The Checker Framework:
Custom pluggable types for Java

http://types.cs.washington.edu/checker-framework/

Version 1.0.3a (6 Dec 2009)

For the impatient: Section 1.2 describes how to install and use pluggable type-checkers.

Contents

1 Introduction
1.1 How it works: Pluggable types
1.2 Imstallation e
1.2.1 Unix/Linux/MacOS installation
1.2.2 Windows installation L e
1.3 Example use: detecting anull pointerbug oL oo
2 Using a checker
2.1 Writing annotations o v it e e e e e e e e e e e e e e e e
2.1.1 Distributing your annotated projecto e
2.2 Runningachecker
2.2.1 Summary of command-line options
2.2.2 Checker auto-diSCOVETY v v v i i e e e e e e e e e e e e e e e e e
2.3 What the checker guarantees e e e e e
2.4 Tips about writing annotations e e e
2.4.1 Annotations indicate normal behavior L L Lo
2.4.2 Subclasses must respect superclass annotationso e .
2.4.3 When to use (and not use) type qualifiers oL
2.4.4 How to get started annotating legacycode Lo
2.4.5 Annotations on COnsStructor inVoCationso e
3 Nullness checker
3.1 Nullness annotations L e e e e e e e
3.1.1 @Raw annotation for partially-initialized objects L.
3.2 Writing nullness annotations oL e e e e e e e e e e e
3.2.1 Implicitqualifiers e
322 Defaultannotation
323 Conditional nullness L e
3.24 Inference of @NonNull and @Nullable annotations
3.3 What the Nullness checkerchecks
3.4 Suppressing nullness warnings oL e e e e
3.4.1 Suppressing warnings with assertions and method calls
3.4.2 Suppressing warnings on nullness-checking routines and defensive programming
3.5 Exampleso e e e e e
35.1 Tinyexamples e e
352 Annotated library L.
3.6 Other tools for nullness checking L
3.6.1 Whichtoolisrightforyou?
3.6.2 Incompatibility note about FindBugs @Nullable

10

11

12

Interning checker

4.1 Interning annotations
4.2 Annotating your code with @Interned . .
4.2.1 Implicit qualifiers
4.3 What the Interning checker checks
44 Examples
IGJ immutability checker
5.1 IGJand Mutability
5.2 IGJ Annotations
5.3 What the IGJ checker checks
5.4 Implicit qualifiers
5.5 Annotation IGJ Dialect
5.5.1 Semantic Changes
5.5.2 Syntax Changes.

5.5.3 Templating Over Immutability: @I
5.6 Examples

Javari immutability checker

6.1 Javari annotations

6.2 Writing Javari annotations
6.2.1 Implicit qualifiers
6.2.2 Inference of Javari annotations . .

6.3 What the Javari checker checks

6.4 Examples

Lock checker

7.1 Lock annotations
7.1.1 Examples
7.1.2 Discussion of @Holding

7.1.3 Relationship to annotations in Java

Tainting checker

Concurrency in Practice

8.1 Tainting annotations it e e e e e e e e e e e e e e e
8.2 Tips on writing @Untainted annotations
8.3 (@Tainted and @Untainted can be used for many purposes

Linear checker (single use to prevent aliasing)
9.1 Linear annotations
9.2 Limitations

Regex checker
10.1 Regex annotations
10.2 Running the Regex Checker

Internationalization checker
11.1 Internationalization annotations
11.2 Running the Internationalization Checker

Basic checker
12.1 Using the Basic checker.
12.2 Basic checker example

26
26
26
27
27
27

28
28
28
29
29
29
30
30
30
31

32
32
33
33
33
33
33

34
34
34
35
36

37
37
37
38

39
39
40

41
41
41

42
4
4

13 Typestate checker
13.1 Comparison to flow-sensitive type refinement

14 Units and dimensions checker

15 Advanced type system features
15.1 Polymorphism and genericso
15.1.1 Generics (parametric polymorphism or type polymorphism)
15.1.2 Qualifier polymorphism e
15.2 Unused fields and dependent types Lo e e e
15.2.1 Unused fields e e
15.2.2 Dependent types o ot it e e e e e e e e e e e
1523 Example e e e e
15.3 The effective qualifier on a type (defaults and inference)
15.3.1 Default qualifier for unannotated types
15.3.2 Automatic type refinement (flow-sensitive type qualifier inference)
15.4 Inexpressible types

16 Handling warnings and legacy code
16.1 Checking partially-annotated programs: handling unannotated code
16.2 Suppressing warnings o .. e i e e e e e e e e e e e e e e e
16.3 Writing annotations in comments for backward compatibility
16.3.1 Annotations in COMMENLSot v ittt
16.3.2 Implicit import statements ot e e e e e e e e e e e e e
16.3.3 Migrating away from annotations in comments L

17 Annotating libraries
17.1 Usingstubclasses o o e e e e
17.1.1 Creatingastubfile
17.1.2 Usingastubfile
17.1.3 Stubfile format e e e e
17.1.4 Knownproblems e e e
17.1.5 Styletipsforstubfiles e
17.2 Using skeleton files (distributed annotated JDKs)

18 How to create a new checker
18.1 Relationship of the Checker Framework toothertools
18.2 Thepartsofachecker. e
18.3 Annotations: Type qualifiers and hierarchy 0oL
18.3.1 Declaratively defining the qualifier and type hierarchy
18.3.2 Procedurally defining the qualifier and type hierarchy
18.3.3 Defining a default annotation
18.3.4 Completeness of the type hierarchy
18.4 Type factory: Implicit annotations
18.4.1 Declaratively specifying implicit annotations
18.4.2 Procedurally specifying implicit annotations
18.5 Visitor: Typerules e e e e e e
18.5.1 ASTtraversal
1852 Avoidhardcoding
18.6 The checker class: Compiler interface
18.6.1 Bundling multiple checkers L
18.7 Testing framework L L

47
47

48

49
49
49
51
53
53
53
53
54
54
56
57

58
58
58
59
60
60
60

62
62
62
63
63
64
64
64

19

20

21

18.8 Debugg@ing Options e e e e e e e
18.9 javac implementation survival guide e
18.9.1 Checker access to compiler information oL
18.9.2 How a checker fits in the compiler as an annotation processor

Integration with external tools

19.1 Anttask L e
19.2 Mavenplugin L
193 IntelliJ IDEA
19.4 Eclipse o o o e e
195 tIDE
19.6 Typeinference tools o L e e e e e

Frequently Asked Questions (FAQs)

20.1 Are type annotations easy toread and write? Lo e
20.2 Will my code become cluttered with type annotations?
20.3 Can a pluggable type-checker give an absolute guarantee of correctness?
20.4 Idon’t make type errors, so would pluggable type checking helpme?
20.5 Why shouldn’t a qualifier apply to both types and declarations?
20.6 When should I use type qualifiers, and when should I use subclasses?
20.7 How do I run a checker on all my source files?
20.8 How doIcreate anew checker?
20.9 Why is there no declarative syntax for writing typerules?

Troubleshooting and getting help
21.1 Common problems and SOIULIONS i e e e e e
21.1.1 Known problems in the framework Lo oL o
21.1.2 Known problems in the Nullness checker
21.2 Howtoreportproblems L e e e e
21.3 Installing the sourcerelease
21.3.1 The short instructions (for Linuxonly)
21.3.2 The longer insStructions oL e e e e e
21.3.3 Building fromsourceo e e
21.4 Learning MOTE o o v vt it e e e e e e e e e e e e e
21.5 Comparisontoothertools L
21.6 Creditsand changelog e e e

75
75
76
76
76
77
77

78
78
79
79
79
80
80
80
80
81
81
81
81
82

Chapter 1

Introduction

The Checker Framework enhances Java’s type system to make it more powerful and useful. This lets software devel-
opers detect and prevent errors in their Java programs.
The Checker Framework comes with checkers for specific types of errors:

Nullness checker for null pointer errors (see Chapter 3, page 17)

Interning checker for errors in equality testing and interning (see Chapter 4, page 26)

IGJ checker for mutation errors (incorrect side effects), based on the IGJ type system (see Chapter 5, page 28)

Javari checker for mutation errors (incorrect side effects), based on the Javari type system (see Chapter 6,

page 32)

5. Lock checker for concurrency and lock errors, inspired by the Java Concurrency in Practice (JCIP) annotations
(see Chapter 7, page 34)

6. Tainting checker for trust and security errors (see Chapter 8, page 37)

7. Linear checker to control aliasing and prevent re-use (see Chapter 9, page 39)

8

9

Hwn e

. Regex checker to prevent use of syntactically invalid regular expressions (see Chapter 10, page 41)
. Internationalization checker to ensure that code is properly internationalized: user-visible text is obtained from
a localization resource, and proper keys are used for a localization resource (see Chapter 11, page 42)
10. Basic checker for customized checking without writing any code (see Chapter 12, page 44)
11. Typestate checker to ensure operations are performed on objects that are in the right state, such as only opened
files being read (see Chapter 13, page 47)
12. Units and dimensions checker to prevent mixing variables that measure different quantities (see Chapter 14,
page 48)

These checkers are easy to use and are invoked as arguments to javac.
The Checker Framework also enables you to write new checkers of your own; see Chapters 12 and 18.

1.1 How it works: Pluggable types

The Checker Framework supports adding pluggable type systems to the Java language in a backward-compatible
way. Java’s built-in typechecker finds and prevents many errors — but it doesn’t find and prevent enough errors.
The Checker Framework lets you run an additional typechecker as a plug-in to the javac compiler. Your code stays
completely backward-compatible: your code compiles with any Java compiler, it runs on any JVM, and your coworkers
don’t have to use the enhanced type system if they don’t want to. You can check only part of your program. Type
inference tools exist to help you annotate your code.

A type system designer uses the Checker Framework to define type qualifiers and their semantics, and a compiler
plug-in (a “checker”) enforces the semantics. Programmers can write the type qualifiers in their programs and use
the plug-in to detect or prevent errors. The Checker Framework is useful both to programmers who wish to write
error-free code, and to type system designers who wish to evaluate and deploy their type systems.

CEINTS ELINT3

This document uses the terms “checker”, “checker plugin”, “type-checking compiler plugin”, and “annotation
processor’” as synonyms.

1.2 Installation

This section describes how to install the binary release of the Checker Framework. The binary release contains
everything that you need, both to run checkers and to write your own checkers. As an alternative, the source release
(Section 21.3) is useful if you wish to examine or modify the implementation of checkers or of the framework itself.
Requirement: You must have JDK 6 or later installed. You can get JDK 6 from Sun or elsewhere. If you are
using Apple Mac OS X, you can either use Apple’s implementation or SoyLatte.
For Unix/Linux/MacOS installation instructions, see Section 1.2.1. For Windows installation instructions, see
Section 1.2.2.

1.2.1 Unix/Linux/MacOS installation

These instructions assume that you use the bash or sh shell. If you use a different shell, you may need to slightly adjust
the commands.

1. Download the latest Checker Framework distribution and unzip it. You can put it anywhere you like; a standard
place is in a new directory named jsr308.

export JSR308=$HOME/jsr308

mkdir -p ${JSR308}

cd ${JSR308}

or: wget http://types.cs.washington.edu/checker-framework/current/checkers.zip
curl -0 http://types.cs.washington.edu/checker-framework/current/checkers.zip
unzip checkers.zip

chmod +x checkers/binary/javac

2. The download includes an updated version of the javac compiler, called the “Type Annotations compiler” or
“JSR 308 compiler”, that will be shipped with Java 7. In order to use the updated compiler when you type
javac, add the directory . ../checkers/binary to your path. To do so, place the following commands in your
.bashrc file (and also execute them on the command line, or log out and back in):

export JSR308=$HOME/jsr308
export PATH=$JSR308/checkers/binary:${PATH}

3. Verify that the installation works. From the command line, run:
javac -version
The output should be:
javac 1.7.0-3sr308-1.0.3a

That’s all there is to it! Now you are ready to start using the checkers.
Section 1.3 walks you through a simple example. More detailed instructions for using a checker appear in Chap-
ter 2.

1.2.2 'Windows installation
1. Download the latest Checker Framework distribution and unzip it to create a checkers directory. You can put
it anywhere you like; a standard place is in a new directory under C:\Program Files.

(a) Savethefilehttp://types.cs.washington.edu/checker-framework/current/checkers.ziptoyour
Desktop.

(b) Double-click the checkers.zip file on your computer. Click on the checkers directory, then Select
Extract all files,anduse C:\Program Files as the destination. You will obtain a new C: \Program
Files\checkers folder.

