration has a|@ArrayLen (0) annotation. This trusts the @ArrayLen (0) annotation, but does not verify it. Run the
Constant Value Checker (see Chapter 22] page[[43)) to verify that annotation.

Note: The nullness of the returned array doesn’t depend on the passed array nullness. This is a fact about
Collection.toArray (T[]), nota limitation of this heuristic.

3.3.6 Run-time checks for nullness

When you perform a run-time check for nullness, such as if (x != null) ..., then the Nullness Checker refines the
type of x to @NonNull. The refinement lasts until the end of the scope of the test or until x may be side-effected. For
more details, see Section [31.7

3.3.7 Inference of @NonNull and @Nullable annotations

It can be tedious to write annotations in your code. Tools exist that can automatically infer annotations and insert them
in your source code. (This is different than type qualifier refinement for local variables (Section[31.7), which infers a
more specific type for local variables and uses them during type-checking but does not insert them in your source code.
Type qualifier refinement is always enabled, no matter how annotations on signatures got inserted in your source code.)

Your choice of tool depends on what default annotation (see Section [3.3.2)) your code uses. You only need one of
these tools.

* Inference of @Nullable: If your code uses the standard CLIMB-to-top default (Section[31.5.3) or the NonNull
default, then use the |[AnnotateNullable tool of the Daikon invariant detector.
¢ Inference of |[@NonNull: If your code uses the Nullable default (this is unusual), use one of these tools:

— Non-null checker and inferencer of the JastAdd Extensible Compiler.

36

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Collection.html#toArray(T[])
../api/org/checkerframework/common/value/qual/ArrayLen.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Collection.html#toArray(T[])
../api/org/checkerframework/checker/nullness/qual/Nullable.html
http://plse.cs.washington.edu/daikon/download/doc/daikon.html#AnnotateNullable
http://plse.cs.washington.edu/daikon/
../api/org/checkerframework/checker/nullness/qual/NonNull.html
https://jastadd.cs.lth.se/jastadd-tutorial-examples/non-null-types-for-java/
https://jastadd.cs.lth.se/

3.4 Suppressing nullness warnings

When the Nullness Checker reports a warning, it’s best to change the code or its annotations, to eliminate the warning.
Alternately, you can suppress the warning, which does not change the code but prevents the Nullness Checker from
reporting this particular warning to you.

The Checker Framework supplies several ways to suppress warnings, most notably the
@SuppressWarnings ("nullness") annotation (see Chapter[32). An example use is

// might return null
@Nullable Object getObject(...) { ... }

void myMethod () {

@SuppressWarnings ("nullness") // with argument x, getObject always returns a non-null value
@NonNull Object 02 = getObject (x);

The Nullness Checker supports an additional warning suppression string, nullness:generic.argument. Use of
@SuppressWarnings ("nullness:generic.argument") causes the Nullness Checker to suppress warnings related
to misuse of generic type arguments. One use for this key is when a class is declared to take only @NonNull type
arguments, but you want to instantiate the class with a @Nullable type argument, as in List<@Nullable Object>.

The Nullness Checker also permits you to use assertions or method calls to suppress warnings; see below.

3.4.1 Suppressing warnings with assertions and method calls

Occasionally, it is inconvenient or verbose to use the @SuppressWarnings annotation. For example, Java does not
permit annotations such as @SuppressWarnings to appear on statements, expressions, static initializers, etc. Here are
three ways to suppress a warning in such cases:

* Create a local variable to hold a subexpression, and suppress a warning on the local variable declaration.
* Use the GAssumeAssertion string in an assert message (see Section[32.2)).
* Write a call to the NullnessUtil.castNonNull method.

The rest of this section discusses the castNonNull method. It is useful if you wish to suppress a warning within an
expression.

The Nullness Checker considers both the return value, and also the argument, to be non-null after the castNonNull
method call. The Nullness Checker issues no warnings in any of the following code:

// One way to use castNonNull as a cast:
@NonNull String s = castNonNull (possiblyNulll);

// Another way to use castNonNull as a cast:
castNonNull (possiblyNull2) .toString();

// It is possible, but not recommmended, to use castNonNull as a statement:
// (It would be better to write an assert statement with @AssumelAssertion
// in its message, instead.)

castNonNull (possiblyNull3);

possiblyNull3.toString();

The castNonNull method throws AssertionError if Java assertions are enabled and the argument is null.
However, it is not intended for general defensive programming; see Section[32.2.1]
To use the castNonNull method, the checker-util. jar file must be on the classpath at run time.

The Nullness Checker introduces a new method, rather than re-using
an existing method such as org.junit.Assert.assertNotNull (Object) or
com.google.common.base.Preconditions.checkNotNull (Object). Those methods are commonly used

for defensive programming, so it is impossible to know the programmer’s intent when writing them. Therefore, it is
important to have a method call that is used only for warning suppression. See Section [32.2.1]for a discussion of the
distinction between warning suppression and defensive programming.

37

../api/org/checkerframework/checker/nullness/util/NullnessUtil.html#castNonNull(T)

3.4.2 Null arguments to collection classes

For collection methods with Object formal parameter type, such as contains, |index0f} and remove, the annotated
JDK forbids null as an argument.

The reason is that some implementations (like ConcurrentHashMap) throw NullPointerException if null is
passed. It would be unsound to permit null, because it could lead to a false negative: the Checker Framework issuing
no warning even though a NullPointerException can occur at run time.

However, many other common implementations permit such calls, so some users may wish to sacrifice soundness for
a reduced number of false positive warnings. To permit null as an argument to these methods, pass the command-line
argument —Astubs=collection-object-parameters-may-be-null.astub.

3.4.3 Conservative nullness annotations on the JDK

The JDK contains nullness annotations that preserve the Nullness Checker’s guarantee (see Section [3.1)) that your
program will not crash with a NullPointerException. In some cases, a formal parameter may be null in some
circumstances, but must be non-null in other circumstances, and those circumstances are not expressible using the
Nullness Checker’s annotations.

An example is restrictions on collection arguments (see Section [3.4.2).

Another example is this WeakReference constructor:

* @param g the queue with which the reference is to be registered,
* or {@code null} if registration is not required
*/

public WeakReference (@Nullable T referent, ReferenceQueue<? super T> q) {

For some calls, g must be non-null. Therefore, g is annotated as @NonNull (which is the default and need not be
explicitly written).

These JDK annotations reflect a verification philosophy: a verification tool finds all possible errors, but it sometimes
issues a false positive warning. An alternate philosophy is a bug-finding philosophy: permit all calls that might be
correct at run time, but sometimes miss a real error. If you wish to use the Checker Framework with the bug-finding
philosophy (though the Checker Framework is still much more thorough than other bug-finders), you can do so by
passing the command-line argument -Astubs=sometimes-nullable.astub.