2. The download includes an updated version of the javac compiler, called the “Type Annotations compiler” or
“JSR 308 compiler”, that will be shipped with Java 7. In order to use the updated compiler when you type
javac, add the directory C: \Program Files\checkers\binary to your path variable. Also set a CHECKERS
variable.

To set an environment variable, you have two options: make the change temporarily or permanently.

e To make the change temporarily, type at the command shell prompt:

path = newdir; %PATH%

For example:

path = C:\Program Files\checkers\binary; $PATH%

set CHECKERS = C:\Program Files\checkers

This is a temporary change that endures until the window is closed, and you must re-do it every time you
start a new command shell.

e To make the change permanently, Right-click the My Computer icon and select Properties. Select
the Advanced tab and click the Environment Variables button. In the System Variables pane, se-
lect Path from the list and click Edit. In the Edit System Variable dialog box, move the cursor to
the beginning of the string in the Variable Value field and type the full directory name followed by a
semicolon (;).

Similarly, set the CHECKERS variable.
This is a permanent change that only needs to be done once ever.

3. Verify that the installation works. From the command line, run:
javac -version
The output should be:
javac 1.7.0-3jsr308-1.0.3a

That’s all there is to it! Now you are ready to start using the checkers.
Section 1.3 walks you through a simple example. More detailed instructions for using a checker appear in Chap-
ter 2.

1.3 Example use: detecting a null pointer bug

To run a checker on a source file, just run javac as usual, passing the -processor flag. (You can also use an IDE or
other build tool; see Chapter 19.)
For instance, if you usually run the compiler like this:

javac Foo.java Bar.java

then you will instead run it like this (where javac is the JSR 308 compiler that is distributed with the Checker
Framework):

javac -processor ProcessorName Foo.java Bar.java

(If you usually do your coding within an IDE, you will need to configure the IDE to use the correct version of javac
and to pass the command-line argument. See your IDE documentation for details.)

1. Let’s consider this very simple Java class. One local variable is annotated as NonNull, indicating that ref must
be a reference to a non-null object. Save the file as GetStarted. java.

import checkers.nullness.quals.*;

public class GetStarted {
void sample() {
@NonNull Object ref = new Object();

}
. Run the nullness checker on the class. Either run this from the command line:
javac -processor checkers.nullness.NullnessChecker GetStarted.java

or compile from within your IDE, which you have customized to use the JSR 308 compiler and to pass the extra
arguments.

The compilation should complete without any errors.

. Let’s introduce an error now. Modify ref’s assignment to:

@NonNull Object ref = null;
. Run the nullness checker again, just as before. This run should emit the following error:

GetStarted.java:5: incompatible types.
found : @Nullable <nulltype>
required: @NonNull Object

@NonNull Object ref = null;

1 error

The type qualifiers (e.g. @NonNull) are permitted anywhere that would write a type, including generics and
casts; see Section 2.1.

@Interned String intern() { ... } // return value
int compareTo (@NonNull String other) { ... } // parameter
@NonNull List<@Interned String> messages; // non-null list of interned Strings

10

Chapter 2

Using a checker

A pluggable type-checker enables you to certain detect bugs in your code, or to prove that they are not present. The
verification happens at compile time.

Finding bugs, or verifying their absence, with a checker plugin is a two-step process, whose steps are described in
Sections 2.1 and 2.2.

1. The programmer writes annotations, such as @NonNull and @Interned, that specify additional information
about Java types. (Or, the programmer uses an inference tool to automatically insert annotations in his code: see
Sections 3.2.4 and 6.2.2.) It is possible to annotate only part of your code: see Section 16.1.

2. The checker reports whether the program contains any erroneous code — that is, code that is inconsistent with
the annotations.

This section is structured as follows:

Section 2.1: How to write annotations
Section 2.2: How to run a checker

Section 2.4: Tips about writing annotations
Section 2.3: What the checker guarantees

Additional topics that apply to all checkers are covered later in the manual:

Chapter 15: Advanced type system features
Chapter 16: Handling warnings and legacy code
Chapter 17: Annotating libraries

Chapter 18: How to create a new checker
Chapter 19: Integration with external tools

2.1 Writing annotations

The syntax of type qualifier annotations in Java 7 is specified by JSR 308 [Ern08]. Ordinary Java permits annotations
on declarations. JSR 308 permits annotations anywhere that you would write a type, including generics and casts. You
can also write annotations to indicate type qualifiers for array levels and receivers. Here are a few examples:

@Interned String intern() { ... } // return value

int compareTo (@NonNull String other) { ... } // parameter

String toString() @ReadOnly { ... } // receiver ("this" parameter)

@NonNull List<@Interned String> messages; // generics: non-null list of interned Strings
@Interned String @NonNull [] messages; // arrays: non-null array of interned Strings
myDate = (C€ReadOnly Date) readonlyObject; // cast

11

You can also write the annotations within comments, as in List</*@NonNull*/ String>. The Type Annotations
compiler, which is distributed with the Checker Framework, will still process the annotations. However, your code
will remain compilable by people who are not using the Type Annotations or Java 7 compiler. For more details, see
Section 16.3.

2.1.1 Distributing your annotated project

If your code contains any annotations (outside of comments, see Section 16.3), or any import statements for the
annotations, then your code has a dependency on the annotation declarations. You also will need to provide the
annotation declarations as well, if you decide to distribute your project.

For your convenience, inside the the Checker Framework distribution . zip file is a jar file, checkers-quals. jar,
that only contains the distributed qualifiers. You may include the jar file in your distribution.

Your clients need to have the annotations jar in the classpath when compiling your project. When running it though,
they most likely don’t require the annotations declarations (unless the annotation classes are loaded via reflection,
which would be unusual).

2.2 Running a checker

To run a checker plugin, run the compiler javac as usual, but pass the -processor plugin_class command-line
option. (You can run a checker from within your favorite IDE or build system. See Chapter 19 for details about Ant
(Section 19.1), Maven (Section 19.2), IntelliJ IDEA (Section 19.3), Eclipse (Section 19.4), and tIDE (Section 19.5),
and about customizing other IDEs and build tools.) Remember that you must be using the Type Annotations version
of javac, which you already installed (see Section 1.2).

Two concrete examples (using the Nullness checker) are:

javac -processor checkers.nullness.NullnessChecker MyFile.java
javac -processor checkers.nullness.NullnessChecker -sourcepath checkers/jdk/nullness/src MyFile.java

For a discussion of the -~sourcepath argument, see Section 17.2.

The checker is run only on the Java files specified on the command line (or created by another annotation proces-
sor). The checker does not analyze other classes (e.g., pre-compiled classes, or classes whose source code is available
on the classpath), but it does check the uses of those classes in the source code being compiled.

The javac compiler halts compilation as soon as an error is found in a source file. You can pass -Awarns in the
command-line to treat checker errors as warnings. This option allows you to see all the type-checking errors at once,
rather than just the errors in the first file that contains errors. You may wish to also supply -Xmaxwarns 10000,
because by default javac prints at most 100 warnings.

You can always compile the code without the ~-processor command-line option, but in that case no checking of
the type annotations is performed. The annotations are still written to the resulting . class files, however.

2.2.1 Summary of command-line options

You can pass command-line arguments to a checker via javac’s standard -A option (“A” stands for “annotation”). All
of the distributed checkers support the following command-line options:

e -Awarns Treat checker errors as warnings; see Section 2.2
e -AskipClasses Suppress all errors and warnings at all uses of a given class; see Section 16.2

e -Alint Enable or disable optional checks; see Section 16.2

e -Astubs List of stub files or directories; see Section 17.1.2

e -Afilenames, -Anomsgtext, ~-Ashowchecks Aids for testing or debugging a checker; see Section 18.8

Some checkers support additional options, such as ~Aquals for the Basic Checker to check; see Chapter 12.
Here are some standard javac command-line options that you may find useful. Many of them contain the word
“processor”, because in javac jargon, a checker is a type of “annotation processor”.

12

e —processor Names the checker to be run; see Section 2.2

e —processorpath Indicates where to search for the checker; should also contain any qualifiers used by the Basic
Checker; see Section 12.2

e -proc:{none,only} Controls whether checking happens; -proc:none means to skip checking; -proc:only
means to do only checking, without any subsequent compilation; see Section 2.2.2

e -sourcepath Indicates where to find the skeleton classes; skeleton files are being phased out; see Section 17.2

e -implicit:class Enables processing for implicitly compiled files (not named on the command line); see
Section 19.1

e -XDTA:spacesincomments parse annotation comments even when they contain spaces; applicable only to the
Type Annotations compiler; see Section 16.3

e -J Supply an argument to the JVM that is running javac; example: -J-Djsr308_imports="checkers.nullness.quals.*";
see Section 16.3.2

2.2.2 Checker auto-discovery

“Auto-discovery” makes the javac compiler always run a checker plugin, even if you do not explicitly pass the
-processor command-line option. This can make your command line shorter, and ensures that your code is checked
even if you forget the command-line option.
To enable auto-discovery, place a configuration file named META-INF/services/javax.annotation.processing.Processor
in your classpath. The file contains the names of the checker plugins to be used, listed one per line. For instance, to
run the Nullness and the Interning checkers automatically, the configuration file should contain:

checkers.nullness.NullnessChecker
checkers.interning.InterningChecker

You can disable this auto-discovery mechanism by passing the -proc: none command-line option to javac, which
disables all annotation processing including all pluggable type-checking.

2.3 What the checker guarantees

A checker can guarantee that a particular property holds throughout the code. For example, the Nullness checker
(Chapter 3) guarantees that every expression whose type is a @NonNull type never evaluates to null. The Interning
checker (Chapter 4) guarantees that every expression whose type is an @Interned type evaluates to an interned value.
The checker makes its guarantee by examining every part of your program and verifying that no part of the program
violates the guarantee.

There are some limitations to the guarantee.

e Native methods and reflection can behave in a manner that is impossible for a compiler plugin to check. Such
constructs may violate the property being checked. Similarly, deserialization and cloning can create objects that
could not result from normal constructor calls, and that therefore may violate the property being checked.

e A compiler plugin can check only those parts of your program that you run it on. If you compile some parts
of your program without the -processor switch or with the -AskipClasses property (in other words, without
running the checker), or if you use the €@SuppressiWarnings annotation to suppress some errors or warnings,
then there is no guarantee that the entire program satisfies the property being checked. An analogous situation
is using an external library that was compiled without being checked by the compiler plugin.

e Your code should pass the Java compiler without errors or warnings. In particular, your code should use generic
types, with no uses of raw types. Misuse of generics, including casting away generic types, can cause other
errors to be missed.

e The Checker Framework does not yet support annotations on intersection types (see JLS §4.9). As a result,
checkers cannot provide guarantees about intersection types.

e Specific checkers may have other limitations; see their documentation for details.

13

A checker can be useful in finding bugs or in verifying part of a program, even if the checker is unable to verify
the correctness of an entire program.
If you find that a checker fails to issue a warning that it should, then please report a bug (see Section 21.2).

2.4 Tips about writing annotations

2.4.1 Annotations indicate normal behavior

You should use annotations to indicate normal behavior. The annotation indicate all the values that you want to flow
to reference — not every value that might possibly flow there if your program has a bug.
Many methods are guaranteed to throw an exception if they are passed null as an argument. Examples include

java.lang.Double.valueOf (String)
java.lang.String.contains (CharSequence)
org.junit.Assert.assertNotNull (Object)
com.google.common.base.Preconditions.checkNotNull (Object)

@Nullable might seem like a reasonable annotation for the parameter, for two reasons. First, null is a legal
argument with a well-defined semantics: throw an exception. Second, @Nullable describes a possible program
execution: it might be possible for null to flow there, if your program has a bug.

However, it is never useful for a programmer to pass null. It is the programmer’s intention that null never flows
there. If null does flow there, the program will not continue normally.

Therefore, you should mark such parameters as @NonNull, indicating the intended use of the method. When you
use the @NonNull annotation, the checker is able to issue compile-time warnings about possible run-time exceptions,
which is its purpose. Marking the parameter as @Nullable would suppress such warnings, which is undesirable.

2.4.2 Subclasses must respect superclass annotations

An annotation indicates a guarantee that a client can depend upon. A subclass is not permitted to weaken the contract;
for example, if a method accepts null as an argument, then every overriding definition must also accept null. A
subclass is permitted to strengthen the contract; for example, if a method does not accept null as an argument, then
an overriding definition is permitted to accept null.
As abad example, consider an erroneous @Nullable annotation at line 141 of com/google/common/collect /Multiset. java,
version r78:

101 public interface Multiset<E> extends Collection<E> {

122 /**

123 * Adds a number of occurrences of an element to this multiset.