3.5 Examples
3.5.1 Tiny examples

To try the Nullness Checker on a source file that uses the @NonNul1|qualifier, use the following command (where javac
is the Checker Framework compiler that is distributed with the Checker Framework, see Section [37.6|for details):

javac -processor org.checkerframework.checker.nullness.NullnessChecker docs/examples/NullnessExample.java

Compilation will complete without warnings.
To see the checker warn about incorrect usage of annotations (and therefore the possibility of a null pointer exception
at run time), use the following command:

javac -processor org.checkerframework.checker.nullness.NullnessChecker docs/examples/NullnessExampleWithWarnings. java

The compiler will issue two warnings regarding violation of the semantics of @NonNulll

38

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Collection.html#contains(java.lang.Object)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/AbstractList.html#indexOf(java.lang.Object)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Collection.html#remove(java.lang.Object)
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html

3.5.2 Example annotated source code

Some libraries that are annotated with nullness qualifiers are:

e The Nullness Checker itself.
* The Java projects in the plume-lib GitHub organization. Type-checking occurs on each build.
* The Daikon invariant detector. Run the command make check-nullness.

3.5.3 Publications

The papers “Practical pluggable types for Java” [PACT08] (ISSTA 2008, https://homes.cs.washington.edu/
~mernst /pubs/pluggable-checkers-issta2008.pdf) and “Building and using pluggable type-checkers” [DDE™ 11]]
(ICSE 2011, https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers—-icse2011.pdf) describe
case studies in which the Nullness Checker found previously-unknown errors in real software.

3.6 Tips for getting started

Here are some tips about getting started using the Nullness Checker on a legacy codebase. For more generic advice
(not specific to the Nullness Checker), see Section Also see the Checker Framework tutorial (https://
checkerframework.org/tutorial/)), which includes an example of using the Nullness Checker.

Your goal is to add |@Nullable|annotations to the types of any variables that can be null. (The default is to assume
that a variable is non-null unless it has a @Nullable annotation.) Then, you will run the Nullness Checker. Each of
its errors indicates either a possible null pointer exception, or a wrong/missing annotation. When there are no more
warnings from the checker, you are done!

We recommend that you start by searching the code for occurrences of null in the following locations; when you
find one, write the corresponding annotation:

* in Javadoc: add @Nullable annotations to method signatures (parameters and return types).

e return null: add a @Nullable annotation to the return type of the given method.

* param == null: when a formal parameter is compared to null, then in most cases you can add a @Nullable
annotation to the formal parameter’s type

* TypeName field = null;: when a field is initialized to null in its declaration, then it needs either a
@Nullable|or a/@MonotonicNonNull annotation. If the field is always set to a non-null value in the constructor,
then you can just change the declaration to Type field;, without an initializer, and write no type annotation
(because the default is @NonNull).

e declarations of contains, containsKey, containsValue, equals, get, indexOf, lastIndexOf, and remove
(with Object as the argument type): change the argument type to @Nullable Object; for remove, also change
the return type to @Nullable Object.

You should ignore all other occurrences of null within a method body. In particular, you rarely need to annotate local
variables (except their type arguments or array element types).

Only after this step should you run the Nullness Checker. The reason is that it is quicker to search for places to
change than to repeatedly run the checker and fix the errors it tells you about, one at a time.

Here are some other tips:

e In any file where you write an annotation such as @Nullable, don’t forget to add import
org.checkerframework.checker.nullness.qual.*;.

* To indicate an array that can be null, write, for example: int @Nullable [].
By contrast, @Nullable Object [] means a non-null array that contains possibly-null objects.

* If you know that a particular variable is definitely not null, but the Nullness Checker estimates that the variable
might be null, then you can make the Nullness Checker trust your judgment by writing an assertion (see

Section[32.2):

39

https://github.com/plume-lib/
http://plse.cs.washington.edu/daikon/
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-issta2008.pdf
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-issta2008.pdf
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-icse2011.pdf
https://checkerframework.org/tutorial/
https://checkerframework.org/tutorial/
../api/org/checkerframework/checker/nullness/qual/Nullable.html
../api/org/checkerframework/checker/nullness/qual/Nullable.html
../api/org/checkerframework/checker/nullness/qual/MonotonicNonNull.html

assert var != null : "(@AssumeAssertion(nullness)";

+ To indicate that a routine returns the same value every time it is called, use @Pure/(see Section[31.7.5).
* To indicate a method precondition (a contract stating the conditions under which a client is allowed to call it),
you can use annotations such as @RequiresNonNull|(see Section [3.2.2)).

3.7 Other tools for nullness checking

The Checker Framework’s nullness annotations are similar to annotations used in other tools. You might prefer to use
the Checker Framework because it has a more powerful analysis that can warn you about more null pointer errors in
your code. Most of the other tools are bug-finding tools rather than verification tools, since they give up precision,
soundness, or both in favor of being fast and easy to use. Also see Section [38.10.1] for a comparison to other tools.

If your code is already annotated with a different nullness annotation, the Checker Framework can type-check your
code. It treats annotations from other tools as if you had written the corresponding annotation from the Nullness Checker,
as described in Fi gure@ If the other annotation is a declaration annotation, it may be moved; see Section@}

The Checker Framework may issue more or fewer errors than another tool. This is expected, since each tool uses a
different analysis. Remember that the Checker Framework aims at soundness: it aims to never miss a possible null
dereference, while at the same time limiting false reports. Also, note SpotBugs’s non-standard meaning for @Nullable
(Section[3.7.2).

Java permits you to import at most one annotation of a given name. For example, if you use both android.annotation.NonNull
and lombok.NonNull in your source code, then you must write at least one of them in fully-qualified form, as
@android.annotation.NonNull rather than as @NonNull.

3.7.1 Which tool is right for you?

Different tools are appropriate in different circumstances. Section [38.10.1| compares verification tools like the Checker
Framework with bug detectors like SpotBugs and Error Prone. In brief, a bug detector is easier to use because it requires
fewer annotations, but it misses lots of real bugs that a verifier finds. You should use whichever tool is appropriate for
the importance of your code.

You may also choose to use multiple tools, especially since each tool focuses on different types of errors. If you
know that you will eventually want to do verification for some particular task (say, nullness checking), there is little
point using the nullness analysis of bug detector such as SpotBugs first. It is easier to go straight to using the Checker
Framework.

If some other tool discovers a nullness error that the Checker Framework does not, please report it to us (see
Section[39.2) so that we can enhance the Checker Framework. For example, SpotBugs might detect an error that the
Nullness Checker does not, if you are using an unnannotated library (including an unannotated part of the JDK) and
running the Checker Framework in an unsound mode (see Section [2.2.2).

3.7.2 Incompatibility note about FindBugs and SpotBugs @Nullable

FindBugs and SpotBugs have a non-standard definition of @Nullable. This treatment is not documented in its own
Javadoc; it is different from the definition of @Nullable in every other tool for nullness analysis; it means the same
thing as @NonNull when applied to a formal parameter; and it invariably surprises programmers. Thus, SpotBugs’s
@Nullable is detrimental rather than useful as documentation. In practice, your best bet is to not rely on SpotBugs for
nullness analysis, even if you find SpotBugs useful for other purposes.

You can skip the rest of this section unless you wish to learn more details.

SpotBugs suppresses all warnings at uses of a @Nullable variable. (You have to use @CheckForNull to indicate a
nullable variable that SpotBugs should check.) For example:

// declare getObject () to possibly return null
@Nullable Object getObject() { ... }

40

../api/org/checkerframework/dataflow/qual/Pure.html
../api/org/checkerframework/checker/nullness/qual/RequiresNonNull.html
https://www.javadoc.io/doc/com.github.spotbugs/spotbugs-annotations/latest/edu/umd/cs/findbugs/annotations/Nullable.html

android.annotation.NonNull

android.support.annotation.NonNull

android.support.annotation.RecentlyNonNull

androidx.annotation.NonNull

androidx.annotation.RecentlyNonNull

com.android.annotations.NonNull

com.google.firebase.database.annotations.NotNull

com.google.firebase.internal. NonNull

com.mongodb.lang.NonNull

com.sun.istack.NotNull

com.sun.istack.internal. NotNull

com.unboundid.util.NotNull

edu.umd.cs.findbugs.annotations.NonNull

io.micrometer.core.lang.NonNull

io.reactivex.annotations.NonNull

io.reactivex.rxjava3.annotations.NonNull

javax.annotation.Nonnull

/I The field might contain a null value until it is persisted.
javax.validation.constraints.NotNull

libcore.util. NonNull

lombok.NonNull

org.antlr.v4.runtime.misc.NotNull

org.checkerframework.checker.nullness.compatqual.NonNullDecl

org.checkerframework.checker.nullness.compatqual.NonNullType

org.codehaus.commons.nullanalysis.NotNull

org.eclipse.jdt.annotation.NonNull

org.eclipse.jgit.annotations.NonNull

org.eclipse.lsp4j.jsonrpc.validation.NonNull

org.jetbrains.annotations.NotNull

org.jmlspecs.annotation.NonNull

org.netbeans.api.annotations.common.NonNull

org.springframework.lang.NonNull

reactor.util.annotation.NonNull

android.annotation.Nullable

android.support.annotation.Nullable

android.support.annotation.RecentlyNullable

androidx.annotation.Nullable

androidx.annotation.RecentlyNullable

com.android.annotations.Nullable

com.beust.jcommander.internal.Nullable

com.google.api.server.spi.config.Nullable

com.google.firebase.database.annotations.Nullable

com.google.firebase.internal.Nullable

com.google.gerrit.common.Nullable

com.mongodb.lang.Nullable

com.sun.istack.Nullable

com.sun.istack.internal.Nullable

com.unboundid.util.Nullable

edu.umd.cs.findbugs.annotations.CheckForNull

edu.umd.cs.findbugs.annotations.Nullable

edu.umd.cs.findbugs.annotations.PossiblyNull

edu.umd.cs.findbugs.annotations.UnknownNullness !

io.micrometer.core.lang.Nullable

io.reactivex.annotations.Nullable

io.reactivex.rxjava3.annotations.Nullable

javax.annotation.CheckForNull

javax.annotation.Nullable

= org.checkerframework.checker.nullness.qual.NonNull

= org.checkerframework.checker.nullness.qual.Nullable

void myMethod () {
@Nullable Object o = getObject();
// SpotBugs issues no warning about calling toString on a possibly-null reference!
o.toString();

}

The Checker Framework does not emulate this non-standard behavior of SpotBugs, even if the code uses FindBugs/Spot-
Bugs annotations.

With SpotBugs, you annotate a declaration, which suppresses checking at all client uses, even the places that
you want to check. It is better to suppress warnings at only the specific client uses where the value is known to be
non-null; the Checker Framework supports this, if you write @SuppressiWarnings at the client uses. The Checker
Framework also supports suppressing checking at all client uses, by writing a @Suppressiarnings annotation at the
declaration site. Thus, the Checker Framework supports both use cases, whereas SpotBugs supports only one and gives
the programmer less flexibility.

In general, the Checker Framework will issue more warnings than SpotBugs, and some of them may be about real
bugs in your program. See Section [3.4]for information about suppressing nullness warnings.

FindBugs and SpotBugs made a poor choice of names. The choice of names should make a clear distinction between
annotations that specify whether a reference is null, and annotations that suppress false warnings. The choice of names
should also have been consistent for other tools, and intuitively clear to programmers. The FindBugs/SpotBugs choices
make the SpotBugs annotations less helpful to people, and much less useful for other tools.

Another problem is that the SpotBugs @Nullable annotation is a declaration annotation rather than a type annotation.
This means that it cannot be written in important locations such as type arguments, and it is misleading when written on
a field of array type or a method that returns an array.

Overall, it is best to stay away from the SpotBugs nullness annotations and analysis, and use a tool with a more
principled design.

3.7.3 Relationship to Optional<T>

Many null pointer exceptions occur because the programmer forgets to check whether a reference is null before
dereferencing it. Java 8’s Opt ional<T> class provides a partial solution: a programmer must call the get method to
access the value, and the designers of Optional hope that the syntactic occurrence of the get method will remind
programmers to first check that the value is present. This is still easy to forget, however.

The Checker Framework contains an Optional Checker (see Chapter [5)) that guarantees that programmers use
Optional correctly, such as calling isPresent before calling get.

There are some limitations to the utility of Optional, which might lead to you choose to use regular Java references
rather than Optional. (For more details, see the article “Nothing is better than the Optional type”.)

* It is still possible to call get on a non-present Optional, leading to a NoSuchElementException. In other
words, Optional doesn’t solve the underlying problem — it merely converts a Nul1PointerException into a
NoSuchElementException exception, and in either case your code crashes.

* NullPointerException is still possible in code that uses Optional.

* Optional adds syntactic complexity, making your code longer and harder to read.

* Optional adds time and space overhead.

* Optional does not address important sources of null pointer exceptions, such as partially-initialized objects and
calls to Map.get.

The Nullness Checker does not suffer these limitations. Furthermore, it works with existing code and types, it
ensures that you check for null wherever necessary, and it infers when the check for null is not necessary based on
previous statements in the method.

Java’s Optional class provides utility routines to reduce clutter when using Optional. The Nullness Checker
provides an [Opt | class that provides all the same methods, but written for regular possibly-null Java references. To use
the Opt | class, the checker—util. jar file must be on the classpath at run time.

42

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html
https://homes.cs.washington.edu/~mernst/advice/nothing-is-better-than-optional.html
../api/org/checkerframework/checker/nullness/util/Opt.html
../api/org/checkerframework/checker/nullness/util/Opt.html

3.8 Initialization Checker

The Initialization Checker determines whether an object is initialized or not. For any object that is not fully initialized,
the Nullness Checker treats its fields as possibly-null — even fields annotated as @NonNull. (The Initialization Checker
focuses on @NonNull fields, to detect null pointer exceptions when using them. It does not currently ensure that
primitives or @Nullable fields are initialized. Use the Initialized Fields Checker (Chapter [25] page [[53) to check
initialization with respect to properties other than nullness.)