129 * (@param element the element to add occurrences of; may be {@code null} only
130 * if explicitly allowed by the implementation

137 * @throws NullPointerException if {€@code element} is null and this

138 * implementation does not permit null elements. Note that if {@code

139 * occurrences} is zero, the implementation may opt to return normally.
140 */

141 int add(@Nullable E element, int occurrences);

There exist implementations of Multiset that permit null elements, and implementations of Multiset that do not
permit null elements. A client with a variable Multiset ms does not know which variety of Multiset ms refers to.

14

However, the @Nullable annotation promises that ms.add (null, 1) is permissible. (Recall from Section 2.4.1 that
annotations should indicate normal behavior.)

If parameter element on line 141 were to be annotated, the correct annotation would be @NonNull. Suppose a
client has a reference to same Multiset ms. The only way the client can be sure not to throw an exception is to pass only
non-null elements to ms.add (). A particular class that implements Multiset could declare add to take a @Nullable
parameter. That still satisfies the original contract. It strengthens the contract by promising even more: a client with
such a reference can pass any non-null value to add (), and may also pass null.

However, the best annotation for line 141 is no annotation at all. The reason is that each implementation of the
Multiset interface should specify its own nullness properties when it specifies the type parameter for Multiset. For
example, two clients could be written as

class MyNullPermittingMultiset implements Multiset<@Nullable Object> { ... }
class MyNullProhibitingMultiset implements Multiset<@NonNull Object> { ... }

or, more generally, as

class MyNullPermittingMultiset<E extends @Nullable Object> implements Multiset<E> { ... }
class MyNullProhibitingMultiset<E extends @NonNull Object> implements Multiset<E> { ... }

Then, the specification is more informative, and the Checker Framework is able to do more precise checking, than
if line 141 has an annotation.

It is a pleasant feature of the Checker Framework that in many cases, no annotations at all are needed on type
parameters such as E in MultiSet.

2.4.3 When to use (and not use) type qualifiers

For some programming tasks, you can use either a Java subclass or a type qualifier. For instance, suppose that your
code currently uses String to represent an address. You could create a new Address class and refactor your code
to use it, or you could create a @Address annotation and apply it to some uses of String in your code. If both of
these are truly possible, then it is probably more foolproof to use the Java class. We do not encourage you to use type
qualifiers as a poor substitute for classes. However, sometimes type qualifiers are a better choice.

Using a new class may your code incompatible with existing libraries or clients. Brian Goetz expands on this issues
in an article on the pseudo-typedef antipattern [Goe06]. Even if compatibility is not a concern, a code change may
introduce bugs, whereas adding annotations does not change the run-time behavior. It is possible to add annotations to
existing code, including code you do not maintain or cannot change. It is possible to annotate primitive types without
converting them to wrappers, which would make the code both uglier and slower.

Type qualifiers can be applied to any type, including final classes that cannot be subclassed.

Type qualifiers permit you to remove operations, with a compile-time guarantee. An example is mutating methods
that are forbidden by immutable types (see Chapters 5 and 6). More generally, type qualifiers permit creating a new
supertype, not just a subtype, of an existing Java type.

A final reason is efficiency. Type qualifiers can be more efficient, since there is no no run-time representation such
as a wrapper or a separate class, nor introduction of dynamic dispatch for methods that could otherwise be statically
dispatched.

2.4.4 How to get started annotating legacy code

Annotating an entire existing program may seem like a daunting task. But, if you approach it systematically and do a
little bit at a time, you will find that it manageable.

You should start with a property that matters to you, to achieve the best benefits. It is easiest to add annotations if
you know the code or the code contains documentation; you will find that you spend most of your time understanding
the code, and very little time actually writing annotations or running the checker.

15

It is best to annotate one package at a time, and to annotate the entire package so that you don’t forget any classes,
which can lead to unexpected results. Start as close to the leaves of the call tree as possible, because it is easiest to
annotate a class if the code it calls has already been annotated.

For each class, read its Javadoc. For instance, if you are adding annotations for the Nullness Checker (Section 3),
then you can search the documentation for “null” and then add @Nullable anywhere appropriate. Do not read nor
annotate the method bodies yet — first, get the signatures and fields annotated. If you are only annotating signatures
(say, for a library you do not maintain and do not wish to check), you are now done.

If you wish to check the implementation, then after the signatures are annotated, run the checker. Then, add method
body annotations (usually, few are necessary), fix bugs in code, and add annotations to signatures where necessary. If
signature annotations are necessary, then you may want to fix the documentation that did not indicate the property; but
this isn’t strictly necessary, since the annotations that you wrote provide that documentation.

Also see Chapter 16, which tells you what to do when you are unable to eliminate checker warnings.

2.4.5 Annotations on constructor invocations

In the checkers distributed with the Checker Framework, an annotation on a constructor invocation is equivalent to a
cast on a constructor result. That is, the following two expressions have identical semantics: one is just shorthand for
the other.

new @ReadOnly Date ()
(@ReadOnly Date) new Date()

However, you should rarely have to use this. The Checker Framework will determine the qualifier on the result,
based on the “return value” annotation on the constructor definition. The “return value” annotation appears before the
constructor name, for example:

class MyClass {

@ReadOnly MyClass() { ... }

In general, you should only use this syntax when you know that the cast is guaranteed to succeed. An example
from the IGJ checker (Chapter 5) is new @Immutable MyClass () or new @Mutable MyClass (), where you know
that every other reference to the class is annotated @ReadOnly.

16

Chapter 3

Nullness checker

If the Nullness checker issues no warnings for a given program, then running that program will never throw a null
pointer exception. This guarantee enables a programmer to prevent errors from occurring when his program is run.
See Section 3.3 for more details about the guarantee and what is checked.

3.1 Nullness annotations

The Nullness checker uses two separate type hierarchies: one for nullness, and one for rawness (see Section 3.1.1).
The nullness hierarchy contains these qualifiers:

@Nullable indicates a type that includes the null value. The type Boolean is nullable; a variable of type Boolean
always has one of the values TRUE, FALSE, or null.

@NonNull indicates a type that does not include the null value. The type boolean is non-null; a variable of type
boolean always has one of the values true or false. The type @NonNull Boolean is also non-null: a variable
of type @NonNull Boolean always has one of the values TRUE or FALSE — never null. Dereferencing an
expression of non-null type can never cause a null pointer exception. Furthermore, the object referenced by a
@NonNull type is always fully initialized — that is, its @NonNull fields have been set to a non-null value.

@PolyNull indicates qualifier polymorphism. For a description of @PolyNull, see Section 15.1.2.

@LazyNonNull indicates a reference that may be null, but if it ever becomes non-null, then it never becomes

null again. This is appropriate for lazily-initialized fields, among other uses. When the variable is read, its type
is treated as @Nullable, but when the variable is assigned, its type is treated as @NonNull.
Because the Nullness checker works intraprocedurally (it analyzes one method at a time), when a LazyNonNull
field is first read within a method, the field cannot be assumed to be non-null. The benefit of LazyNonNull over
Nullable is its different interaction with flow-sensitive type qualifier refinement (Section 15.3.2). After a check
of a LazyNonNull field, all subsequent accesses within that method can be assumed to be NonNull, even after
arbitrary external method calls that have access to the given field.

Figure 3.1 shows part of the type hierarchy for the Nullness type system.

3.1.1 QERaw annotation for partially-initialized objects

The rawness hierarchy indicates whether an object is fully initialized — that is, whether its fields have all been
assigned. This is mostly relevant within the constructor, or for references to this that escape the constructor. The
rawness hierarchy contains these qualifiers:

@Raw indicates a type that contains a partially-initialized object. In a partially-initialized object, fields that are anno-
tated as @NonNull may be null because the field has not yet been assigned. Within the constructor, this has
@Raw type until all the fields have been assigned.

17

@Nullable Object Object

P— o ol P— o ol

@NonNull Object @Nullable Date @Raw Object Date
@NonNull Date @Raw Date

Figure 3.1: Partial type hierarchy for the Nullness type system. Java’s Object is expressed as @Nullable Object.
Programmers can omit most type qualifiers, because the default annotation (Section 3.2.2) is usually correct. Also
shown is the type hierarchy for rawness, which indicates whether initialization has completed. The two type hierarchies
are independent but inter-related, and the Nullness Checker verifies them both.

@NonRaw indicates a type that contains a fully-initialized object. NonRaw is the default, so there is little need for a
programmer to write this explicitly.
@PolyRaw indicates qualifier polymorphism over rawness (see Section 15.1.2).

During execution of a constructor, every field of non-primitive type starts out with the value null. If the field has
@NonNull type, its initial value null violates the @NonNull type qualifier. In other words, during construction, the
object is in an illegal state.

The @Raw type annotation represents a partially-initialized object. If a reference has @Raw type, then all of its
@NonNull fields are treated as @LazyNonNull: when read, they are treated as being @Nullable, but when written,
they are treated as being @NonNull.

The rawness hierarchy is orthogonal to the nullness hierarchy. It is legal for a reference to be @NonNull @Raw,
@Nullable @Raw, @NonNull @NonRaw, or @Nullable @NonRaw. The nullness hierarchy tells you about the reference
itself: might the reference be null? The rawness hierarchy tells you about the fields in the referred-to object: might
those fields be null?

You can suppress warnings related to partially-initialized objects with @SuppressWarnings ("rawness"). (Do not
confuse this with the unrelated @SuppressWarnings ("rawtypes") annotation for non-instantiated generic types!)

How an object becomes non-raw The Nullness checker issues an error if the constructor fails to initialize any non-
null field. This ensures that the object is in a legal (non-raw) state by the time that the constructor exits. This is
different than Java’s test for definite assignment (see JLS ch.16), which does not apply to fields (except blank final
ones, defined in JLS §4.12.4)) because fields have a default value of null.

Within the constructor, this has @Raw type. As soon as all of the @NonNull fields have been initialized, then this
is treated as non-raw.

Suppose that class C extends class B, which extends class A. Within the C constructor, until the superclass con-
structor is called, this has type @Raw C and also @Raw B and @Raw A. After the superclass constructor has been called,
then this has type @Raw C and also @NonRaw B and @NonRaw A.

A note about the terminology “raw’> The name “raw” comes from a research paper that proposed this approach [FL03].
The @Raw annotation has nothing to do with the raw types of Java Generics.

3.2 Writing nullness annotations

3.2.1 Implicit qualifiers

As described in Section 15.3, the Nullness checker adds implicit qualifiers, reducing the number of annotations that
must appear in your code. For example, enum types are implicitly non-null, so you never need to write @NonNull
MyEnumType.

For a complete description of all implicit nullness qualifiers, see the Javadoc for NullnessAnnotatedTypeFactory.

18

3.2.2 Default annotation

Unannotated references are treated as if they had a default annotation, using the NNEL (non-null except locals) rule
described below. A user may choose a different rule for defaults using the @DefaultQualifier annotation; see
Section 15.3.1.

Here are three possible default rules you may wish to use. Other rules are possible but are not as useful.

e @Nullable: Unannotated types are regarded as possibly-null, or nullable. This default is backward-
compatible with Java, which permits any reference to be null. You can activate this default by writing a
@DefaultQualifier ("Nullable") annotation on a class or method declaration.

e @NonNull: Unannotated types are treated as non-null. You can activate this default via the
@DefaultQualifier ("NonNull") annotation.

e Non-null except locals (NNEL): Unannotated types are treated as @NonNull, except that the unannotated raw
type of a local variable is treated as @Nullable. (Any generic arguments to a local variable still default
to @NonNull.) You can activate this default via the @DefaultQualifier (value="NonNull", locations=
{DefaultLocation.ALL_EXCEPT_LOCALS}) annotation.

The NNEL default leads to the smallest number of explicit annotations in your code [PACT08]. It is what we
recommend. If you do not explicitly specify a different default, then NNEL is the default.

3.2.3 Conditional nullness

The Nullness Checker supports a form of conditional nullness types, via the @AssertNonNullIfTrue method anno-
tation. The annotation on a method declares that some expressions are non-null, if the method returns true.

Consider java.io.File. File.listFiles () may return null, butis specified to return non-null value if File.isDirectory ()
is true. You can declare this relationship in the following way:

class File {

@AssertNonNullIfTrue ("list()’’, "listFiles()")
public boolean isDirectory() { ... }

public File @Nullable [] listFiles();
}

A client that checks that a File reference is indeed that of a directory, can then de-reference File.isDirectory
safely without any nullness check.

static void analyze(File file) {
if (file.isDirectory()) {
for (File child : file.listFiles()) { // no possible null dereference
analyze(child);
1
} else {
. analyze file

3.2.4 Inference of @NonNull and @Nullable annotations

It can be tedious to write annotations in your code. Two tools exist that can automatically infer annotations and insert
them in your source code. (This is different than type qualifier refinement for local variables (Section 15.3.2), which
infers a more specific type for local variables and uses them during type-checking but does not insert them in your
source code. Type qualifier refinement is always enabled, no matter how annotations on signatures got inserted in your
source code.)