Every object’s fields start out as null. By the time the constructor finishes executing, the @NonNull fields have been
set to a different value. Your code can suffer a NullPointerException when using a @NonNull field, if your code uses
the field during initialization. The Nullness Checker prevents this problem by warning you anytime that you may be
accessing an uninitialized field. This check is useful because it prevents errors in your code. However, the analysis can
be confusing to understand. If you wish to disable the initialization checks, see Section [3.8.8]

An object is partially initialized from the time that its constructor starts until its constructor finishes. This is relevant
to the Nullness Checker because while the constructor is executing — that is, before initialization completes — a
@NonNull field may be observed to be null, until that field is set. In particular, the Nullness Checker issues a warning
for code like this:

public class MyClass {
private @NonNull Object f£;
public MyClass(int x) {
// Error because constructor contains no assignment to this.f.
// By the time the constructor exits, f must be initialized to a non-null value.
}
public MyClass(int x, int y) {
// Error because this.f is accessed before f is initialized.
// At the beginning of the constructor’s execution, accessing this.f
// yields null, even though field f has a non-null type.
this.f.toString();
f = new Object();
}
public MyClass(int x, int y, int z) {
m();
f = new Object();
}
public void m() {
// Error because this.f is accessed before f is initialized,
// even though the access is not in a constructor.
// When m is called from the constructor, accessing f yields null,
// even though field f has a non-null type.
this.f.toString();
}

When a field £ is declared with a|@NonNull type, then code can depend on the fact that the field is not null. However,
this guarantee does not hold for a partially-initialized object.
The Initialization Checker uses three annotations to indicate whether an object is initialized (all its @NonNull fields
have been assigned), under initialization (its constructor is currently executing), or its initialization state is unknown.
These distinctions are mostly relevant within the constructor, or for references to this that escape the constructor
(say, by being stored in a field or passed to a method before initialization is complete). Use of initialization annotations
is rare in most code.

3.8.1 [Initialization qualifiers

The initialization hierarchy is shown in Figure[3.3] The initialization hierarchy contains these qualifiers:

43

../api/org/checkerframework/checker/nullness/qual/NonNull.html

@underInitialization(Object.class) Giraffe

+

@underInitialization Object @underInitialization(Vertebrate.class) Giraffe

A

@underInitialization(Mammal.class) Giraffe

+

@underInitialization(Giraffe.class) Giraffe

@UunknownInitialization Object

@Initialized Object

@UnknownInitialization Date

@Initialized Date @UnderInitialization Date

Figure 3.3: Partial type hierarchy for the Initialization type system. @UnknownInitialization and
@UnderInitialization each take an optional parameter indicating how far initialization has proceeded, and the right
side of the figure illustrates its type hierarchy in more detail.

@Initialized indicates a type that contains a fully-initialized object. Initialized is the default, so there is little
need for a programmer to write this explicitly.

QUnknownInitialization indicates atype that may contain a partially-initialized object. In a partially-initialized
object, fields that are annotated as @NonNull may be null because the field has not yet been assigned.
@UnknownInitialization takes a parameter that is the class the object is definitely initialized up to. For
instance, the type @UnknownInitialization (Foo.class) denotes an object in which every fields declared in
Foo or its superclasses is initialized, but other fields might not be. Just @UnknownInitialization is equivalent
to @UnknownInitialization (Object.class).

QUnderInitialization/ indicates a type that contains a partially-initialized object that is under initialization —
that is, its constructor is currently executing. It is otherwise the same as @UnknownInitialization. Within the
constructor, this has/@UnderInitialization type until all the @NonNull fields have been assigned.

A partially-initialized object (this in a constructor) may be passed to a helper method or stored in a variable; if so, the
method receiver, or the field, would have to be annotated as QUnknownInitializationoras @UnderInitialization.

If a reference has @UnknownInitialization or @UnderInitialization type, then all of its @NonNull fields are
treated as|@MonotonicNonNull: when read, they are treated as being|@Nullable, but when written, they are treated as
being @NonNulll

The initialization hierarchy is orthogonal to the nullness hierarchy. It is legal for a reference
to be @NonNull @UnderInitialization, @Nullable @UnderInitialization, @NonNull @Initialized, or
@Nullable QInitialized. The nullness hierarchy tells you about the reference itself: might the reference be
null? The initialization hierarchy tells you about the @NonNull fields in the referred-to object: might those fields be
temporarily null in contravention of their type annotation? Figure [3.4] contains some examples.

3.8.2 How an object becomes initialized

Within the constructor, this starts out with @UnderInitialization type. As soon as all of the @NonNull fields
in class C have been initialized, then this is treated as @UnderInitialization (C). This means that this is still
being initialized, but all initialization of C’s fields is complete, including all fields of supertypes. Eventually, when all
constructors complete, the type is @Initialized.

The Initialization Checker issues an error if the constructor fails to initialize any @NonNull field. This ensures that
the object is in a legal (initialized) state by the time that the constructor exits. This is different than Java’s test for
definite assignment (see JLS ch.16), which does not apply to fields (except blank final ones, defined in JLS §4.12.4)
because fields have a default value of null.

All @NonNull fields must either have a default in the field declaration, or be assigned in the constructor or in a
helper method that the constructor calls. If your code initializes (some) fields in a helper method, you will need to
annotate the helper method with an annotation such as|@EnsuresNonNull ({"fieldl", "field2"}) for all the fields
that the helper method assigns.

44

../api/org/checkerframework/checker/initialization/qual/Initialized.html
../api/org/checkerframework/checker/initialization/qual/UnknownInitialization.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/initialization/qual/UnderInitialization.html
../api/org/checkerframework/checker/initialization/qual/UnderInitialization.html
../api/org/checkerframework/checker/nullness/qual/MonotonicNonNull.html
../api/org/checkerframework/checker/nullness/qual/Nullable.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/initialization/qual/UnderInitialization.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/initialization/qual/UnderInitialization.html
../api/org/checkerframework/checker/initialization/qual/Initialized.html
https://docs.oracle.com/javase/specs/jls/se17/html/jls-16.html
https://docs.oracle.com/javase/specs/jls/se17/html/jls-4.html#jls-4.12.4
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html

Declarations Expression | Expression’s nullness type, or checker error
class C {
@NonNull Object f£;
@Nullable Object g;
}
@NonNull @Initialized C a; a @NonNull
a.f @NonNull
a.g @Nullable
@NonNull QUnderInitialization C b; b @NonNull
b.f @MonotonicNonNull
b. @Nullable
@Nullable @Initialized C c; c @Nullable
c.f error: deref of nullable
c. error: deref of nullable
@Nullable QUnderInitialization C d; | d @Nullable
d.f error: deref of nullable
d.g error: deref of nullable

Figure 3.4: Examples of the interaction between nullness and initialization. Declarations are shown at the left for
reference, but the focus of the table is the expressions and their nullness type or error.

3.8.3 Q@UnderInitialization examples

The most common use for the @UnderInitialization annotation is for a helper routine that is called by constructor.
For example:

class MyClass {
Object fieldl;
Object field2;
Object field3;

public MyClass (String argl) {
this.fieldl = argl;
init_other_fields();

// A helper routine that initializes all the fields other than fieldl.
@EnsuresNonNull ({"field2", "field3"})
private void init_other_fields(@QUnderInitialization(Object.class) MyClass this) {
field2 = new Object();
field3 = new Object();

public MyClass(String argl, String arg2, String arg3) {
this.fieldl = argl;
this.field2 = arg?2;
this.field3 = arg3;
checkRep();

// Verify that the representation invariants are satisfied.

45

// Works as long as the MyClass fields are initialized, even if the receiver’s
// class is a subclass of MyClass and not all of the subclass fields are initialized.
private void checkRep (@UnderInitialization (MyClass.class) MyClass this) {

At the end of the constructor, this is not fully initialized. Rather, itis @UnderInitialization(CurrentClass.class).
The reason is that there might be subclasses with uninitialized fields. The following example illustrates this:

class A {
@NonNull String a;
public A() {
a = Hll,.

// Now, all fields of A are initialized.
// However, if this constructor is invoked as part of ‘new B()’, then
// the fields of B are not yet initialized.
// 1f we would type ’'this’ as @Initialized, then the following call is valid:
doSomething();
}
void doSomething() {}

class B extends A {
@NonNull String b;
@override
void doSomething() {
// Dereferencing 'b’ is ok, because 'this’ is @Initialized and ’'b’ @NonNull.

// However, when executing 'new B()’, this line throws a null-pointer exception.
b.toString();

3.8.4 Partial initialization

So far, we have discussed initialization as if it is an all-or-nothing property: an object is non-initialized until initialization
completes, and then it is initialized. The full truth is a bit more complex: during the initialization process an object can
be partially initialized, and as the object’s superclass constructors complete, its initialization status is updated. The
Initialization Checker lets you express such properties when necessary.

Consider a simple example:

class A {
Object aField;
A() |
aField = new Object();

}

class B extends A {
Object bField;
B() {

46

super () ;

bField = new Object();

Consider what happens during execution of new B ().

1. B’s constructor begins to execute. At this point, neither the fields of A nor those of B have been initialized yet.

2. B’s constructor calls A’s constructor, which begins to execute. No fields of A nor of B have been initialized yet.

3. A’s constructor completes. Now, all the fields of A have been initialized, and their invariants (such as that field a
is non-null) can be depended on. However, because B’s constructor has not yet completed executing, the object
being constructed is not yet fully initialized.

4. B’s constructor completes. The fields declared in A and B are initialized. However, the type system cannot assume
that the object is fully initialized — there might be a class C extends B {...}, and B’s constructor might
have been invoked from that.

At any moment during initialization, the superclasses of a given class can be divided into those that have completed
initialization and those that have not yet completed initialization. More precisely, at any moment there is a point in the
class hierarchy such that all the classes above that point are fully initialized, and all those below it are not yet initialized.
As initialization proceeds, this dividing line between the initialized and uninitialized classes moves down the type
hierarchy.

The Nullness Checker lets you indicate where the dividing line is between the initialized and non-initialized classes.
The @UnderInitialization(classliteral) indicates the first class that is known to be fully initialized. When
you write |@UnderInitialization|(OtherClass.class) MyClass x;, that means that variable x is initialized for
OtherClass and its superclasses, and x is (possibly) uninitialized for subclasses of OtherClass.

The example above lists 4 moments during construction. At those moments, the type of the object being constructed
is:

@UnderInitialization B
@UnderInitialization A
@UnderInitialization(A.class) A
@UnderInitialization(B.class) B

el NS

Note that neither @UnderInitialization(A.class) Anor @QUnderInitialization(A.class) B may be used
where <@]Initialized A> is required. Permitting that would be unsound. For example, consider this code, where all
types are @NonNull because @NonNull is the default annotation:

class A {
Object aField;
A() {
aField = new Object();
}
Object get () {
return aField;

}
class B extends A {
Object bField;
B() {
super () ;
bField =
}

@Override

new Object();

47

../api/org/checkerframework/checker/initialization/qual/UnderInitialization.html

Object get () {
return bField;

Given these declarations:

@Initialized A w;
@Initialized B x;
@UnderInitialization(A.class) A y;
@UnderInitialization(A.class) B z;

the expressions w.get () and x.get () evaluate to a non-null value, but y.get () and z.get () might evaluate to null.
(v.get () might evaluate to null because the run-time type of y might be B. That is, y and z might refer to the same
value, just as w and x might refer to the same value.)

3.8.5 Method calls from the constructor

Consider the following incorrect program.

class A {
Object aField;
A() {
aField = new Object();
process (5); // illegal call
}
public void process(int arg) { ... }

}

The call to process () is not legal. process () is declared to be called on a fully-initialized receiver, which is
the default if you do not write a different initialization annotation. At the call to process (), all the fields of A have
been set, but this is not fully initialized because fields in subclasses of A have not yet been set. The type of this is
@UnderInitialization(A.class), meaning that this is partially-initialized, with the A part of initialization done
but the initialization of subclasses not yet complete.

The Initialization Checker output indicates this problem:

Client.java:7: error: [method.invocation] call to process(int) not allowed on the given receiver.
process(5); // illegal call
found : @QUnderInitialization(A.class) A
required: @Initialized A

Here is a subclass and client code that crashes with a NullPointerException.

class B extends A {
List<Integer> processed;
B() {
super () ;
processed = new ArraylList<Integer>();
}
@override
public void process(int arg) {
super () ;

48

x.f fis @NonNull fis @Nullable

xis @Initialized @Initialized @NonNull @Initialized @Nullable

x 1S QUnderInitialization @UnknownInitialization @Nullable | @UnknownInitialization @Nullable
x 1S @QUnknownInitialization | QUnknownInitialization @Nullable | QUnknownInitialization @Nullable

Figure 3.5: Initialization rules for reading a @NotOnlyInitialized field f.

x.f =y yis @Initialized yis@UnderInitialization vy is @UnknownInitialization
xis @Initialized yes no no
xis @UnderInitialization yes yes yes
% is @UnknownInitialization yes no no

Figure 3.6: Rules for deciding when an assignment x.f = y is allowed for a|@NotOnlyInitialized|field f.

processed.add (arg) ;

}
}
class Client {
public static void main(String[] args) {
new B();

You can correct the problem in multiple ways.

One solution is to not call methods that can be overridden from the constructor: move the call to process () to after
the constructor has completed.

Another solution is to change the declaration of process ():

public void process(@UnderInitialization(A.class) A this, int arg) { ... }

If you choose this solution, you will need to rewrite the definition of B.process () so that it is consistent with the
declared receiver type.

A non-solution is to prevent subclasses from overriding process () by using final on the method. This doesn’t
work because even if process () is not overridden, it might call other methods that are overridden.

As final classes cannot have subclasses, they can be handled more flexibly: once all fields of the final class have
been initialized, this is fully initialized.