19

Your choice of tool depends on what default annotation (see Section 3.2.2) your code uses. You only need one of
these tools.

o Inference of @Nullable: If your code uses the standard NNEL (non-null-except-locals) default or the NonNull
default, then use the AnnotateNullable tool of the Daikon invariant detector.
e Inference of @NonNull: If your code uses the Nullable default, use one of these tools:

— Julia analyzer,
— Nit: Nullability Inference Tool
— Non-null checker and inferencer of the JastAdd Extensible Compiler.

3.3 What the Nullness checker checks

The checker issues a warning in two cases:

1. When an expression of non-@NonNull type is dereferenced, because it might cause a null pointer exception.
Dereferences occur not only when a field is accessed, but when an array is indexed, an exception is caught, a
lock is taken in a synchronized block, and more. For a complete description of all checks performed by the
Nullness checker, see the Javadoc for NullnessVisitor.

2. When an expression of @NonNull type might become null, because it is a misuse of the type: the null value
could flow to a dereference that the checker does not warn about.

3. When a null check is performed against a value that is guaranteed to be non-null, as in (*‘m’’ == null), be-
cause this might indicate a programmer error or misunderstanding, and is unnecessary. This check is performed
only if the nulltest lint option is enabled (default: disabled). The lint option is disabled by default because
sometimes such checks are part of ordinary defensive programming.

This example illustrates the problems:

Object obj; // might be null
@NonNull Object nnobj; // never null

obj.toString() // checker warning: dereference might cause null pointer exception

nnobj = obj; // checker warning: nnobj may become null
if (nnobj == null) ... // checker warning: redundant test

Parameter passing and return values are checked analogously to assignments.

3.4 Suppressing nullness warnings

The Checker Framework supplies several ways to suppress warnings, most notably the @SuppressWarnings ("nullness")
annotation (see Section 16.2). An example use is

// might return null
@Nullable Object getObject() { ... }

void myMethod() {
// The programmer knows that this partucular call never returns null.
@SuppressWarnings ("nullness")
@NonNull Object 02 = getObject();

The Nullness Checker supports an additional warning suppression key, nullness:collection-typeargs. Use of
@SuppressWarnings ("nullness:generic.argument") causes the Nullness Checker to suppress only those warn-
ings related to misuse of generic type arguments. One use for this key is when a class is declared to take only @NonNull

20

type arguments, but you want to instantiate the class with a @NonNull type argument, as in List<@Nullable Object>.
For a more complete explanation of this example, see Section 20.12.
The Nullness Checker also permits you to use assertions or method calls to suppress warnings; see below.

3.4.1 Suppressing warnings with assertions and method calls

Occasionally, it is inconvenient or verbose to use the @SuppressWarnings annotation. For example, Java does not
permit annotations such as @SuppressWarnings to appear on statements.

For situations when the @SuppressWarnings annotation is inconvenient, the Nullness Checker provides two addi-
tional ways to suppress warnings: via an assert statement or the castNonNull method. These are appropriate when
the Nullness Checker issues a warning, but the programmer knows for sure that the warning is a false positive, because
the value cannot ever be null at run time.

1. Use an assertion. If the string “nullness” appears in the message body, then the Nullness Checker treats the
assertion as suppressing a warning and assumes that the assertion always succeeds. For example, the checker
assumes that no null pointer exception can occur in code such as

assert x != null : "@SuppressWarnings(nullness)";
CoxWE oL,

If the string “nullness” does not appear in the assertion message, then the Nullness Checker treats the assertion
as being used for defensive programming, and it warns if the method might throw a nullness-related exception.
A downside of putting the string in the assertion message is that if the assertion ever fails, then a user might see
the string and be confused. But the string should only be used if the programmer has reasoned that the assertion
can never fail.
2. Use the NullnessUtils.castNonNull method.

The Nullness Checker considers both the return value, and also the argument, to be non-null after the method
call. Therefore, the castNonNull method can be used either as a cast expression or as a statement. The Nullness
Checker issues no warnings in any of the following code:

// one way to use as a cast:
@NonNull String s = castNonNull (possiblyNulll);

// another way to use as a cast:
castNonNull (possiblyNull2) .toString();

// one way to use as a statement:
castNonNull (possiblyNull3);
possiblyNull3.toString(); "

The method also throws AssertionError if Java assertions are enabled and the argument is null. However, it
is not intended for general defensive programming; see Section 3.4.2.

A potential disadvantage of using the castNonNull method is that your code becomes dependent on the Checker
Framework at run time as well as at compile time. You can avoid this by copying the implementation of
castNonNull into your own code, and possibly renaming it if you do not like the name. Be sure to retain the
documentation that indicates that your copy is intended for use only to suppress warnings and not for defensive
programming. See Section 3.4.2 for an explanation of the distinction.

3.4.2 Suppressing warnings on nullness-checking routines and defensive programming

One way to suppress warnings in the Nullness Checker is to use method castNonNull. (Section 3.4.1 gives other
techniques.)

This section explains why the Nullness Checker introduces a new method rather than re-using the assert statement
(asin assert x != null) or an existing method such as:

21

org.junit.Assert.assertNotNull (Object)
com.google.common.base.Preconditions.checkNotNull (Object)

In each case, the assertion or method indicates an application invariant, a fact that should always be true. There
are two distinct reasons a programmer may have written the invariant, depending on whether the programmer is 100%
sure that the application invariant holds.

1. A programmer might write it as defensive programming. This causes the program to throw an exception,
which is useful for debugging because it gives an earlier run-time indication of the error. A programmer would
use an assertion in this way if the programmer is not 100% sure that the application invariant holds.

2. A programmer might write it to suppress false positive warning messages from a checker. A programmer
would use an assertion this way if the programmer is 100% sure that the application invariant holds, and the can
never be null at run time.

With assertions and existing methods like JUnit’s assertNotNull, there is no way of knowing the programmer’s
intent in using the method. Guessing wrong would make the Nullness Checker less useful. Different programmers or
codebases may use them in different ways. And, different checking tools issue different false warnings that need to be
suppressed.

As an example of using assertions for defensive programming, some style guides suggest using assertions or
method calls to indicate nullness. A programmer might write

String s = ...
assert s != null; // or: assertNotNull (s); or: checkNotNull (s);
. Double.valueOf (s)

A programming error might cause s to be null, in which case the code would throw an exception at run time.
If the assertion caused the Nullness Checker to assume that s is not null, then the Nullness Checker would issue
no warning for this code. That would be undesirable, because the whole purpose of the Nullness Checker is to
give a compile-time warning about possible run-time exceptions. Furthermore, if the programmer uses assertions for
defensive programming systematically throughout the codebase, then many useful Nullness Checker warnings would
be suppressed.

Because it is important to distinguish between the two uses of assertions (defensive programming vs. suppressing
warnings), the Checker Framework introduces the NullnessUtils.castNonNull method. Unlike existing assertions
and methods, castNonNull is intended only to suppress false warnings that are issued by the Nullness Checker, not
for defensive programming.

If you know that a particular codebase uses the assert statement or a nullness-checking method not for defensive
programming but to indicate facts that are guaranteed to be true (that is, these assertions will never fail at run time),
then you can cause the Nullness Checker to suppress warnings related to them, just as it does for castNonNull.
For a method, annotate its definition just as NullnessUtils.castNonNull is annotated (see the source code for the
Checker Framework). Also, be sure to document the intention, so that programmers do not accidentally misuse them
for defensive programming.

If you are annotating a codebase that already contains precondition checks, such as:

public String get (String key, String def) {
checkNotNull (key, "key"); //NOI18N

}

then you should mark the appropriate parameter as @NonNull (which is the default). This will prevent the checker
from issuing a warning about the checkNotNull call.

22

3.5 Examples

3.5.1 Tiny examples

To try the Nullness checker on a source file that uses the @NonNull qualifier, use the following command (where
javac is the JSR 308 compiler that is distributed with the Checker Framework):

javac —processor checkers.nullness.NullnessChecker examples/NullnessExample. java

Compilation will complete without warnings.
To see the checker warn about incorrect usage of annotations (and therefore the possibility of a null pointer excep-
tion at run time), use the following command:

javac -processor checkers.nullness.NullnessChecker examples/NullnessExampleWithWarnings.java

The compiler will issue three warnings regarding violation of the semantics of @NonNull.

3.5.2 Annotated library

Three libraries that or annotated with nullness qualifiers are:

e The Nullness checker itself.

e The Daikon invariant detector. Run the command make check-nullness.

e The annotation scene library. To run the Nullness checker on the annotation scene library, first download the
scene library suite (which includes build dependencies for the scene library as well as its source code) and extract
it into your checkers installation. The checker can then be run on the annotation scene library with Apache Ant
using the following commands:

cd checkers
ant -f scene-lib-test.xml

You can view the annotated source code, which contains @NonNull annotations, in the checkers/scene-1lib-test/src/annotations/
directory.

3.6 Other tools for nullness checking

The Checker Framework’s nullness annotation is similar to annotations used in IntelliJ] IDEA, FindBugs, JML, the
JSR 305 proposal, and others. Also see Section 21.5 for a comparison to other tools.

You might prefer to use the Checker Framework because it has a more powerful analysis that can warn you about
more null pointer errors in your code.

If you have already annotated your code with a different nullness annotation, you can reuse that effort by converting
them to the Checker Framework’s nullness annotations. Perform the refactoring described in Figure 3.2.

Alternately, the Checker Framework can process those other annotations (as well as its own, if they also appear in
your program). The Checker Framework has its own definition of the annotations on the left side of Figure 3.2, so that
they can be used as type qualifiers. The Checker Framework interprets them according to the right side of Figure 3.2.

The Checker Framework may issue more or fewer errors than another tool. This is expected, since each tool uses
a different analysis. Remember that the Checker Framework aims at soundness: never failing to report a possible null
dereference, while at the same time limiting false reports.

Because some of the names are the same (NonNull, Nullable), it is unpleasant to use nullness annotations from
multiple different packages in the same codebase. You can import at most one of the annotations with conflicting
names; the other(s) must be written out fully rather than imported. Also, note FindBugs’s non-standard meaning for
@Nullable (Section 3.6.2).

23

edu.umd.cs.findbugs.annotations.NonNull checkers.nullness.quals.NonNull
javax.annotation.Nonnull checkers.nullness.quals.NonNull
org.jetbrains.annotations.NotNull checkers.nullness.quals.NonNull
edu.umd.cs.findbugs.annotations.Nullable checkers.nullness.quals.Nullable
edu.umd.cs.findbugs.annotations.CheckForNull checkers.nullness.quals.Nullable
edu.umd.cs.findbugs.annotations.UnknownNullness | checkers.nullness.quals.Nullable
javax.annotation.Nullable checkers.nullness.quals.Nullable
javax.annotation.CheckForNull checkers.nullness.quals.Nullable
org.jetbrains.annotations.Nullable checkers.nullness.quals.Nullable

Figure 3.2: Refactoring for converting nullness annotations from FindBugs, the JSR 305 proposal, and IntelliJ to the
Checker Framework.

3.6.1 Which tool is right for you?

Different tools are appropriate in different circumstances. Here is a brief comparison with FindBugs, but similar points
apply to other tools.

The reason you might want to use the Checker Framework instead of FindBugs is that FindBugs has a less powerful
nullness analysis that reports fewer errors. However, FindBugs does not require you to annotate your code as thor-
oughly as the Checker Framework does. Depending on the importance of your code, you may wish to do no nullness
checking; the cursory checking of FindBugs; or the thorough checking of the Checker Framework. You might even
want to ensure that both tools run, for example if your coworkers or some other organization are still using FindBugs.
If you know that you will eventually want to use the Checker Framework, there is no point using FindBugs first; it is
easier to go straight to using the Checker Framework.

FindBugs can find other errors in addition to nullness errors; here we focus on its nullness checks. Even if you use
FindBugs for its other features, you may want to use the Checker Framework for analyses that can be expressed as
pluggable type-checking, such as detecting nullness errors.

Regardless of whether you wish to use the FindBugs nullness analysis, you may continue running all of the other
FindBugs analyses at the same time as the Checker Framework; there are no interactions among them.

If FindBugs (or any other tool) discovers a nullness error that the Checker Framework does not, please report it to
us (see Section 21.2) so that we can enhance the Checker Framework.

3.6.2 Incompatibility note about FindBugs @Nullable

Findbugs has a non-standard definition of @Nullable. FindBug’s treatment is not documented in its own Javadoc;
it is different from the definition of @Nullable in every other tool for nullness analysis; it means tho same thing as
@NonNull when applied to a formal parameter; and it inevitably surprises programmers. Thus, FindBugs’s @Nullable
is detrimental rather than useful as documentation. In practice, your best bet is to not rely on FindBugs for nullness
analysis, even if you find FindBugs useful for other purposes.

You can skip the rest of this section unless you wish to learn more details.

FindBugs suppresses all warnings at uses of a @Nullable variable. (You have to use @CheckForNull to indicate
a nullable variable that FindBugs should check.) For example:

// declare getObject () to possibly return null
@Nullable Object getObject() { ... }

void myMethod () {
@Nullable Object o = getObject();
// FindBugs issues no warning about calling toString on a possibly-null reference!
o.toString();

}

24

The Checker Framework does not emulate this non-standard behavior of FindBugs, even if the code uses FindBugs
annotations.

The Checker Framework will issue more warnings than FindBugs, and some of them may be about real bugs in
your program. If you wish to suppress warnings at a specific client use where the value is known to be non-null, you
should do that at the client use. See Section 3.4 for information about suppressing nullness warnings.

(FindBugs made a poor choice of names. The choice of names should make a clear distinction between annotations
that specify whether a reference is null, and annotations that suppress false warnings. The choice of names should
also have been consistent other tools, and intuitively clear to programmers. The FindBugs choices make the FindBugs
annotations less helpful to people, and much less useful for other tools. The FindBugs analysis is also very imprecise.
For type-related analyses, it is best to stay away from the FindBugs nullness annotations, and use a more capable tool
like the Checker Framework.)

25

Chapter 4

Interning checker

If the Interning checker issues no warnings for a given program, then all reference equality tests (i.e., “==") in that
program operate on interned types. Interning is a design pattern in which the same object is used whenever two
different objects would be considered equal. Interning is also known as canonicalization or hash-consing, and it is
related to the flyweight design pattern. Interning can save memory and can speed up testing for equality by permitting
use of ==; however, use of == on non-interned values can result in subtle bugs. For example:

Integer x new Integer (22);
Integer y = new Integer(22);
System.out.println(x == y); // prints false!

The Interning checker helps programmers to prevent such bugs. The Interning checker also helps to prevent per-
formance problems that result from failure to use interning. (See Section 2.3 for caveats to the checker’s guarantees.)

4.1 Interning annotations
Two qualifiers are part of the Interning type system.

@Interned indicates a type that includes only interned values (no non-interned values).
@PolyInterned indicates qualifier polymorphism. For a description of @PolyInterned, see Section 15.1.2.

4.2 Annotating your code with @Interned

In order to perform checking, you must annotate your code with the @Interned type annotation, which indicates a

type for the canonical representation of an object:

String sl = ...; // type is (uninterned) "String"
@Interned String s2 = ...; // Java type is "String", but checker treats it as "Interned String
Object
@Interned Object Date

— —r

@Interned Date

Figure 4.1: Type hierarchy for the Interning type system.

26

The type system enforced by the checker plugin ensures that only interned values can be assigned to s2.
To specify that all objects of a given type are interned, annotate the class declaration:

public @Interned class MyInternedClass { ... }

This is equivalent to annotating every use of MyInternedClass, in a declaration or elsewhere. For example, enum
classes are implicitly so annotated.

4.2.1 Implicit qualifiers

As described in Section 15.3, the Interning checker adds implicit qualifiers, reducing the number of annotations that
must appear in your code. For example, String literals and the null literal are always considered interned, and object
creation expressions (using new) are never considered @ Interned unless they are annotated as such, as in

@Interned Double internedDoubleZero = new @Interned Double(0); // canonical representation for Double zero

For a complete description of all implicit interning qualifiers, see the Javadoc for InterningAnnotatedTypeFactory.

4.3 What the Interning checker checks

Objects of an @Interned type may be safely compared using the “==" operator.
The checker issues a warning in two cases:

@y

1. When a reference (in)equality operator (“==" or) has an operand of non-@Interned type.
2. When a non-@Interned type is used where an @Interned type is expected.

This example shows both sorts of problems:

Object obi;
@Interned Object iobij;

if (obj == iobj) { ... } // checker warning: reference equality test is unsafe
iobj = obj; // checker warning: iobj’s referent may no longer be interned

The checker also issues a warning when .equals is used where == could be safely used. You can disable this
behavior via the javac -Alint command-line option, like so: ~Alint=-dotequals.
For a complete description of all checks performed by the checker, see the Javadoc for InterningVisitor.

4.4 Examples

To try the Interning checker on a source file that uses the @Interned qualifier, use the following command (where
javac is the JSR 308 compiler that is distributed with the Checker Framework):

javac —-processor checkers.interning.InterningChecker examples/InterningExample. java

Compilation will complete without warnings.
To see the checker warn about incorrect usage of annotations, use the following command:

javac -processor checkers.interning.InterningChecker examples/InterningExampleWithWarnings.java

The compiler will issue a warning regarding violation of the semantics of @Interned.
The Daikon invariant detector (http://groups.csail.mit.edu/pag/daikon/)is also annotated with @ Interned.
From directory java, run make check-interning.

27

Chapter 5

1GJ immutability checker

IGJ is a Java language extension that helps programmers to avoid mutation errors (unintended side effects). If the
IGJ checker issues no warnings for a given program, then that program will never change objects that should not be
changed. This guarantee enables a programmer to detect and prevent mutation-related errors. (See Section 2.3 for
caveats to the guarantee.)

5.1 IGJ and Mutability

IGJ [ZPAT07] permits a programmer to express that a particular object should never be modified via any reference
(object immutability), or that a reference should never be used to modify its referent (reference immutability). Once
a programmer has expressed these facts, an automatic checker analyzes the code to either locate mutability bugs or to
guarantee that the code contains no such bugs.

To learn more details of the IGJ language and type system, please see the ESEC/FSE 2007 paper “Object and
reference immutability using Java generics” [ZPAT07]. The IGJ checker supports Annotation IGJ (Section 5.5),
which is slightly different dialect of IGJ than that described in the ESEC/FSE paper.

5.2 1GJ Annotations

Each object is either immutable (it can never be modified) or mutable (it can be modified). The following qualifiers
are part of the IGJ type system.

@Immutable Animmutable reference always refers to an immutable object. Neither the reference, nor any aliasing
reference, may modify the object.

@Mutable A mutable reference refers to a mutable object. The reference, or some aliasing mutable reference, may
modify the object.

@ReadOnly Object

@Immutable O utable Object

@ReadOnly Date

@Immutable Date @Mutable Date

Figure 5.1: Type hierarchy for three of IGJ’s type qualifiers.

28

@ReadOnly A readonly reference cannot be used to modify its referent. The referent may be an immutable or a
mutable object. In other words, it is possible for the referent to change via an aliasing mutable reference, even
though the referent cannot be changed via the readonly reference.

@AssignsFields is similar to @Mutable, but permits only limited mutation — assignment of fields — and is
intended for use by constructor helper methods.

@I simulates mutability overloading or the template behavior of generics. It can be applied to classes, methods, and
parameters. See Section 5.5.3.

For additional details, see [ZPA107].

5.3 What the IGJ checker checks

The IGJ checker issues an error whenever mutation happens through a readonly reference, when fields of a readonly
reference which are not explicitly marked with @Assignable are reassigned, or when a readonly expression is assigned
to a mutable variable. The checker also emits a warning when casts increase the mutability access of a reference.

5.4 Implicit qualifiers

As described in Section 15.3, the IGJ checker adds implicit qualifiers, reducing the number of annotations that must
appear in your code.
For a complete description of all implicit nullness qualifiers, see the Javadoc for NullnessAnnotatedTypeFactory.
The default annotation (for types that are unannotated and not given an implicit qualifier) is as follows:

e (@Mutable for almost all references. This is backward-compatible with Java, since Java permits any reference to
be mutated.

e (@Readonly for local variables. This qualifier may be refined by flow-sensitive local type refinement (see Sec-
tion 15.3.2).

e (@Readonly for type parameter and wildcard bounds. For example,

interface List<T extends Object> { ... }
is defaulted to
interface List<T extends @Readonly Object> { ... }

This default is not backward-compatible — that is, you may have to explicitly add @Mutable annotations to
some type parameter bounds in order to make unannotated Java code type-check under IGJ. However, this
reduces the number of annotations you must write overall (since most variables of generic type are in fact not
modified), and permits more client code to type-check (otherwise a client could not write List<@Readonly
Date>).

5.5 Annotation IGJ Dialect

The IGJ checker supports the Annotation IGJ dialect of IGJ. The syntax of Annotation IGJ is based on type annota-
tions.

The syntax of the original IGJ dialect [ZPAT07] was based on Java 5’s generics and annotation mechanisms. The
original IGJ dialect was not backward-compatible with Java (either syntactically or semantically). The dialect of IGJ
checked by the IGJ checker corrects these problems.

The differences between the Annotation IGJ dialect and the original IGJ dialect are as follows.

29

5.5.1 Semantic Changes

e Annotation IGJ does not permit covariant changes in generic type arguments, for backward compatibility
with Java. In ordinary Java, types with different generic type arguments, such as Vector<Integer> and
Vector<Number>, have no subtype relationship, even if the arguments (Integer and Number) do. The orig-
inal IGJ dialect changed the Java subtyping rules to permit safely varying a type argument covariantly in certain
circumstances. For example,

Vector<Mutable, Integer> <: Vector<ReadOnly, Integer>
<: Vector<ReadOnly, Number>
<: Vector<ReadOnly, Object>

e Annotation IGJ supports array immutability. The original IGJ dialect did not permit the (im)mutability of array
elements to be specified, because the generics syntax used by the original IGJ dialect cannot be applied to array
elements.

5.5.2 Syntax Changes

e Immutability is specified through type annotations [Ern08] (Section 5.2), not through a combination of generics
and annotations. Use of type annotations makes Annotation IGJ backward compatible with Java syntax.
e Templating over Immutability: The annotation @I (1d) is used to template over immutability. See Section 5.5.3.

5.5.3 Templating Over Immutability: @I

@I is a template annotation over IGJ Immutability annotations. It acts similarly to type variables in Java’s generic
types, and the name @I mimics the standard <I> type variable name used in code written in the original IGJ dialect.
The annotation value string is used to distinguish between multiple instances of @I — in the generics-based original
dialect, these would be expressed as two type variables <I> and <J>.

Usage on classes A class annotated with @I could be declared with any IGJ Immutability annotation. The actual
immutability that @T is resolved to dictates the immutability type for all the non-static appearances of @I with the same
value as the class declaration.

Example:

@I

public class FileDescriptor {
private @Immutable Date creationData;
private @I Date lastModData;

public @I Date getLastModDate () @ReadOnly { }

void useFileDescriptor() {
@Mutable FileDescriptor file =
new @Mutable FileDescriptor(...);

@Mutable Data date = file.getLastModDate();

}

In the last example, @I was resolved to @Mutable for the instance file.

30

Usage on methods For example, it could be used for method parameters, return values, and the actual IGJ im-
mutability value would be resolved based on the method invocation.

For example, the below method getMidpoint returns a Point with the same immutability type as the passed
parameters if pl and p2 match in immutability, otherwise @I is resolved to @ReadOnly:

static @I Point getMidpoint (€I Point pl, @I Point p2) { ... }

The @I annotation value distinguishes between @I declarations. So, the below method findUnion returns a col-
lection of the same immutability type as the first collection parameter:

static <E> @I ("First") Collection<E> findUnion (QI ("First") Collection<E> coll,
@I ("Second") Collection<E> col2) { ... }
5.6 Examples

To try the IGJ checker on a source file that uses the IGJ qualifier, use the following command (where javac is the JSR
308 compiler that is distributed with the Checker Framework).

javac —processor checkers.igj.IGJChecker examples/IGJExample.java

The IGJ checker itself is also annotated with IGJ annotations.

31

Chapter 6

Javari immutability checker

Javari [TEOS, QTEOS] is a Java language extension that helps programmers to avoid mutation errors that result from
unintended side effects. If the Javari checker issues no warnings for a given program, then that program will never
change objects that should not be changed. This guarantee enables a programmer to detect and prevent mutation-
related errors. (See Section 2.3 for caveats to the guarantee.) The Javari webpage (http://groups.csail.mit.
edu/pag/javari/) contains papers that explain the Javari language and type system. By contrast to those papers, the
Javari checker uses an annotation-based dialect of the Javari language.

The Javarifier tool infers Javari types for an existing program; see Section 6.2.2.