3.8.6 Initialization of circular data structures

There is one final aspect of the initialization type system to be considered: the rules governing reading and writing to
objects that are currently under initialization (both reading from fields of objects under initialization, as well as writing
objects under initialization to fields). By default, only fully-initialized objects can be stored in a field of another object.
If this was the only option, then it would not be possible to create circular data structures (such as a doubly-linked list)
where fields have a|@NonNull| type. However, the annotation @NotOnlyInitialized|can be used to indicate that a
field can store objects that are currently under initialization. In this case, the rules for reading and writing to that field
become a little bit more interesting, to soundly support circular structures.

The rules for reading from a|@NotOnlyInitialized| field are summarized in Figure[3.5] Essentially, nothing is
known about the initialization status of the value returned unless the receiver was|@Initialized.

Similarly, Figure[3.6|shows under which conditions an assignment x. £ = y is allowed for a@NotOnlyInitialized
field £. If the receiver x is|@UnderInitialization, then any y can be of any initialization state. If y is known to be
fully initialized, then any receiver is allowed. All other assignments are disallowed.

These rules allow for the safe initialization of circular structures. For instance, consider a doubly linked list:

49

../api/org/checkerframework/checker/initialization/qual/NotOnlyInitialized.html
../api/org/checkerframework/checker/initialization/qual/NotOnlyInitialized.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/initialization/qual/NotOnlyInitialized.html
../api/org/checkerframework/checker/initialization/qual/NotOnlyInitialized.html
../api/org/checkerframework/checker/initialization/qual/Initialized.html
../api/org/checkerframework/checker/initialization/qual/NotOnlyInitialized.html
../api/org/checkerframework/checker/initialization/qual/UnderInitialization.html

class List<T> {
@NotOnlyInitialized
Node<T> sentinel;

public List () {
this.sentinel = new Node<> (this);

void insert (@Nullable T data) {
this.sentinel.insertAfter (data);

public static void main() {
List<Integer> 1 = new List<>();
l.insert (1);
l.insert (2);

class Node<T> {
@NotOnlyInitialized
Node<T> prev;

@NotOnlyInitialized
Node<T> next;

@NotOnlyInitialized
List parent;

@Nullable
T data;

// for sentinel construction

Node (@UnderInitialization List parent) {
this.parent = parent;
this.prev = this;
this.next = this;

// for data node construction
Node (Node<T> prev, Node<T> next, @Nullable T data)
this.parent = prev.parent;
this.prev = prev;
this.next = next;
this.data = data;

void insertAfter (@Nullable T data) {
Node<T> n = new Node<>(this, this.next, data);
this.next.prev = n;
this.next = n;

50

3.8.7 How to handle warnings

‘“error: the constructor does not initialize fields: ...”

I

Like any warning, “error: the constructor does not initialize fields: ...” indicates that either your annotations are
incorrect or your code is buggy. You can fix either the annotations or the code.

* Declare the field as|@Nullablel Recall that if you did not write an annotation, the field defaults to @NonNull.

* Declare the field as @onotonicNonNulll. This is appropriate if the field starts out as null but is later set to a
non-null value. You may then wish to use the @EnsuresNonNull annotation to indicate which methods set the
field, and the |@RequiresNonNull annotation to indicate which methods require the field to be non-null.

e Initialize the field in the constructor or in the field’s initializer, if the field should be initialized. (In this case, the
Initialization Checker has found a bug!)

Do not initialize the field to an arbitrary non-null value just to eliminate the warning. Doing so degrades your
code: it introduces a value that will confuse other programmers, and it converts a clear NullPointerException into
a more obscure error.

“call to ... is not allowed on the given receiver”

If your code calls an instance method from a constructor, you may see a message such as the following:

MyFile.java:123: error: call to initHelper() not allowed on the given receiver.
initHelper();
found : @UnderInitialization(com.google.Bar.class) @NonNull MyClass
required: @Initialized @NonNull MyClass

The problem is that the current object (this) is under initialization, but the receiver formal parameter (Section[38.6.1)
of method initHelper () is implicitly annotated as @Initialized. If initHelper () doesn’t depend on its receiver
being initialized — that is, it’s OK to call x.initHelper even if x is not initialized — then you can indicate that by
using @UnderInitialization or/@UnknownInitialization.

class MyClass {
void initHelper (QUnknownInitialization MyClass this, String paraml) { ... }

}

You are likely to want to annotate initHelper () with @EnsuresNonNull|as well; see Section
You may get the “call to . .. is not allowed on the given receiver” error even if your constructor has already initialized
all the fields. For this code:

public class MyClass {
@NonNull Object field;
public MyClass () {
field = new Object();
helperMethod() ;
}
private void helperMethod() {
}
}

the Nullness Checker issues the following warning:

51

../api/org/checkerframework/checker/nullness/qual/Nullable.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/MonotonicNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
../api/org/checkerframework/checker/nullness/qual/RequiresNonNull.html
../api/org/checkerframework/checker/initialization/qual/Initialized.html
../api/org/checkerframework/checker/initialization/qual/UnderInitialization.html
../api/org/checkerframework/checker/initialization/qual/UnknownInitialization.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html

MyClass.java:7: error: call to helperMethod() not allowed on the given receiver.
helperMethod() ;

S

found : @UnderInitialization(MyClass.class) @NonNull MyClass
required: @Initialized @NonNull MyClass
1 error

The reason is that even though the object under construction has had all the fields declared in MyClass ini-
tialized, there might be a subclass of MyClass. Thus, the receiver of helperMethod should be declared as
@UnderInitialization(MyClass.class), which says that initialization has completed for all the MyClass fields
but may not have been completed overall. If helperMethod had been a public method that could also be called
after initialization was actually complete, then the receiver should have type @UnknownInitialization, which is the
supertype of @UnknownInitialization and €@UnderInitialization.

3.8.8 Suppressing warnings

To suppress most warnings related to partially-initialized values, use the warning suppression string “initialization”.
You can write @SuppressWarnings ("initialization") on a field, constructor, or class, or pass the command-line
argument -AsuppressWarnings=initialization when running the Nullness Checker. (For more about suppressing
warnings, see Chapter [32] page[204]) You will no longer get a guarantee of no null pointer exceptions, but you can still
use the Nullness Checker to find most of the null pointer problems in your code.

This suppresses warnings that are specific to the Initialization Checker, but does not suppress warnings issued by
the Checker Framework itself, such as about assignments or method overriding.

It is not possible to completely disable initialization checking while retaining nullness checking. That is because of
an implementation detail of the Nullness and Initialization Checkers: they are actually the same checker, rather than
being two separate checkers that are aggregated together.

3.8.9 More details about initialization checking

Use of method annotations A method with a non-initialized receiver may assume that a few fields (but not all of
them) are non-null, and it sometimes sets some more fields to non-null values. To express these concepts, use the
@RequiresNonNulll|@EnsuresNonNulll and|€EnsuresNonNullIf method annotations; see Section[3.2.2}

Source of the type system The type system enforced by the Initialization Checker is based on “Freedom Before
Commitment” [SM11]]. Our implementation changes its initialization modifiers (“committed”, “free”, and “unclas-
sified”) to “initialized”, “unknown initialization”, and “under initialization”. Our implementation also has several
enhancements. For example, it supports partial initialization (the argument to the @UnknownInitialization and
@UnderInitialization annotations). The benefit (in terms of reduced false positive initialization warnings) from
supporting partial initialization is greater than the benefit from adopting the Freedom Before Commitment system.