Also consider the IGJ checker (Chapter 5). The IGJ type system is more expressive than that of Javari, and the IGJ
checker is a bit more robust. However, IGJ lacks a type inference tool such as Javarifier.

6.1 Javari annotations

Five annotations are part of the Javari type system.
A programmer can write five annotations: @ReadOnly, @Mutable, @Assignable, @PolyRead, and @Q0ReadOnly.

@ReadOnly indicates a type that provides only read-only access. A reference of this type may not be used to modify
its referent, but aliasing references to that object might change it.

@Mutable indicates a mutable type.

@Assignable is a field annotation, not a type qualifier. It indicates that the given field may always be assigned, no
matter what the type of the reference used to access the field.

@QReadOnly corresponds to Javari’s “? readonly” for wildcard types. An example of its use is List<@QReadOnly
Date>. It allows only the operations which are allowed for both readonly and mutable types.

@PolyRead (previously named @RoMaybe) specifies polymorphism over mutability; it simulates mutability over-
loading. It can be applied to methods and parameters. See Section 15.1.2 and the @PolyRead Javadoc for more
details.

@ReadOnly Object

/\

@Mutable Object @ReadOnly Date

. —r

@Mutable Date

Figure 6.1: Type hierarchy for Javari’s ReadOnly type qualifier.

32

6.2 Writing Javari annotations

6.2.1 Implicit qualifiers

As described in Section 15.3, the Javari checker adds implicit qualifiers, reducing the number of annotations that must
appear in your code.
For a complete description of all implicit nullness qualifiers, see the Javadoc for JavariAnnotatedTypeFactory.

6.2.2 Inference of Javari annotations

It can be tedious to write annotations in your code. The Javarifier tool (http://groups.csail.mit.edu/pag/
javari/javarifier/) infers Javari types for an existing program. It automatically inserts Javari annotations in your
Java program or in in .class files.

This has two benefits: it relieves the programmer of the tedium of writing annotations (though the programmer
can always refine the inferred annotations), and it annotates libraries, permitting checking of programs that use those
libraries.

6.3 What the Javari checker checks

The checker issues an error whenever mutation happens through a readonly reference, when fields of a readonly
reference which are not explicitly marked with @Assignable are reassigned, or when a readonly expression is assigned
to a mutable variable. The checker also emits a warning when casts increase the mutability access of a reference.

6.4 Examples

To try the Javari checker on a source file that uses the Javari qualifier, use the following command (where javac is the
JSR 308 compiler that is distributed with the Checker Framework). Alternately, you may specify just one of the test
files.

javac -processor checkers.javari.JavariChecker tests/javari/*.java

The compiler should issue the errors and warnings (if any) specified in the . out files with same name.
To run the test suite for the Javari checker, use ant javari-tests.
The Javari checker itself is also annotated with Javari annotations.

33

Chapter 7

Lock checker

The Lock checker prevents certain kinds of concurrency errors. If the Lock checker issues no warnings for a given
program, then the program holds the appropriate lock every time that it accesses a variable.

Note: This does nof mean that your program has no concurrency errors. (You might have forgotten to annotate that
a particular variable should only be accessed when a lock is held. You might release and re-acquire the lock, when
correctness requires you to hold it throughout a computation. And, there are other concurrency errors that cannot, or
should not, be solved with locks.) However, ensuring that your program program obeys its locking discipline is an
easy and effective way to eliminate a common and important class of errors.

7.1 Lock annotations
The Lock checker uses two annotations. One is a type qualifier, and the other is a method annotation.

@QGuardedBy indicates a type whose value may be accessed only when the given lock is held. See the GuardedBy
Javadoc for an explanation of the argument. The lock acquisition and the value access may be arbitrarily far in
the future; or, if the value is never accessed, the lock never need be held.

@Holding is a method annotation (not a qualifier). It indicates that when the method is called, the given lock must
be held by the caller. In other words, the given lock is already held at the time the method is called.

7.1.1 Examples

Most often, field values are annotated with @GuardedBy, but other uses are possible.
A return value may be annotated with @GuardedBy:

@GuardedBy ("MyClass.myLock") Object myMethod() { ... }

// reassignments without holding the lock are OK.

@GuardedBy ("MyClass.myLock") Object x = myMethod();

@GuardedBy ("MyClass.myLock") Object y = x;

Object z = x; // ILLEGAL (assuming no lock inference),
// because z can be freely accessed.

x.toString() // ILLEGAL because the lock is not held

synchronized (MyClass.myLock) {

y.toString(); // OK: the lock is held
}

A parameter may be annotated with @GuardedBy:

34

void helperl (@GuardedBy ("MyClass.myLock") Object a) {
a.toString(); // ILLEGAL: the lock is not held
synchronized (MyClass.myLock) {
a.toString(); // OK: the lock is held

}
@Holding ("MyClass.myLock™")
void helper? (QGuardedBy ("MyClass.myLock") Object b) {
b.toString(); // OK: the lock is held
}
void helper3 (Object c) {
c.toString(); // OK: no lock constraints
}
void helper4 (@GuardedBy ("MyClass.myLock") Object d) {
d.toString(); // ILLEGAL: the lock is not held
}
void myMethod2 (€GuardedBy ("MyClass.myLock") Object e) {
helperl(e); // OK to pass to another routine without holding the lock
e.toString(); // ILLEGAL: the lock is not held
synchronized (MyClass.myLock) {
helper2(e);
helper3(e);
helperd (e); // OK, but helperd’s body still does not type-check
}

7.1.2 Discussion of @Holding

A programmer might choose to use the @Holding method annotation in two different ways: to specify a higher-level
protocol, or to summarize intended usage. Both of these approaches are useful, and the Lock checker supports both.

Higher-level synchronization protocol @Holding can specify a higher-level synchronization protocol that is not
expressible as locks over Java objects. By requiring locks to be held, you can create higher-level protocol primitives
without giving up the benefits of the annotations and checking of them.

Method summary that simplifies reasoning @Holding can be a method summary that simplifies reasoning. In this
case, the @Holding doesn’t necessarily introduce a new correctness constraint; the program might be correct even if
the lock were acquired later in the body of the method or in a method it calls, so long as the lock is acquired before
accessing the data it protects.

Rather, here @Holding expresses a fact about execution: when execution reaches this point, the following locks
are already held. This fact enables people and tools to reason intra- rather than inter-procedurally.

In Java, it is always legal to re-acquire a lock that is already held, and the re-acquisition always works. Thus,
whenever you write

@Holding ("myLock")
void myMethod() {

}

it would be equivalent, from the point of view of which locks are held during the body, to write

35

void myMethod () {
synchronized (myLock) { // no-op: re-aquire a lock that is already held

The advantages of the €Holding annotation include:

e The annotation documents the fact that the lock is intended to already be held.

e The Lock Checker enforces that the lock is held when the method is called, rather than masking a programmer
error by silently re-acquiring the lock.

e The synchronized statement can deadlock if, due to a programmer error, the lock is not already held. The
Lock Checker prevents this type of error.

e The annotation has no run-time overhead. Even if the lock re-acquisition succeeds, it still consumes time.

7.1.3 Relationship to annotations in Java Concurrency in Practice

The book Java Concurrency in Practice [GPBT06] defines a @GuardedBy annotation that is the inspiration for ours.
The book’s @GuardedBy serves two related purposes:

e When applied to a field, it means that the given lock must be held when accessing the field. The lock acquisition
and the field access may be arbitrarily far in the future.

e When applied to a method, it means that the given lock must be held by the caller at the time that the method is
called — in other words, at the time that execution passes the @GuardedBy annotation.

One rationale for reusing the annotation name for both purposes in JCIP is that there are fewer annotations to
learn. Another rationale is that both variables and methods are “members” that can be “accessed’; variables can be
accessed by reading or writing them (putfield, getfield), and methods can be accessed by calling them (invokevirtual,
invokeinterface). In both cases, @GuardedBy creates preconditions for accessing so-annotated members. This informal
intuition is inappropriate for a tool that requires precise semantics.

The Lock checker renames the method annotation to @Holding, and it generalizes the @GuardedBy annotation into
a type qualifier that can apply not just to a field but to an arbitrary type (including the type of a parameter, return value,
local variable, generic type parameter, etc.). This makes the annotations more expressive and also more amenable to
automated checking. It also accommodates the distinct (though related) meanings of the two annotations.

36

Chapter 8

Tainting checker

The tainting checker prevents certain kinds of trust errors. A tainted, or untrusted, value is one that comes from an
arbitrary, possibly malicious source, such as user input or unvalidated data. In certain parts of your application, using
a tainted value can compromise the application’s integrity, causing it to crash, corrupt data, leak private data, etc.

For example, a user-supplied pointer, handle, or map key should be validated before being dereferenced. As
another example, a user-supplied string should not be concatenated into a SQL query, lest the program be subject to a
SQL injection attack. A location in your program where malicious data could do damage is called a sensitive sink.

A program must “sanitize” or “untaint” an untrusted value before using it at a sensitive sink. There are two general
ways to untaint a value: by checking that it is innocuous/legal (e.g., it contains no characters that can be interpreted
as SQL commands when pasted into a string context), or by transforming the value to be legal (e.g., quoting all the
characters that can be interpreted as SQL commands). A correct program must use one of these two techniques so that
tainted values never flow to a sensitive sink. The Tainting Checker ensures that your program does so.

If the Tainting Checker issues no warning for a given program, then no tainted value ever flows to a sensitive sink.
However, your program is not necessarily free from all trust errors. As a simple example, you might have forgotten
to annotate a sensitive sink as requiring an untainted type, or you might have forgotten to annotate untrusted data as
having a tainted type.

8.1 Tainting annotations

The Tainting type system uses the following annotations:

e @Untainted indicates a type that includes only untainted, trusted values.
e (@Tainted indicates a type that may include only tainted, untrusted values. @Tainted is a subtype of @Untainted.
e (@PolyTainted is a qualifier that is polymorphic over tainting (see Section 15.1.2).

8.2 Tips on writing @Untainted annotations

Most programs are designed with a boundary that surrounds sensitive computations, separating them from untrusted
values. Outside this boundary, the program may manipulate malicious values, but no malicious values ever pass the
boundary to be operated upon by sensitive computations.

In some programs, the area outside the boundary is very small: values are sanitized as soon as they are received
from an external source. In other programs, the area inside the boundary is very large: values are sanitized only
immediately before being used at a sensitive sink. Either approach can work, so long as every possibly-tainted value
is sanitized before it reaches a sensitive sink.

Once you determine the boundary, annotating your program is easy: put @Tainted outside the boundary, @Untainted
inside, and @SuppressWarnings ("tainting") at the validation or sanitization routines that are used at the boundary.

37

The Tainting Checker’s standard default qualifier is @Tainted (see Section 15.3.1 for overriding this default). This
is the safest default, and the one that should be used for all code outside the boundary (for example, code that reads
user input). You can set the default qualifier to @Untainted in code that may contain sensitive sinks.

The Tainting Checker does not know the intended semantics of your program, so it cannot warn you if you mis-
annotate a sensitive sink as taking @Tainted data, or if you mis-annotate external data as @Untainted. So long as you
correctly annotate the sensitive sinks and the places that untrusted data is read, the Tainting Checker will ensure that
all your other annotations are correct and that no undesired information flows exist.

An an example, suppose that you wish to prevent SQL injection attacks. You would start by annotating the
Statement class to indicate that the execute operations may only operate on untainted queries (Chapter 17 describes
how to annotate external libraries):

public boolean execute (@Untainted String sql) throws SQLException;
public boolean executeUpdate (@Untainted String sqgl) throws SQLException;

8.3 (@Tainted and @QUntainted can be used for many purposes

The @Tainted and @Untainted annotations have only minimal built-in semantics. In fact, the Tainting Checker
provides only a small amount of functionality beyond the Basic Checker (Section 12). This lack of hard-coded behavior
means that the annotations can serve many different purposes. Here are just a few examples:

e Prevent SQL injection attacks: @Tainted is external input, @Untainted has been checked for SQL syntax.

e Prevent cross-site scripting attacks: @Tainted is external input, @Untainted has been checked for JavaScript
syntax.

e Prevent information leakage: @Tainted is secret data, @Untainted may be displayed to a user.

In each case, you need to annotate the appropriate untainting/sanitization routines. This is similar to the @Encrypted
annotation (Section 12.2), where the cryptographic functions are beyond the reasoning abilities of the type system. In
each case, the type system verifies most of your code, and the @SuppressWarnings annotations indicate the few places
where human attention is needed.

If you want more specialized semantics, or you want to annotate multiple types of tainting in a single program,
then you can copy the definition of the Tainting Checker to create a new annotation and checker with a more specific
name and semantics. See Chapter 18 for more details.

38

Chapter 9

Linear checker (single use to prevent
aliasing)

The Linear Checker implements type-checking for a linear type system. A linear type system prevents aliasing: there
is only one (usable) reference to a given object at any time. Once a reference appears on the right-hand side of an
assignment, it may not be used any more. The same rule applies for pseudo-assignments such as procedure argument-
passing (including as the receiver) or return.

One way of thinking about this is that a reference can only be used once, after which it is “used up”. This property
is checked statically at compile time. The single-use property only applies to use in an assignment, which makes a
new reference to the object; ordinary field dereferencing does not use up a reference.

By forbidding aliasing, a linear type system can prevent problems such as unexpected modification (by an alias),
or ineffectual modification (after a reference has already been passed to, and used by, other code).

Figure 9.1 gives an example of the Linear Checker’s rules.

9.1 Linear annotations

The linear type system uses one user-visible annotation: @Linear. The annotation indicates a type for which each value
may only have a single reference — equivalently, may only be used once on the right-hand side of an assignment.
The full qualifier hierarchy for the linear type system includes three types:

e @UsedUp is the type of references whose object has been assigned to another reference. The reference may not
be used in any way, including having its fields dereferenced, being tested for equality with ==, or being assigned
to another reference. Users never need to write this qualifier.

e @Linear is the type of references that have no aliases, and that may be dereferenced at most once in the future.
The type of new T () is @Linear T (the analysis does not account for the slim possibility that an alias to this
escapes the constructor).

e @NonLinear is the type of references that may be dereferenced, and aliases made, as many times as desired.
This is the default, so users only need to write @NonLinear if they change the default.

@UsedUp is a supertype of @NonLinear, which is a supertype of @Linear.
This hierarchy makes an assignment like

@Linear Object 1 = new Object();
@NonLinear Object nl = 1;
@NonLinear Object nl2 = nl;

legal. In other words, the fact that an object is referenced by a @Linear type means that there is only one usable
reference to it now, not that there will never be multiple usable references to it. (The latter guarantee would be
possible to enforce, but it is not what the Linear Checker does.)

39

class Pair {
Object a;
Object b;
public String toString()

{

return "<" + String.valueOf(a) + "," + String.valueOf(b) + ">";

}

void print (@Linear Object arg)

System.out.println(arg);
}

{

@Linear Pair printAndReturn(@Linear Pair arg) ({
System.out.println(arg.a);
System.out.println(arg.b);

return arg;

// OK: field dereferencing does not use up the reference arg

@Linear Object m(Object o, @Linear Pair 1lp) {

@Linear Object lo2 = o;
@Linear Pair 1p3 = lp;
@Linear Pair 1lp4 = lp;
1p3.a;

1p3.b;

print (1p3);

print (1p3);

1p3.a;

// ERROR: aliases may exist
// ERROR: reference lp was already used
// OK: field dereferencing does not use up the reference

// ERROR: reference 1lp3 was already used
// ERROR: reference 1lp3 was already used

@Linear Pair 1lp4 = new Pair(...);

1pd.toString();
lpd.toString();
1p4 = new Pair();

// ERROR: reference lp4 was already used
// OK to reassign to a used-up reference

// If you need a value back after passing it to a procedure, that
// procedure must return it to you.
1p4 = printAndReturn (1lp4);

if (o) |
print (1p4);
}
if (...) |
return 1lp4;
} else {
return new Object ();

}

// ERROR: reference lp4 may have been used

Figure 9.1: Example of Linear Checker rules.

9.2 Limitations

The @Linear annotation is supported and checked only on method parameters (including the receiver), return types,
and local variables. Supporting @Linear on fields would require a sophisticated alias analysis or type system, and is

future work.

No annotated libraries are provided for linear types. Most libraries would not be able to use linear types in their
purest form. For example, you cannot put a linearly-typed object in a hashtable, because hashtable insertion calls
hashCode; hashCode uses up the reference and does not return the object, even though it does not retain any pointers
to the object. For similar reasons, a collection of linearly-typed objects could not be sorted or searched.

Our lightweight implementation is intended for use in the parts of your program where errors relating to aliasing
and object reuse are most likely. You can use manual reasoning (and possibly an unchecked cast or warning sup-
pression) when objects enter or exit those portions of your program, or when that portion of your program uses an

unannotated library.

40

Chapter 10

Regex checker

The Regex Checker prevents, at compile-time, use of syntactically invalid regular expressions.

A regular expression, or regex, is a pattern for matching certain strings of text. In Java, a programmer writes a
regular expression as a string. At run time, the string is “compiled” into an efficient internal form (Pattern) that is
used for text-matching.

The syntax of regular expressions is complex, so it is easy to make a mistake. It is also easy to accidentally use a
regex feature from another language that is not supported by Java (see section “Comparison to Perl 5” in the Pattern
Javadoc). Ordinarily, the programmer does not learn of these errors until run time. The Regex checker warns about
these problems at compile time.

10.1 Regex annotations

The Regex Checker uses one annotation only: @Regex, to indicate valid regular expression Strings.
The checker implicitly adds the Regex qualifier to any St ring literal that is a valid regex.

10.2 Running the Regex Checker
The Regex Checker can be invoked by running the following command:

javac —processor checkers.regex.RegexChecker MyFile.java ...

41

Chapter 11

Internationalization checker

The Internationalization Checker verifies that your code is properly internationalized. Internationalization is the pro-
cess of adapting software to different languages and locales. Internationalization is sometimes called localization
(though the terms are not identical), and is sometimes called 118n (because the word starts with “i”’, ends with “n”, and
has 18 characters in between).

The checker focuses on one aspect of localization: user-visible strings should be presented in the user’s own
language, such as English, French, or German. This is achieved by looking up keys in a localization resource, which
maps keys to user-visible strings. For instance, one version of a resource might map "CANCEL_STRING" to "Cancel™",
and another version of the same resource might map "CANCEL_STRING" to "Abbrechen".

There are other aspects to localization, such as formatting of dates (3/5 vs. 5/3 for March 5), that the checker does
not check.

The Internationalization Checker verifies these two properties:

1. Any user-visible text should be obtained from a localization resource. For example, String literals should not
be output to the user.

2. When looking up keys in a localization resource, the key should exist in that resource. This check catches
incorrect or misspelled localization keys.

11.1 Internationalization annotations

The Internationalization Checker supports two annotations:

1. @Localized: indicates that the qualified String is a message that has been localized and/or formatted with
respect to the used locale.

2. @LocalizableKey: indicates that the qualified String or Object is a valid key found in the localization re-
source.

You may need to add the @Localized annotation to more methods in the JDK or other libraries, or in your own
code.

11.2 Running the Internationalization Checker

The Internationalization Checker can be invoked by running the following command:
javac -processor checkers.il8n.I18nChecker -Abundlename=MyResource MyFile.java ...

You must specify the localization resource, which maps keys to user-visible strings. The checker supports two
types of localization resource: ResourceBundle or property file. You should specify just one of the following two
command-line options:

42

1. -Abundlename=resource_name
resource_name is the name of the resource to be used with ResourceBundle.getBundle (). The checker uses
the default Locale and ClassLoader in the compilation system. (For a tutorial about ResourceBundles, see
http://java.sun.com/developer/technicalArticles/Intl/ResourceBundles/.)

2. -Apropfile=prop_file
prop_file is the name of a properties file that maps localization keys to localized message. The file format is
described in the Javadoc for Properties.load().

43

Chapter 12

Basic checker

The Basic checker enforces only subtyping rules. It operates over annotations specified by a user on the command
line. Thus, users can create a simple type checker without writing any code beyond definitions of the type qualifier
annotations.

The Basic checker can accommodate all of the type system enhancements that can be declaratively specified
(see Chapter 18). This includes type introduction rules (implicit annotations, e.g., literals are implicitly considered
@NonNull) via the @ImplicitFor meta-annotation, and other features such as flow-sensitive type qualifier inference
(Section 15.3.2) and qualifier polymorphism (Section 15.1.2).

The Basic checker is also useful to type system designers who wish to experiment with a checker before writing
code; the Basic checker demonstrates the functionality that a checker inherits from the Checker Framework.

If you need typestate analysis, then you can extend a typestate checker, much as you would extend the Basic
Checker if you do not need typestate analysis. For more details (including a definition of “typestate’), see Chapter 13.

For type systems that require special checks (e.g., warning about dereferences of possibly-null values), you will
need to write code and extend the framework as discussed in Chapter 18.

12.1 Using the Basic checker

The Basic checker is used in the same way as other checkers (using the -processor option; see Chapter 2), except
that it requires an additional annotation processor argument via the standard “-A” switch:

e -Aquals: this option specifies a comma-no-space-separated list of the fully-qualified class names of the an-
notations used as qualifiers in the custom type system. It serves the same purpose as the @TypeQualifiers
annotation used by other checkers (see section 18.6).

The annotations listed in ~Aquals must be accessible to the compiler during compilation in the classpath. In
other words, they must already be compiled before you run the Basic checker with javac; it is not sufficient to
supply their source files on the command line.

To suppress a warning issued by the basic checker, use a @SuppressWarnings annotation, with the argument being
the unqualified, uncapitalized name of any of the annotations passed to ~Aquals.
12.2 Basic checker example

Consider a hypothetical Encrypted type qualifier, which denotes that the representation of an object (such as a String,
CharSequence, or byte []) is encrypted. To use the Basic checker for the Encrypted type system, follow three steps.

1. Define an annotation for the Encrypted qualifier:

44

package myquals;
import checkers.quals.*;

/**
* Denotes that the representation of an object is encrypted.
*

*/...
@TypeQualifier

@SubtypeOf (Unqualified.class)
public @interface Encrypted {}

Don’t forget to compile this class:
$ javac myquals/Encrypted.java

The resulting . class file should either be on your classpath, or on the processor path (set via the -processorpath
command-line option to javac).
. Write @Encrypted annotations in your program:

import myquals.Encrypted;

public @Encrypted String encrypt (String text) {
//

// Only send encrypted data!
public void sendOverInternet (@Encrypted String msg) {
//

void sendText () {
//
@Encrypted String ciphertext = encrypt (plaintext);
sendOverInternet (ciphertext);

/o

void sendPassword() {
String password = getUserPassword();
sendOverInternet (password) ;

}

You may also need to add @SuppressWarnings annotations to the encrypt and decrypt methods. Analyzing
them is beyond the capability of any realistic type system.

. Invoke the compiler with the Basic checker, specifying the @Encrypted annotation using the ~Aquals option.
You should add the Encrypted classfile to the processor classpath:

$ javac -processorpath myqualspath -processor checkers.basic.BasicChecker -Aquals=myquals.Encrypted Y«
YourProgram. java:42: incompatible types.

found : java.lang.String
required: @myquals.Encrypted java.lang.String

45

sendOverInternet (password);

46

Chapter 13

Typestate checker

In a regular type system, a variable has the same type throughout its scope. In a typestate system, a variable’s type can
change as operations are performed on it.

The most common example of typestate is for a File object. Assume a file can be in two states, @0pen and
@Closed. Calling the close () method changes the file’s state. Any subsequent attempt to read, write, or close the file
will lead to a run-time error. It would be better for the type system to warn about such problems, or guarantee their
absence, at compile time.

Just as you can extend the Basic Checker to create a type checker, you can extend a typestate checker to create a
type checker that supports typestate analysis. Two extensible typestate analyses that build on the Checker Framework
are available. One is by Adam Warski: http://www.warski.org/typestate.html. The other is by Daniel Wand:
http://typestate.ewand.de/.

13.1 Comparison to flow-sensitive type refinement

The Checker Framework’s flow-sensitive type refinement (Section 15.3.2) implements a form of typestate analysis.
For example, after code that tests a variable against null, the Nullness Checker (Chapter 3) treats the variable’s type as
@NonNull T, for some T.

For many type systems, flow-sensitive type refinement is sufficient. But sometimes, you need full typestate analy-
sis. This section compares the two. (Dependent types and unused variables (Section 15.2) also have similarities with
typestate analysis and can occasionally substitute for it. For brevity, this discussion omits them.)

A typestate analysis is easier for a user to create or extend. Flow-sensitive type refinement is built into the Checker
Framework and is optionally extended by each checker. Modifying the rules requires writing Java code in your checker.
By contrast, it is possible to write a simple typestate checker declaratively, by writing annotations on the methods (such
as close ()) that change a reference’s typestate.

A typestate analysis can change a reference’s type to something that is not consistent with its original definition.
For example, suppose that a programmer decides that the @0pen and @Closed qualifiers are incomparable — neither
is a subtype of the other. A typestate analysis can specify that the close () operation converts an @0pen File into a
@Closed File. By contrast, flow-sensitive type refinement can only give a new type that is a subtype of the declared
type — for flow-sensitive type refinement to be effective, @Closed would need to be child of @0pen in the qualifier
hierarchy (and close () would need to be treated specially by the checker).