52

../api/org/checkerframework/checker/nullness/qual/RequiresNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html

Chapter 4

Map Key Checker

The Map Key Checker tracks which values are keys for which maps. If variable v has type @KeyFor ("m") . . ., then the
value of v is a key in Map m. That is, the expression m.containsKey (v) evaluates to true.

Section [3.2.4] describes how @KeyFor annotations enable the Nullness Checker (Chapter [3] page [3T) to treat calls to
Map . get more precisely by refining its result to @NonNull in some cases.

4.1 Invoking the Map Key Checker

You will not typically run the Map Key Checker. It is automatically run by other checkers, in particular the Nullness
Checker.

You can unsoundly suppress warnings related to map keys with @SuppressWarnings ("keyfor"), or everywhere
by using command-line option ~AsuppressWarnings=keyfor; see Chapter[32] page 204

The command-line argument -AassumeKeyFor makes the Map Key Checker unsoundly assume that the argument
to Map.get is a key for the receiver map. This is like declaring the Map.get method as V get (Object key) rather
than @Nullable V get (Object key). (Just changing the JDK declaration would not work, however, because the
Map Key Checker has special-case logic for Map.get. This is different than suppressing warnings, because it changes a
method’s return type. This is not the same as assuming that the return value is @NonNull, because the map’s value type
might be @Nullable, as in Map<String, @Nullable Integer>.

4.2 Map key annotations

These qualifiers are part of the Map Key type system:

QKeyFor/(String[] maps) indicates that the value assigned to the annotated variable is a key for at least the
given maps.

@UnknownKeyFor| is used internally by the type system but should never be written by a programmer. It indicates
that the value assigned to the annotated variable is not known to be a key for any map. It is the default type
qualifier.

@KeyForBottom is used internally by the type system but should never be written by a programmer. There are no
values of this type (not even null).

The following method annotations can be used to establish a method postcondition that ensures that a certain
expression is a key for a map:

QEnsuresKeyFor (String[] value, String[] map) When the method with this annotation returns, the
expression (or all the expressions) given in the value element is a key for the given maps. More precisely, the
expression has the @KeyFor qualifier with the value arguments taken from the targetValue element of this
annotation.

53

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html#get(java.lang.Object)
../api/org/checkerframework/checker/nullness/qual/KeyFor.html
../api/org/checkerframework/checker/nullness/qual/UnknownKeyFor.html
../api/org/checkerframework/checker/nullness/qual/KeyForBottom.html
../api/org/checkerframework/checker/nullness/qual/EnsuresKeyFor.html

@unknownKeyFor

| @KeyFor (map1) || @KeyFor (map2) |

L

hKeyFor({mapl,mapz}* PKeyFor({mapz,maps}*

1

| @KeyFor ({map1, ...,mapn}) |

@KeyForBottom

Figure 4.1: The subtyping relationship of the Map Key Checker’s qualifiers. @KeyFor (A) is a supertype of @KeyFor (B)
if and only if A is a subset of B. Qualifiers in gray are used internally by the type system but should never be written by
a programmer.

@EnsuresKeyForIf (String[] expression, boolean result, String[] map) Ifthe method with
this annotation returns the given boolean value, then the given expression (or all the given expressions) is a key
for the given maps.

4.3 Default annotations

The qualifier for the type of the null literal is @UnknownKeyFor. If null were @KeyForBottom, that would mean that
null is guaranteed to be a key for every map (which is not necessarily true).

4.3.1 Default for lower bounds

Lower bounds are defaulted to @UnknownKeyFor. However, in java.* packages, the default for lower bounds is
@KeyForBottom.

It is challenging to choose a default for lower bounds of type variables and wildcards.

Here is a comparison of two choices for lower bounds:

@KeyForBottom default @UnknownKeyFor default (current choice)
class MyClassl<@UnknownKeyFor T> { class MyClassl<T> {
T var = null; // OK T var = null; // OK

class MyClass2<T> {

@UnknownKeyFor T var = null; // OK
class MyClass3<T> {

T var = null; // ERROR

class MySetl<T> implements Set<T> { }
MySet1<@KeyFor ("m") String> sl; // ERROR
class Set<E> { } class Set<@KeyForBottom E> { }
class MySet2<T> implements Set<T> { } class MySet2<@KeyForBottom T> implements Set<T> { }
MySet2<@KeyFor ("m") String> s2; // OK MySet2<@KeyFor ("m") String> s2; // OK

If lower bounds are defaulted to @KeyForBottom (which is not currently the case), then whenever null is assigned
to a variable whose type is a type variable, programmers must write an @UnknownKeyFor annotation on either the type
variable declaration or on variable declarations, as shown in MyClassl and MyClass2. A disadvantage of this default is
that the Map Key checker may issue warnings in code that has nothing to do with map keys, and in which no map key
annotations are used.

54

../api/org/checkerframework/checker/nullness/qual/EnsuresKeyForIf.html

If lower bounds are defaulted to @UnknownKeyFor (which is currently the case), then whenever a client might use a
@KeyFor type argument, programmers must write a @KeyForBottom annotation on the type parameter, as in MySet2
(and Set).

4.3.2 Diagnosing the need for explicit @ KeyFor on lower bounds
Under the current defaulting (lower bounds default to @UnknownKeyFor), suppose you write this code:

public class Graph<N> {
Map<N, Integer> nodes = new HashMap<>();

}

class Client {
@Nullable Graph<@KeyFor ("g.nodes") String> g;
}

The Nullness Checker issues this error message:

Graph.java:14: error: [type.argument] incompatible types in type argument.
@Nullable Graph<@KeyFor ("g.nodes") String> g;

found : @KeyFor ("this.g.nodes") String
required: [extends @UnknownKeyFor Object super @UnknownKeyFor null]

Note that the upper and lower bounds are both @UnknownKeyFor. You can make the code type-check by writing a
lower bound, which is written before the type variable name (Section [30.1.2):

public class Graph<@KeyForBottom N> {

4.4 Examples

The Map Key Checker keeps track of which variables reference keys to which maps. A variable annotated with
@KeyFor (mapSet) can only contain a value that is a key for all the maps in mapSet. For example:

Map<String,Date> m, n;

@KeyFor ("m") String km;

@KeyFor ("n") String kn;

@KeyFor ({"m", "n"}) String kmn;

km = kmn; // OK - a key for maps m and n is also a key for map m

km = kn; // error: a key for map n is not necessarily a key for map m

As with any annotation, use of the @KeyFor annotation may force you to slightly refactor your code. For example,
this would be illegal:

Map<String,Object> m;