47

Chapter 14

Units and dimensions checker

A checker for units and dimensions is available at http://www. lexspoon.org/expannots/.

48

Chapter 15

Advanced type system features

This section describes features that are automatically supported by every checker written with the Checker Framework.
You may wish to skim or skip this section on first reading. After you have used a checker for a little while and want
to be able to express more sophisticated and useful types, or to understand more about how the Checker Framework
works, you can return to it.

15.1 Polymorphism and generics

15.1.1 Generics (parametric polymorphism or type polymorphism)

The Checker Framework fully supports qualified Java generic types (also known in the research literature as “para-
metric polymorphism”). Before running any checker, we recommend that you eliminate raw types from your code
(e.g., your code should use List<...> as opposed to List). Using generics helps prevent type errors just as using a
pluggable type-checker does.

When instantiating a generic type, clients supply the qualifier along with the type argument, as in List<@NonNull
String>.

Restricting instantiation of a generic class There are two ways to restrict the type qualifiers that that may be used
on the actual type argument when instantiating a generic class.

The first technique is the standard Java approach of using the extends or super clause to supply an upper or lower
bound. For example:

MyClass<T extends @NonNull Object> { ... }
MyClass<@NonNull String> ml; // OK
MyClass<@Nullable String> m2; // error

The second technique is to write a type annotation on the declaration of a generic type parameter, which specifies
the exact annotation that is required on the actual type argument, rather than just a bound. For example:

class MyClassNN<@NonNull T> { ... }

class MyClassNble<@Nullable T> { ... }
MyClassNN<@NonNull Number> vl; // OK
MyClassNN<@Nullable Number> v2; // error

MyClassNble<@NonNull Number> v4; // error
MyClassNble<@Nullable Number> v3; // OK

49

A way to view a type annotation on a generic type parameter declaration is as syntactic sugar for the annotation on
both the extends and the super clauses of the declaration. For example, these two declarations have the same effect:

class MyClassNN<@NonNull T> { ... }
class MyClassNN<T extends @NonNull Object super @NonNull void> { ... }

except that the latter is not legal Java syntax. The syntactic sugar is necessary for two reasons: it is illegal to specify
both the upper and the lower bound, and it is impossible to specify a type annotation for a lower bound without also
specifying a type (use of void is illegal).

If a type parameter declaration is annotated with @A, and a bound is also given, then the annotation applies every-
where that there is no explicit annotation. For example, the following pairs of declarations are identical.

class MyClassNN<@A T> { ... }
class MyClassNN<T extends @A Object super @A void> { ... }

class MyClassNN<@A T extends Number> { ... }
class MyClassNN<T extends @A Number super (@A void> { ... }

class MyClassNN<@A T extends @B Number> { ... }
class MyClassNN<T extends @B Number super @A void> { ... }

class MyClassNN<@A T super Number> { ... }
class MyClassNN<T extends @A Object super @A Number> { ... }

class MyClassNN<@A T super @B Number> { ... }
class MyClassNN<T extends @A Object super @B Number> { ... }

Note that these types mean different things:

class MyListl<T extends @Nullable Object> { ... }
class MyList2<@NonNull T> { ... }

In each case, only a non-null object could be placed in the list. However, null could be extracted from an instance
of MyList1, whereas any element extracted from MyList2 is non-null. The differences are more significant when the
qualifier hierarchy is more complicated than just @Nullable and @NonNull.

Defaults for bounds Ordinarily, a type parameter declaration with no extends clause means the type parameter can
be instantiated with any type argument at all. For example:

class C<T> { ... }
class C<T extends Object> { ... } // identical to previous line

However, instantiation may be restricted if a default qualifier is in effect (see Section 15.3.1). For example, the
Nullness checker (Chapter 3) uses a (configurable) default of @NonNull (see Section 3.2.2). That means that either
declaration above is interpreted as

class C<T extends @NonNull Object> { ... }

and an instantiation such as C<@Nullable Number> is illegal. In such a case, to permit all type arguments, the
programmer would write

class C<T extends @Nullable Object> { ... }

It is possible to set the default qualifier for upper bounds separately from other default qualifiers, by writing an
annotation such as @DefaultQualifier (value="Nullable", locations=DefaultLocation.UPPER_BOUNDS).

50

Type annotations on a use of a generic type variable A type annotation on a generic type variable overrides/ignores
any type qualifier (in the same type hierarchy) on the corresponding actual type argument. For example, suppose that
T is a formal type parameter. Then using @Nullable T within the scope of T applies the type qualifier @Nullable to
the (unqualified) Java type of T.

Here is an example of applying a type annotation to a generic type variable:

class MyClass2<T> {
@Nullable T = null;

}

The type annotation does not restrict how MyClass2 may be instantiated (only the optional extends clause on the dec-
laration of type variable T would do so). In other words, both MyClass2<@NonNull String>andMyClass2<@Nullable
String> are legal, and in both cases @Nullable T means @Nullable String. In MyClass2<@Interned String>,
@Nullable T means @Nullable @Interned String.

15.1.2 Qualifier polymorphism

The Checker Framework also supports type qualifier polymorphism for methods, which permits a single method to
have multiple different qualified type signatures.

A polymorphic qualifier’s definition is marked with @PolymorphicQualifier. For example, @PolyNull is a
polymorphic type qualifier for the Nullness type system:

@PolymorphicQualifier
public @interface PolyNull { }

A method written using a polymorphic qualifier conceptually has multiple versions, somewhat like a template in
C++. In each version, each instance of the polymorphic qualifier has been replaced by the same other qualifier from
the hierarchy. See the examples below in Section 15.1.2.

The method body must type-check with all signatures. A method call is type-correct if it type-checks under any one
of the signatures. If a call matches multiple signatures, then the compiler uses the most specific matching signature for
the purpose of type-checking. This is just like Java’s rule for resolving overriding methods, though there is no effect
on run-time dispatch or behavior.

Polymorphic qualifiers can be used on a method signature or body. They may not be used on classes or fields.

Examples of using polymorphic qualifiers As an example of the use of @PolyNull, method Class.cast returns
null if and only if its argument is null:

@PolyNull T cast(@PolyNull Object obj) { ... }
This is like writing:

@NonNull T cast(@NonNull Object obj) { ... }
@Nullable T cast (@Nullable Object obj) { ... }

except that the latter is not legal Java, since it defines two methods with the same Java signature.
As another example, consider

@PolyNull T max(€PolyNull T x, @PolyNull T y);

which is like writing

51

@NonNull T max(@NonNull T x, @NonNull T y);
@Nullable T max(@Nullable T x, @Nullable T y);

Another way of thinking about which one of the two max variants is selected is that the nullness annotations of (the
declared types of) both arguments are unified to a type that is a subtype of both. If both arguments are @NonNull, their
unification is @NonNull, and the method return type is @NonNull. But if even one of the arguments is @Nullable,
then the unification is @Nullable, and so is the return type.

Use multiple polymorphic qualifiers in a method signature Usually, it does not make sense to write only a single
instance of a polymorphic qualifier in a method definition: if you write one instance of (say) @PolyNull, then you
should use at least two. (An exception is a a polymorphic qualifier an an array element type; this section ignores that
case, but see below for further details.)

For example, there is no point to writing

void m(@PolyNull Object obij)
which expands to

void m(@NonNull Object obj)
void m(@Nullable Object obij)

This is no different (in terms of which calls to the method will type-check) than writing just
void m(@Nullable Object obj)

The benefit of polymorphic qualifiers comes when one is used multiple times in a method, since then each instance
turns into the same type qualifier. Most frequently, the polymorphic qualifier appears on at least one formal parameter
and also on the return type. It can also be useful to have polymorphic qualifiers on (only) multiple formal parameters,
especially if the method side-effects one of its arguments. For example, consider

void moveBetweenStacks (Stack<@PolyNull Object> sl, Stack<@PolyNull Object> s2) {
sl.push(s2.pop());
}

In this example, if it is acceptable to rewrite your code to use Java generics, the code can be even cleaner:

<T> void moveBetweenStacks (Stack<T> sl, Stack<T> s2) {
sl.push(s2.pop());

Using a single polymorphic qualifier on an element type There is an exception to the general rule that a polymor-
phic qualifier should be used multiple times in a signature. It can make sense to use a polymorphic qualifier just once,
if it is on an array or generic element type.

For example, consider a routine that returns the first index, in an array or collection, of a given element:

public static int indexOf (@PolyNull Object[] a, Object elt) { ... }

public static int indexOf (Collection<@PolyNull Object> a, Object elt) { ... }

If @PolyNull were replaced with either €Nullable or @NonNull, then some safe client calls would be rejected.
Of course, it would be better style to use a generic method, as in either of these signatures (and likewise for the
Collection version):

public static <T> int indexOf (T[] a, /*@Nullable*/ Object elt) { ... }
public static <T> int indexOf (T[] a, T elt) { ... }

In conclusion, use of a single polymorphic qualifier may be necessary in legacy code, but can be avoided by use of
better code style.

52

15.2 Unused fields and dependent types

Sometimes, the type of a field depends on the qualifier on the receiver. The Checker Framework supports two varieties
of such a field: a field that may not be used if the receiver has a given qualifier, and a fields whose qualifier changes
based on the qualifier of the receiver. (Also see the discussion of typestate checkers, in Chapter 13.)

15.2.1 Unused fields

A Java subtype can have more fields than its supertype. You can simulate the same effect for type qualifiers: a given
field may not be accessed via a reference with a supertype qualifier, but can be accessed via a reference with a subtype
qualifier.

This permits you to restrict use of a field to certain contexts.

The @Unused annotation on a field declares that the field may not be accessed via a receiver of the given qualified

type (or any supertype).

15.2.2 Dependent types

A variable has a dependent type if its type depends on some other value or type.

The Checker Framework supports a form of dependent types, via the @Dependent annotation. This annotation
changes the type of a field or variable, based on the qualified type of the receiver (this). This can be viewed as a more
expressive form of polymorphism (see Section 15.1). It can also be seen as a way of linking the meanings of two type
qualifier hierarchies.

When the @Unused annotation is sufficient, you should use it instead of @Dependent.

15.2.3 Example

Suppose we have a class Person and a field spouse that is non-null if the person is married. We could declare this as

class Person {

// non-null if this person is married
@Nullable Person spouse;

Now, suppose that we have defined the qualifier hierarchy in which @Single (meaning “not married”) is a super-
type of @Married. A more informative declaration for Person would be

class Person {

@Nullable @Dependent (result=NonNull.class, when=Married.class) Person spouse;

If a person is known to be @Married, the spouse field is known to be non-null:

class Person {

void celebrateWeddingAnniversary () @Married ({
System.out.println("Happy anniversary, "
+ spouse.toString()); // no possible null pointer exception

53

}

Without the @Dependent annotation on the declaration of the spouse variable, the Nullness Checker would complain
that toString was invoked on a possibly-null value.

An even better declaration is

class Person {

}

@Unused (when=Single.class) @NonNull Person spouse;

Then, if a person is known to be @Married (or more appropriately non-@Single), the spouse field is known to be

non-null. Also, if a person is known to be @Single, the spouse field may not be accessed:

@Single Person person = ...;
Person spouse = person.spouse; // invalid field access

15.3 The effective qualifier on a type (defaults and inference)

A checker sometimes treats a type as having a slightly different qualifier than what is written on the type — especially
if the programmer wrote no qualifier at all. Most readers can skip this section on first reading, because you will
probably find the system simply “does what you mean”, without forcing you to write too many qualifiers in your
program. In particular, qualifiers in method bodies are extremely rare.

The following steps determine the effective qualifier on a type — the qualifier that the checkers treat as being

present.

1. The type system adds implicit qualifiers. Implicit qualifiers can be built into a type system (Section 18.4), in

which case the type system’s documentation should explain all of the type system’s implicit qualifiers. Or, a
programmer may introduce an implicit annotations on each use of class C by writing a qualifier on the declaration
of class C.

e Example 1 (built-in): In the Nullness type system, enum values are never null, nor is a method receiver.
e Example 2 (built-in): In the Interning type system, string literals and enum values are always interned.

If a type qualifier is present in the source code, that qualifier is used.

If the type has an implicit qualifier, then it is an error to write an explicit qualifier that is equal to (redundant
with) or a supertype of (weaker than) the implicit qualifier. A programmer may strengthen (write a subtype of)
an implicit qualifier, however.

. If there is no implicit or explicit qualifier on a type, then a default qualifier may be applied; see Section 15.3.1.

At this point, every t