Collection<@KeyFor ("m") String> coll;

coll.add(x); // error: element type is @KeyFor("m") String, but x does not have that type
m.put (x, ...);

The example type-checks if you reorder the two calls:

Map<String,Object> m;

Collection<@KeyFor ("m") String> coll;

m.put (x, ...); // after this statement, x has type Q@KeyFor ("m") String
coll.add (x); // OK

55

4.5 Local inference of @KeyFor annotations

Within a method body, you usually do not have to write @KeyFor explicitly (except sometimes on type arguments),
because the checker infers it based on usage patterns. When the Map Key Checker encounters a run-time check for map
keys, such as “if (m.containsKey(k)) ...”, then the Map Key Checker refines the type of k to @KeyFor ("m")
within the scope of the test (or until k is side-effected within that scope). The Map Key Checker also infers @KeyFor
annotations based on iteration over a map’s key set| or calls to [put or containsKey. For more details about type
refinement, see Section[31.7]

Suppose we have these declarations:

Map<String,Date> m = new Map<>();
String k = "key";
@KeyFor ("m") String km;

Ordinarily, the following assignment does not type-check:
km = k; // Error since k is not known to be a key for map m.

The following examples show cases where the Map Key Checker infers a @KeyFor annotation for variable k based
on usage patterns, enabling the km = k assignment to type-check.

m.put (k, ...);
// At this point, the type of k is refined to @KeyFor("m") String.
km = k; // OK

if (m.containsKey(k)) {
// At this point, the type of k is refined to @KeyFor("m") String.
km = k; // OK

} else {
km = k; // Error since k is not known to be a key for map m.

The following example shows a case where the Map Key Checker resets its assumption about the type of a field
used as a key because that field may have been side-effected.

class MyClass {
private Map<String,Object> m;
private String k; // The type of k defaults to @UnknownKeyFor String
private @KeyFor ("m") String km;

public void myMethod() {
if (m.containsKey(k)) {
km = k; // OK: the type of k is refined to @KeyFor ("m") String

sideEffectFreeMethod();
km = k; // OK: the type of k is not affected by the method call

// and remains @KeyFor ("m") String

otherMethod () ;
km = k; // error: At this point, the type of k is once again

56

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html#keySet()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html#put(K,V)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html#containsKey(java.lang.Object)

// @UnknownKeyFor String, because otherMethod might have
// side-effected k such that it is no longer a key for map m.

@SideEffectFree
private void sideEffectFreeMethod() { ... }

private void otherMethod() { ... }

57

Chapter 5

Optional Checker for possibly-present data

Java 8 introduced the Optional|class, a container that is either empty or contains a non-null value.

Using Optional is intended to help programmers remember to check whether data is present or not. However,
Optional itself is prone to misuse. The article Nothing is better than the Optional type gives reasons to use regular
nullable references rather than Optional. However, if you do use Optional, then the Optional Checker will help you
avoid Optional’s pitfalls.

Stuart Marks gave 7 rules|to avoid problems with Optional:

Never, ever, use null for an Optional variable or return value.

Never use Optional.get () unless you can prove that the Optional is present.

Prefer alternative APIs over Optional.isPresent ()|and/Optional.get ()

It’s generally a bad idea to create an Optional for the specific purpose of chaining methods from it to get a value.
If an Optional chain has a nested Optional chain, or has an intermediate result of Optional, it’s probably too
complex.

Avoid using Optional in fields, method parameters, and collections.

Don’t use an Optional to wrap any collection type (List, Set, Map). Instead, use an empty collection to
represent the absence of values.

Rule #1 is guaranteed by the Nullness Checker (Chapter [3] page [31). Rules #2—#7 are guaranteed by the Optional
Checker, described in this chapter. (Exception: Rule #5 is not yet implemented and will be checked by the Optional
Checker in the future.)

Use of the Optional Checker guarantees that your program will not suffer a NullPointerException nor a
NoSuchElementException when calling methods on an expression of Optional type.

NS

—

5.1 How to run the Optional Checker

javac -processor optional MyFile.java ...
javac -processor org.checkerframework.checker.optional.OptionalChecker MyFile.java ...

5.2 Optional annotations

These qualifiers make up the Optional type system:

@MaybePresent| The annotated Optional container may or may not contain a value. This is the default type, so
programmers do not have to write it.

@Present| The annotated Optional container definitely contains a (non-null) value.

@OptionalBottom The annotated expression evaluates to null rather than to an Optional container. Programmers
rarely write this annotation.

58

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html
https://homes.cs.washington.edu/~mernst/advice/nothing-is-better-than-optional.html
https://stuartmarks.wordpress.com/2016/09/27/vjug24-session-on-optional/
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html#get()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html#isPresent()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html#get()
../api/org/checkerframework/checker/optional/qual/MaybePresent.html
../api/org/checkerframework/checker/optional/qual/Present.html
../api/org/checkerframework/checker/optional/qual/OptionalBottom.html

@MaybePresent
A

@Present

@OoptionalBottom

Figure 5.1: The subtyping relationship of the Optional Checker’s qualifiers.

@PolyPresent indicates qualifier polymorphism. For a description of qualifier polymorphism, see Section[30.2]

The subtyping hierarchy of the Optional Checker’s qualifiers is shown in Figure[5.1]

5.3 What the Optional Checker guarantees

The Optional Checker guarantees that your code will not throw an exception due to use of an absent Optional
where a present Optional is needed. More specifically, the Optional Checker will issue a warning if you call jget
ororElseThrow on a @MaybePresent Optional receiver, because each of these methods throws an exception if the
receiver is an absent Optional.

The Optional Checker does not check nullness properties, such as requiring that the argument to of| is non-null
or guaranteeing that the result of .get is non-null. To obtain such a guarantee, run both the Optional Checker and the
Nullness Checker (Chapter 3] page[31).

As with any checker, the guarantee is subject to certain limitations (see Section[2.3).

59

../api/org/checkerframework/checker/optional/qual/PolyPresent.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html#get()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html#orElseThrow(java.util.function.Supplier)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html#of(T)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Optional.html#get()

Chapter 6

Interning Checker

If the Interning Checker issues no errors for a given program, then all reference equality tests (i.e., all uses of “==") are
proper; that is, == is not misused where equals () should have been used instead.

Interning is a design pattern in which the same object is used whenever two different objects would be considered
equal. Interning is also known as canonicalization or hash-consing, and it is related to the flyweight design pattern.
Interning has two benefits: it can save memory, and it can speed up testing for equality by permitting use of ==.

The Interning Checker prevents two types of problems in your code. First, it prevents using == on non-interned
values, which can result in subtle bugs. For example:

Integer x new Integer (22);
Integer y = new Integer (22);
System.out.println(x == vy); // prints false!

Second, the Interning Checker helps to prevent performance problems that result from failure to use interning. (See
Section [2.3]for caveats to the checker’s guarantees.)

Interning is such an important design pattern that Java builds it in for these types: String, Boolean, Byte,
Character, Integer, Short. Every string literal in the program is guaranteed to be interned (JLS §3.10.5), and the
String.i